Constraints On Dark Energy And Modified Gravity Models From CFHTLenS

SPP seminar, 11 June 2012

Martin Kilbinger CEA Saclay, Iriu/SAp

and the CFHTLenS team

www.cfhtlens.org

Monday, June 11, Ten Years of Cosmic Shear, Edinburgh, July 23rd, 2010

OUTLINE

- Weak gravitational lensing
- The CFHT Lensing survey; galaxy shape measurement, systematics
- Monte-Carlo sampling (PMC)
- CFHTLenS results: constraints on dark energy + Modified Gravity (+ Wiggle-Z); mass maps; galaxy bias
- Outlook, future lensing surveys

ALL THE FUSS ABOUT LENSING

From the CFHTLS web page:

[The CFHTS Wide] allows the study of the large scale structures and matter distribution in the universe through weak lensing and galaxy distribution, as well as the study of clusters of galaxies through morphology and photometric properties of galaxies.

From the ESO description of KiDS:

The primary science driver for the design of this project has been weak gravitational lensing.

From Sanchez et al. (2011), "The Dark Energy Survey":

will start in the fall of 2011 and will study the dark energy properties using four independent methods: galaxy clusters counts and distributions, weak gravitational lensing tomography, baryon acoustic oscillations and supernovae Ia distances. Obtaining the four measurements

From the Euclid Red Book:

Main Scientific Objectives

Understand the nature of Dark Energy and Dark Matter by:

• Reach a dark energy FoM > 400 using only weak lensing and galaxy clustering; this roughly corresponds to 1 sigma errors on w_p and w_a of 0.02 and 0.1, respectively.

WHY ALL THE FUSS?

outskirts of Weak gravitational lensing galaxies, clusters, ... probes the matter distribution on large-scale structure, large scales cosmology no assumption needed for relation ... is sensitive to the total (dark + between galaxies baryonic) mass and dark matter epoch of ... probes the Universe between $z \approx 0.1$ acceleration and ≥ 1 can distinguish between ... measures the expansion dark energy and history and growth rate

modified gravity

HOW DOES IT WORK?

Mass deflects light (Einstein 1915)

GALACTIC LENSES

MG0414+0534

2.64

0.96

Z_{source} Z_{lens} HE0435-1223

0.46

RXJ0921+4529

1.65
0.31

CASTLES survey, http://www.cfa.harvard.edu/castles

A CLOSER LOOK

Lens equation:

$$ec{eta} = ec{ heta} - ec{lpha}(ec{ heta})$$
 (2D angular coordinates)

Deflection angle is a gradient:

$$\vec{\alpha} = \vec{\nabla}\phi$$

2D lensing potential

- First order effect: Deflection of a point source
- Second order effect:
 Differential deflection of an extended source, distortion

LENSING DISTORTIONS

Z _{source}	0.47
Zlens	0.21

SLACS (Sloan lens ACS Survey) Bolton et al. 2009

0.49

CFHTL12k image Czoske et al. 2001

CLUSTER LENSING

The cluster of galaxies Abell 2218

APPLICATIONS OF WEAK LENSING

Weak lensing

- ... by clusters
 Mass, profile, substructure
- ... by galaxies
 Average mass,
 halos, bias

background galaxy

foreground galaxy

 ... by the large-scale structure Cosmology

A CLOSER LOOK

The lens equation

$$\vec{\beta} = \vec{\theta} - \vec{\alpha}(\vec{\theta})$$

is a mapping from the image plane (θ) to the source plane (β)

Linearize this mapping,
 define Jacobian A:

$$\frac{\partial \beta_i}{\partial \theta_j} = \mathcal{A}_{ij} = \frac{\partial \theta_i}{\partial \theta_j} - \frac{\partial \alpha_i}{\partial \theta_j}$$
$$= \delta_{ij} - \begin{pmatrix} \kappa + \gamma_1 & \gamma_2 \\ \gamma_2 & \kappa - \gamma_1 \end{pmatrix}$$

CONVERGENCE & SHEAR

Lensing mapping is given to first order by Jacobian

$$\left(\begin{array}{cc} \kappa + \gamma_1 & \gamma_2 \\ \gamma_2 & \kappa - \gamma_1 \end{array}\right)$$

• Convergence κ : isotropic magnification

- Shear γ : anisotropic stretching
- κ and γ are second derivatives of the lensing potential Φ .

[Actually, κ is the scaled projected mass density, related to Φ via a Poisson equation: $2\kappa = \Delta \Phi$]

CONVEBSEN6ESHEAR

GALAXIES ESTIMATE SHEAR

weak lensing $|\kappa|, |\gamma| \ll 1$

strong_ lensing

[from Y. Mellier]

Galaxy ellipticities are an estimator of the local shear.

Noise: intrinsic galaxy shapes

COSMIC SHEAR

Geometry Growth (<delta^2>)

Weak lensing by the large-scale structure

Continuous distortion along light ray path comoving coordinates

$$\kappa(\vec{\theta}) = \int_{0}^{\chi_{\lim}} d\chi G(\chi) \delta(\chi \vec{\theta}, \chi)$$
lensing efficiency density con-

density contrast

$$G(\chi) = \frac{3}{2} \left(\frac{H_0}{c}\right)^2 \frac{\Omega_{\rm m}}{a} \int_{\chi}^{\chi_{\rm lim}} \mathrm{d}\chi' p(\chi') \frac{\chi(\chi'-\chi)}{\chi'}$$

redshift distribution of background galaxies

Coherent distortions of galaxy images \rightarrow measure shape correlations $\langle \kappa^2 \rangle(\theta) = \langle |\gamma|^2 \rangle(\theta) \propto \langle \delta^2 \rangle(\theta)$ shear variance

CONVEBGEN6ESHEAR

Source galaxies at z = 1, ray-tracing simulations by T. Hamana

SHEAR TOMOGRAPHY

- Lensing efficiency depends on redshift distribution
- Split galaxies into redshift bins: measure growth of structure
- For ACDM models: 2-3
 bins already sufficient.
 But (many?) more bins
 desired: w(z), modified
 gravity, intrinsic alignment

Need accurate photometric redshifts

WEAK LENSING SUMMARY

σ₈ = density fluctuations rms in spheres of 8 Mpc/h
 = density power spectrum amplitude

[Fu et al. 2008, CNRS press release]

The CFHTLenS team

L. van Waerbeke (PI) H. Hildebrandt M. Milkeraitis S.Vafaei J. Benjamin

C. Heymans (PI) T. Kitching F. Simpson E. Grocutt

Y. Mellier R. Gavazzi

T. Erben P. Simon T. Schrabback E. van Uitert

University of Waterloo M. Hudson **B.** Gillis

L. Miller M.Velander

J. Coupon

B. Rowe

M. Kilbinger

K. Holhjem

CFHTLenS

- The state-of-the-art cosmological survey with 155 sq degrees, ugriz to i<24.7 (7σ extended source)
- Uses 5 yrs of data from the Deep, Wide and Pre-survey components of the CFHT Legacy Survey

Mondahesuay, March 16, 2011

A MEGACAM@CFHT Image Section

Regions around bright stars and big galaxies need to be excluded from our weak lensing studies.

Semi-Automatic Masking

Moderately bright Stars are masked with template masks; large scale defects produce significant jumps in the object number density

SHAPE MEASUREMENT

Bridle et al. 2008, great08 handbook

- Need to measure galaxy shapes (ellipticity) given that images have been
 Use stars to correct for instrumental and atmospheric distortions
 © convolved with atmosphere and optics PSF
- An Adverted by atmosphere and apples cannot be well estimated, but need sampled onto detector with finite pixels to measure the ensemble free from systematic bias degraded by noise

Wednesday, January 18, 2012

SHAPE MEASUREMENT: LENSFIT

PSF (Point Spread Function)

Avoids problems in co-added images.

CONVEBGEN6ESHEAR

Source galaxies at z = 1, ray-tracing simulations by T. Hamana

LIKELIHOOD FUNCTION

$$L(\boldsymbol{d}^{\text{obs}};\boldsymbol{\theta}) = \frac{1}{\sqrt{(2\pi)^n \det C}} \exp[-\chi^2(\boldsymbol{d}^{\text{obs}};\boldsymbol{\theta})/2]$$
$$\chi^2(\boldsymbol{d}^{\text{obs}};\boldsymbol{\theta}) = \left(\boldsymbol{d}(\boldsymbol{\theta}) - \boldsymbol{d}^{\text{obs}}\right)^{\text{t}} C^{-1} \left(\boldsymbol{d}(\boldsymbol{\theta}) - \boldsymbol{d}^{\text{obs}}\right)$$

 d^{obs} : data vector of ellipticity correlations, e.g. $d_i = \xi(\vartheta_{j(i)}, z_{k(i)})$ $d(\theta)$: model vector

 $\boldsymbol{\theta}$: vector of cosmological parameters, e.g. $\Omega_{\mathsf{m}}, \sigma_{\mathsf{8}}, h, w \dots$

C: covariance matrix, $C = \langle dd^{\mathsf{t}} \rangle - \langle d \rangle \langle d^{\mathsf{t}} \rangle$

Beyond Gaussian likelihood:

- Hartlap et al. (2009): Sample likelihood from *N*-body simulations

- Schneider & Hartlap (2009): non-linear transformation of variables
- Benabed et al. (2009): Inverse-Gamma distribution for low ell (CMB)

LIKELIHOOD FUNCTION

The likelihood is a high-dimensional function.

$$L(\boldsymbol{d}^{\text{obs}};\boldsymbol{\theta}) = \frac{1}{\sqrt{(2\pi)^n \text{det}C}} \exp[-\chi^2(\boldsymbol{d}^{\text{obs}};\boldsymbol{\theta})/2]$$
$$\chi^2(\boldsymbol{d}^{\text{obs}};\boldsymbol{\theta}) = \left(\boldsymbol{d}(\boldsymbol{\theta}) - \boldsymbol{d}^{\text{obs}}\right)^{\text{t}} C^{-1} \left(\boldsymbol{d}(\boldsymbol{\theta}) - \boldsymbol{d}^{\text{obs}}\right)$$

We need integrals over the likelihood:

J

mean of parameter vector

$$\int \mathrm{d}^n \theta \, \boldsymbol{\theta} \, L(\boldsymbol{\theta}) \pi(\boldsymbol{\theta})$$

68% confidence region

$$\mathrm{d}^n \theta \, \mathbf{1}_{68\%} \, L(\boldsymbol{\theta}) \pi(\boldsymbol{\theta})$$

Posterior by sampling the parameter space Posterior by sampling the parameter space

- Try to get sample from posterior:
- Then easy to estimate mean, error bars,
 Sample officience regions, (evidence)
 (likelihood × prior).
 Aka Monte-Carlo integration.
 - E.g. Markov Chain Monte Carlo (MCMC).
 - E.g.: Matterectain has donkerge C haints θ_i represent sample from posterior

Monday, October 31, 2011

Monday, October 31, 2011

MCMC is very good, but not optimal:

- Difficult to reach & determine chain convergence
- Acceptance rate $\leq 25\%$
- Not easily or efficiently parallelisable
- For model comparison: Bayesian evidence difficult to estimate

A (well-known) alternative: Importance Sampling IMPORTANCE SAMPLING

- Sample from proposal distribution *G* (importance function). E.g. mixture of Gaussians
- Weigh each sample point θ by ratio (importance weight) $w = p(\theta)/G(\theta)$
- Evaluation of posterior p
 (likelihood x prior) can be done in parallel

Monday, October 31,201 performance if proposal far from posterior

Population Monte Carlo (PMC)

- Solution: Create adaptive importance samples ("populations")
 [Cappé et al. 2004, 2007]
- Iteration $G_i \rightarrow G_{i+1}$: Update mean, covariance and component weights
- PMC sample engine and cosmology modules, public code, <u>www.cosmopmc.info</u>, [Kilbinger et al. 2010, arXiv:1101.0950] _{Monday, October 31, 2011}
- Stop when proposal *p* 'close enough' to posterior *G*

MC Performance

PMC Performance PERFORMANCE

PMC Performance

Perplexity: Measures distance between posterior *p* and proposal *G*

ber 31, 2011

all october 31, 201 12

Data WIGGLE-Z DATA

- **CFHTLenS Cosmic Shear**
 - Two redshift bins; 1 < θ < 100 arcmin</p>
- WiggleZ Redshift Space Distortions (Blake et al. 2011)
- Auxiliary Data
 - □ WMAP7 (I >100)
 - □ $H_0 = 73.8 \pm 0.024 \text{ km s}^{-1} \text{ Mpc}^{-1}$ (Riess et al. 2011)
- Utilise CosmoPMC, MGCAMB, WMAP Likelihood, CosmoloGUI

- non-constant Sigma, mu: only late-time effect. Timedependence like DE. CMB would dominate constraint on const S, m

$$ds^{2} = -(1+2\varphi)dt^{2} + (1-2\phi)a^{2}dx^{2}$$

Gravitational potential as experienced by galaxies:

$$\nabla^2 \varphi = 4\pi G a^2 \overline{\rho} \delta \left[1 + \mu \right] \qquad \mu(a) \propto \Omega_{\Lambda}(a)$$

Gravitational potential as experienced by photons:

$$\nabla^{2}(\varphi + \phi) = 8\pi G a^{2} \overline{\rho} \delta \left[1 + \Sigma\right] \quad \Sigma(a) \propto \Omega_{\Lambda}(a)$$

PARAMETRISATION

PREVIOUS CONSTRAINTS Previous Constraints

COMMERCE NAES & MHESR

Source galaxies at z = 1, ray-tracing simulations by T. Hamana

LENSING MASS MAPS

- Map dark-matter structures. Compare to optical (galaxies), X-ray (hot gas), SZ (gas)
- High-density regions trace non-linear structures
- Higher-order correlations, non-linear evolution
- 3D mass reconstruction, evolution of cosmic structures

Winter

Autumn

Full non-linear Mass reconstruction (Gaussian filter)

Kmass NOISE FREE

Overlay

 κ_{simul}

Perfect match!

^Ksimul

^Kmass NOISE FREE

Overlay

Perfect match!

^Kmass NOISE FREE

Overlay

^Ksimul

Perfect match!

Kmass With NOISE

Overlay

 κ_{simul}

Very good match! Peak and voids are well preserved

Kmass With NOISE

Overlay

 κ_{simul}

Very good match! Peak and voids are well preserved

Kmass With NOISE

Overlay

Ksimul

Very good match! Peak and voids are well preserved

W1 mass reconstruction

Kmass

Kgalaxies

Overlay

Overlay

 3.5σ peaks

 $\kappa_{galaxies}$

Overlay

3.50 peaks

Overlay

 3.5σ peaks

W1 mass and light

CFHTLEN

LENSING & CLUSTERING

Wednesday, January 18, 2012

TIMELINE TO EUCLID

- CTIO 75 deg², DLS 25 deg², SDSS stripe-82 168 deg²
- COSMOS. 2003 2005
 1.64 deg², ACS/HST
 Excellent photometric redshifts (30 bands from UV to IR), very deep. Space-based.
- **CFHTLS**. 2003 2009

155 deg², MegCam/CFHT Science results in 2012. Catalogues will be made public on **Nov 1, 2012**.

TIMELINE TO EUCLID

KiDS. 2011 -

1,500 deg², OmegaCam/VST Excellent image quality and seeing. Deep IR coverage (VISTA) + u-band

- DES. 2012 5,000 deg², DECam/CTIO
 Large area, IR coverage. Large spectro-follow up planned (DESpec)
- LSST. ≥ 2018 20,000 deg²
- Euclid. ≥ 2019 -15,000 deg²
 Very stable PSF, space-based.

EUCLID FORECASTS

	Modified Gravity	Dark Matter	Initial Conditions	Dark Energy		
Parameter	Ÿ	m√eV	$f_{\scriptscriptstyle NL}$	<i>w</i> _p	Wa	FoM
Euclid Primary	0.010	0.027	5.5	0.015	0.150	430
Euclid All	0.009	0.020	2.0	0.013	0.048	1540
Euclid+Planck	0.007	0.019	2.0	0.007	0.035	4020
Current	0.200	0.580	100	0.100	1.500	~10
Improvement Factor	30	30	50	>10	>50	>300

FUTURE LENSING SURVEYS

- Order of magnitude more area → dominated by systematic errors!
- No current shape measurement method accurate enough for future surveys
- Space-based weak lensing challenges (CTI, PSF undersampling, color gradients)
- No show-stopper for weak lensing found yet

SUMMARY

- CFHTLenS: best lensing results to date. 3 years + of work
- New data reduction, shear measurement, photo-z
- Systematics can be quantified
- Systematics tests cosmology-blind
- Data and catalogue public release on Nov 1, 2012.

www.cfhtlens.org

Technical papers:

The Canada-Hawaii Telescope Lensing Survey; Heymans & Van Waerbeke et al in prep Bayesian galaxy shape measurement for weak lensing surveys –III. Miller et al in prep CFHTLenS: Improving the quality of photometric redshifts with precision photometry; Hildebrandt et al,

CFHTLenS Data Release; Erben et al in prep

Impact of PSF modeling errors on cosmic shear analyses; Rowe et al in prep Cosmology:

Cosmological constraints from cosmic shear; Kilbinger et al in prep Tomographic cosmic shear with Photometric Redshifts; Benjamin et al in prep Testing the laws of gravity with CFHTLenS and WiggleZ; Simpson et al in prep Weak lensing magnification measurements in CFHTLenS; Hildebrandt et al in prep Combined cosmic shear and intrinsic galaxy alignment constraints; Heymans & Grocutt et al in prep 3D weak lensing with CFHTLenS; Kitching et al in prep Three-point cosmic shear analysis of CFHTLenS; Vafaei et al prep

Clusters and galaxies:

Mapping dark matter with CFHTLenS; Van Waerbeke & Heymans et al in prep. Galaxy dark matter halo constraints in the CFHTLenS; Velander et al in prep Galaxy-galaxy lensing in CFHTLenS; Hudson et al in prep Third order galaxy-galaxy-galaxy lensing; Simon et al in prep The scale dependent galaxy bias from CFHTLenS; Bonnett et al in prep Galaxy halo shapes constrained by CFHTLenS; Schrabback et al in prep CFHTLenS cluster mass scaling relations; Milkeraitis et al in prep Galaxy groups in CFHTLenS; Gillis et al in prep

Intrinsic alignment is a problem for future weak lensing surveys

- Galaxies at same z: remove from analysis
- Galaxies @ different z:
 - Nulling (model-independent): scan through *z* (Benjamini, Schneider)
 - Fitting shear + alignment models: many parameters (Bridle, King, Kirk)

PSF CORRECTION

Telescope/Camera/Atmospheric distortions >> weak lensing

Correct for PSF:

- Measure PSF for stars
- Model PSF
- Interpolate to galaxy positions
- Deconvolve/subtract/...
 estimated PSF

INTRINSIC ALIGNMENT

- MK et al. in prep.: Broad redshift distribution, IA sub-dominant (see Fu et al. 2008)
- Simpson et al, Benjamin et al. in prep.: Exclude z<0.5, IA subdominant for high z
- Grocutt et al. in prep.: Model simultaneously GG, GI and II

E- AND B-MODE

E-AND B-MODES

