DE LA RECHERCHE À L'INDUSTRIE

Simulation de détermination de l'espace de phase du faisceau par la méthode de variation des gradients dans l'accélérateur prototype d'IFMIF

Séminaire SACM | Romain Scherer

Tuteur P.A.P Nghiem

31 AOÛT 2012

www.cea.fr

LE LIPAc

Caractéristiques nominales du faisceau :

CEA | 31 AOÛT 2012 | PAGE 4

La ligne HEBT

- Etude réalisée de 0 à 3m
- Faisceau :
 - **125 mA**
 - 9 MeV1,1 MW

D-Plate (Diagnostics Plate)

Mesure du profil du faisceau :

IPM (Ionization Profile Monitor)

— FPM (Fluorescence Profile Monitor)

METHODE DE VARIATION DES GRADIENTS (ETAT DE L'ART)

- Possible avec la puissance nominale du faisceau
- Sans interception
- Permet de décrire le faisceau dans l'espace de phase à 4D

6 Paramètres de Twiss à déterminer α , β , ϵ

METHODE DE VARIATION DES GRADIENTS (ETAT DE L'ART)

Contrainte :

Cas fortement non linéaire car la charge d'espace est prépondérante. Les équations du transport deviennent non linéaires. La méthode d'inversion matricielle n'est pas satisfaisante.

Solution :

- Utilisation d'un code de transport multiparticule, TraceWin.

Développement d'un code d'optimisation.

« inversion numérique » (au lieu d'une inversion matricielle)

<u>Charge d'espace :</u>

Ensemble des charges des ions de même signe se repoussant entre eux.

Opposée aux forces de focalisation.

METHODE DE VARIATION DES GRADIENTS (ETAT DE L'ART)

Contrainte :

Les paramètres de Twiss ne suffisent pas à décrire le faisceau lors d'un transport non linéaire

Décrire le faisceau avec plus de paramètres

Limitation du nombre de paramètres pour l'algorithme d'inversion

DESCRIPTION PARAMÉTRIQUE DU FAISCEAU

DESCRIPTION PARAMÉTRIQUE DU FAISCEAU

Espace de phase à 4D (x, x', y, y'):

Position des particules : (x, y)
Angle du vecteur vitesse : (x'=dx/dz, y'=dy/dz)

Ellipse de concentration :

Distribution construite avec TraceWin : Gaussienne tronquée à 6 $\sigma,$ ϵ = 10, α = -0.7, β = 0.07

CEA | 31 AOÛT 2012 | PAGE 12

Fit des projections de la densité de particules avec :

- Une somme de gaussienne et de gaussienne généralisée

$$y = \frac{1}{2} \left[e^{-\left|\frac{x}{a}\right|^{b}} + e^{-\left(\frac{x}{c}\right)^{2}} \right]$$

DESCRIPTION PARAMÉTRIQUE DU FAISCEAU

Les paramètres utilisés

On cherche à représenter le faisceau (l'ensemble des particules) avec :

- Les paramètres des ellipses de concentration α, β, ε projetés sur les plans (x, x'), (y, y')
- Les paramètres des profils de densité a, b, c projeté sur les directions x, x', y, y'
- Au total : 18 paramètres.

Axe x	a _x	b _x	C _x
Axe x'	a _x '	b _x '	C _x '
Plan xx'	α_x	β_{x}	ε _x
Axe y	a _y	b _y	Cy
Axe y'	a _y '	b _y '	C _y '
Plan yy'	α_{y}	β _y	ε _y

MÉTHODE DE VARIATION DES GRADIENTS (AMÉLIORÉE)

MÉTHODE DE VARIATION DES GRADIENTS (AMÉLIORÉE)

- Possible avec la puissance nominale du faisceau
- Sans interception
- Permet de décrire le faisceau dans l'espace de phase à 4D

MÉTHODE DE VARIATION DES GRADIENTS (AMÉLIORÉE)

MODÉLISATION DU FAISCEAU

Tirage selon une fonction de densité de probabilité

- Méthode de Monte Carlo
- Tirage aléatoire des particules
 - Tirage uniforme dans un rectangle
 - Condition de densité de probabilité fixée par la somme de gaussienne et de gaussienne généralisée

 $\left| f(x) = \frac{1}{2} \right| e^{-\left|\frac{x}{a}\right|^{\circ}} + e^{-\left(\frac{x}{c}\right)^{2}}$

Méthode de Cholesky

Donner les bons paramètres à l'ellipse de concentration sans changer les projections Paramètres de Twiss (Inclinaison, taille)

Pour une matrice A (symétrique définie positive), on cherche la matrice triangulaire inférieure L tel que A=LL^T

Matrice faisceau:
$$A = \begin{pmatrix} \beta_{x}\varepsilon_{x} & -\alpha_{x}\varepsilon_{x} & 0 & 0 & 0 & 0 \\ -\alpha_{x}\varepsilon_{x} & \gamma_{x}\varepsilon_{x} & 0 & 0 & 0 & 0 \\ 0 & 0 & \beta_{y}\varepsilon_{y} & -\alpha_{y}\varepsilon_{y} & 0 & 0 \\ 0 & 0 & -\alpha_{y}\varepsilon_{y} & \gamma_{y}\varepsilon_{y} & 0 & 0 \\ 0 & 0 & 0 & 0 & \beta_{z}\varepsilon_{z} & -\alpha_{z}\varepsilon_{z} \\ 0 & 0 & 0 & 0 & 0 & -\alpha_{z}\varepsilon_{z} & \gamma_{z}\varepsilon_{z} \end{pmatrix}$$

DE LA RECHERCHE À L'INDUSTRI

MODÉLISATION DU FAISCEAU

MODÉLISATION DU FAISCEAU

Résultats

Forme angulaire due à la fonction de densité de probabilité Somme gaussienne et gaussienne généralisée Gaussienne $f(x) = e^{-\left(\frac{x}{a}\right)^2}$ $g(y) = e^{-\left(\frac{y}{a'}\right)^2}$ $f(x) = \frac{1}{2} \left[e^{-\left|\frac{x}{a}\right|^{b}} + e^{-\left(\frac{x}{c}\right)^{2}} \right] \qquad g(y) = \frac{1}{2} \left[e^{-\left|\frac{y}{a'}\right|^{b'}} + e^{-\left(\frac{y}{c'}\right)^{2}} \right]$ $\mathcal{N}(x) = e^{-\left(\frac{x}{a}\right)^2} * e^{-\left(\frac{y}{a'}\right)^2} = e^{-\left(\frac{x}{a}\right)^2 - \left(\frac{y}{a'}\right)^2}$ $\mathcal{N}(x) = \frac{1}{2} \left[e^{-\left|\frac{x}{a}\right|^{b}} + e^{-\left(\frac{x}{c}\right)^{2}} \right] * \frac{1}{2} \left[e^{-\left|\frac{y}{a'}\right|^{b'}} + e^{-\left(\frac{y}{c'}\right)^{2}} \right]$ $=\frac{1}{4}\left[e^{-\left|\frac{x}{a}\right|^{b}-\left|\frac{y}{a'}\right|^{b'}}+e^{-\left(\frac{x}{c}\right)^{2}-\left(\frac{y}{c'}\right)^{2}}+e^{-\left|\frac{x}{a}\right|^{b}-\left(\frac{x}{c}\right)^{2}}+e^{-\left|\frac{y}{a'}\right|^{b'}-\left(\frac{y}{c'}\right)^{2}}\right]$ Ellipse : $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

CEA | 31 AOÛT 2012 | PAGE 22

ETUDE DES PARAMÈTRES ET OPTIMISATION

Résultats

Variation de beta et epsilon (avec alpha fixe et a, b, c fixes) dans le plan (xx') :

Résultats

Variation de a et c (avec b fixe et ε , α , β fixes) du profil en x:

ETUDE DES PARAMÈTRES ET OPTIMISATION

Résultats

Algorithme d'optimisation : Simplex Fonction à minimiser : $F = \sum_{n=1}^{1} (a_n)$

$$F = \sum_{G}^{i} (a_0 - a_i)^2 + (b_0 - b_i)^2 + (c_0 - c_i)^2$$

Après 300 itérations :

CEA | 31 AOÛT 2012 | PAGE 26

DE LA RECHERCHE À L'INDUSTRIE

ETUDE DES PARAMÈTRES ET OPTIMISATION

[14/05/2012] TraceVin - CEA/DSM/b/fu/SACM Ele: 55 [3 m] NGOOD : 1045705 / 1045705 X(mm) - X'(mrad) Y(mm) - Y'(mrad) 10 -15 -40 -30 -20 -10 0 10 20 30 40 -40 -30 -20 -10 0 10 20 30 40 P(deg @175 MHz) - W(MeV X(mm) - Y(mm 0.4 - 0.1 0.2 -0.2 -0.4 -150 -100 -50 00 -50 0 50 100 150 Fo=0.122 deg Wo=8.94313 MeV -40 -30 -20 -10 0 10 20 30 40 Xmax =26.735 mm ax =20.823 mn

En sortie

CEA | 31 AOÛT 2012 | PAGE 27

MODÉLISATION DU FAISCEAU (2^{ÈME} MÉTHODE)

MODÉLISATION DU FAISCEAU (2^{ÈME} MÉTHODE)

« super ellipse »

Courbes de Lamé : $\left(\frac{x}{a}\right)^n \pm \left(\frac{y}{b}\right)^n = 1$ n > 0, a et b non nuls

Cas particuliers, les super ellipses :

Merci pour votre attention

Commissariat à l'énergie atomique et aux énergies alternatives Centre de Saclay | 91191 Gif-sur-Yvette Cedex

_

Direction: DSMInstitut: IRFUService: SACMLaboratoire: LEDA

Etablissement public à caractère industriel et commercial | RCS Paris B 775 685 019