Des bolomètres scintillants pour la détection des évènements rares

Bolomètre IAS de 91g en BGO & son détecteur optique en Ge

Séminaire d'instrumentation, le 4 Juin 2013. SEDI / CEA Lidia Torres SAp / CEA

Plan

I. L'instrument

- **1 Qu'est-ce que c'est un bolomètre? (détecteur de particules)**
- 2 Le bolomètre scintillant en configuration de bolomètre double
- 3 La voie de la lumière (le vrai défi technologique)
 - a) Le bolomètre optique. Optimisation
 - b) Luminescence à basse température. Optimisation
- II. Les applications
 - ① Détection des évènements rares
 - Désintégrations alpha rarissimes
 - Double désintégration beta sans neutrinos
 - Détection de la matière noire (WIMPs)
 - 2 Spectroscopie des neutrons rapides

Tout d'abord: qu'est-ce que c'est un bolomètre?

Quelques mots sur chaque élément 1. Absorbeur, bain et lien thermique

• **C**:
$$\Delta T = \frac{E}{C_{(T)}} = \frac{E}{m \times c_{(T)}} \lim_{T \to 0} c_{(T)} = 0$$

Il faut réduire C pour augmenter la réponse

Possibilité de cibles massives si

- **T**↓
- c↓: matériaux diélectriques et diamagnétiques (seule contribution à c vient du réseau)

• **T**₀ : ~10-50 mK atteintes en continue grâce aux réfrigérateurs à dilution

Réservoir T δ*U* ----- C δ*U*

 T↓ - ✓ augmente réponse
 ✓ diminue le bruit intrinsèque thermodynamique

$$\Delta U_{rms} = \sqrt{k_B T^2 C}$$

- G: ✓ Suffisamment petit pour empêcher que l'énergie s'échappe au bain avant d'être mesurée
 - ✓ Suffisamment grand pour évacuer le surplus d'énergie et empêcher les empilements

et 2. Le thermomètre

Thermométries utilisées en bolometrie

- Résistive (thermistors) R(T)
 - Haute impédance ($100k\Omega \rightarrow 10M\Omega$)
 - Ge-NTD (Neutron Transmuted Doped)
 - Si implanté
 - Nb_xSi_{1-x}
 - Basse impédance (10mΩ→100mΩ)
 - TES (Transition Edge Sensor)
- Magnétique M(T)
 - Ions magnétiques dans matrice métallique (système Au:Er)

Chaque thermomètre:

- ajoute sa propre capacité calorifique
- ajoute son propre bruit et celui de son électronique de lecture

Thermisteurs R(T): Ge-NTD vs. TES

Interaction des particules dans un cristal isolant

Les bolomètres sont les seuls détecteurs de particules qui récupèrent l'énergie absorbée par le réseau. Le reste des détecteurs mesure l'ionisation produite

04/06/2013

Partition de l'énergie après un dépôt d'énergie

Les atouts des bolomètres

- La plupart de l'énergie est absorbée comme chaleur (excitation des phonons) pour tous les types de particules (chargées ou neutres)
- Le quantum d'excitation est petit:
 - Energie d'un phonon ~10⁻⁵ eV
- Large éventail de cibles: grande applicabilité
- Pas (ou très peu) de sélectivité de la réponse sur particules
 - →Particules non ionisantes (reculs, ions lourds, molécules) !
- Absence de fenêtre → pas de « straggling »

énergétique excellente (de 1 à 0.1%)

...et leur faiblesses

- Ils sont des détecteurs d'équilibre: les meilleurs performances sont atteintes lors que l'équilibre thermodynamique s'installe
 - Le temps de thermalisation peut être long à basse température (recombinaison finale à travers du gap)
- Travail à basse température (10-50 mK) (réfrigérateur à dilution)
- Sensibles à toute sorte de particule...mais aussi à des vibrations! => environnement calme

- Lenteur

 (Taux max ≈ qq.10kHz*)
- Pas d'information topologique

Appelés là où la très haute résolution est nécessaire

- Exemple: spectroscopie X pour l'Astronomie (détection photon par photon)
 - Les prochains observatoires spatiaux en X seront à base de matrices de µcalorimètres (ATHENA +)
 - Au SAp/CEA: Conception d'une camera à base de µcalorimètres pour la détection de rayonnement X

La détection hybride bolométrique

Pourquoi peut-on discriminer les particules? Facteurs de *quenching* de la lumière

(quenching = extinction)

La lumière produite dépend fortement de la particule

- Lumière de scintillation: due à la désexcitation radiative des centres luminescents
 - 1. Répartition primaire de l'énergie entre le système électronique et atomique du cristal (calcul de Lindhard 1963)
 - 2. Phénomène de saturation de centres de scintillation

Phénomène de saturation de centres de scintillation

Centre radiatif producteur de la lumière

Particule A

Particule B

 $E_A = E_B$

Le dépôt d'énergie de moindre densité (dE/ dr♥) a accès à plus de centres actifs

Pourquoi peut-on discriminer les particules? Facteurs de *quenching* de la lumière

(quenching = extinction)

La lumière produite dépend fortement de la particule

- Lumière de scintillation: due à la désexcitation radiative des centres luminescents
 - 1. Répartition primaire de l'énergie entre le système électronique et atomique du cristal (calcul de Lindhard 1963)
 - 2. Phénomène de saturation de centres de scintillation
- Lumière Cherenkov:

particules chargéesv_{particle} > c / nn: indice de réfraction du cristalCalcul pour TeO2:[T. Tabarelli de Fatis, Eur. Phys. J. C 65 (2010) 359].

- n = 2.4
- seuil de lumière pour e => 50 keV
- seuil de lumière pour $\alpha => 400 \text{ MeV}$

À tenir en compte pour le rejet de fond à haute énergie (ββ0v)

Bandes dans un plot lumière-chaleur

Séminaire d'instrumentation. Lidia Torres

Bolomètres scintillants: principes

Discrimination des particules à l'œuvre

Séminaire d'instrumentation. Lidia Torres

à partir du

seuil de

Discriminations de particules Ex: source de ²¹⁰Po

04/06/2013

I. L'instrument

- Qu'est-ce que c'est un bolomètre? (détecteur de particules)
- 2 Le bolomètre scintillant en configuration de bolomètre double
- **3** La voie de la lumière (le vrai défi technologique)
 - a) Le bolomètre optique. Optimisation
 - b) Luminescence à basse température. Optimisation
- II. Les applications
 - Détection des évènements rares
 - Désintégrations alpha rarissimes
 - Double désintégration beta sans neutrinos
 - Détection de la matière noire (WIMPs)
 - 2 Spectroscopie des neutrons rapides

Première mesure simultanée de lumière-chaleur (Milan)

Réalisation du première bolomètre optique (IAS)

Détecteur de lumière: bolomètre de type IR et sub-mm en saphir avec couche en Bismuth

Sapphire heat-link Copper Technologie déjà développée (pour des surfaces ~mm²) Ge-NTD prête à être adaptée sensor CaF₂ (Eu) crystal $(5.1x5.1x3.7 \text{ mm}^3)$ ✓ Pour diminuer C à T↓ l'absorbant sera remplacé par =(2)Sapphire disk Monolithic un semiconducteur. φ=9.2mm Ge-NTD $t \sim 230 \ \mu m$ sensor ✓ Solution retenue par toutes les Bi light absorbing expériences actuelles layer 10 mm La discrimination entre les particules α et β/γ est remesurée

> Thèse de Christophe Bobin à Lyon (défendue en Janvier 1995) « *Bolomètres massifs et détection de la matière noire non baryonique »* C. Bobin et al., Nucl. Instr. Meth. A 386 (1997) 453-457

(même scintillateur).

Comparaison des différents détecteurs de lumière de surface ~cm²

		Sensibilité NEP	Efficacité quantique	Bande d'absorption	Résolution temporelle (s)	
Mesure de scintillation à 300K	PMs	10 ⁻¹⁶ à 300K 10 ⁻¹⁸ refroidis	~25% Vis et UV		~10 ⁻⁹	
	Photodiodes	10-14	~80%	NIR-UV	~10 ⁻⁶	
	Bolomètres optiques à cible semiconductrice	10 ⁻¹⁷	~100%	1eV-10keV	10 ⁻³ -10 ⁻²	
 Détecteur de lumière sur mesure pour la technique lumière + chaleur ✓ Montage face au scintillateur sans fenêtr ✓ Calibration absolue de l'énergie sous form lumière avec source ⁵⁵Fe (6 keV) 					sans fenêtre ie sous forme V)	
 Sensibles à l'énergie et pas au nombre de photons Mais: Il est très sensible à la µphonie 						
04/06/2013		•	Il est lent	ion Lidia Torros		

24

Bolomètres optiques: Choix de l'absorbant

Performances des bolomètres optiques actuelles

Experiment	Absorber	Dimensions Thickness	Т	Base line FWHM	Application
IAS	Ge	Φ=25mm ép=45μm	22mK	30 eV	WIMPs
LUCIFER	Ge	Φ=66 mm ép=1 mm	15mK	230 eV	ββ0ν
CSNSM	Ge	Φ=50 mm ép=250μm	17mK	88 eV	ββ0ν
CRESST	Si-on- Sapphire	Ф=40mm (1µm-on-46µm)	10mK	16 eV	WIMPs

CRESST Ø = 40 mm FWHM=16 eV 04/06/2013

LUCIFER Ø = A Ø = 66 mm FWHN FWHM=230 eV Séminaire d'instrumentation. Lidia Torres

Ø = 40 mm Ø = 25 mm FWHM= 45 eV FWHM= 30 eV

L'optimisation 1. Le bolomètre optique

Paramètres à optimiser:

- S: sensibilité du détecteur optique
- L: luminescence du cristal
- ε: efficacité optique (fraction de photons détectés)
 Spécifiques pour

chaque cristal

Cela sert à toutes les applications!!

Deux approches actuelles:

- 1. Amélioration des propriétés d'absorption de la lumière de l'absorbant
- 2. Bolomètres optiques à effet Neganov-Luke: amplification du signal phononique dans le semi-conducteur par la dérive des charges lors de l'application de un champ E

Bolomètres optiques à effet Luke en silicium (Munich pour CRESST) (d'après C. Isaila Phys. Lett B 716 (2012) 160)

Bolomètres optiques à effet Luke en germanium (CSNSM) (d'après E. Olivieri PhotoDet 2012)

Φ= 50.8 mm Ép= 500 μm

Electrodes concentriques en Al déposées sur le disque en Ge (technologie héritée d'EDELWEISS-FID)

Vers une palette sans précédent de scintillateurs à haute résolution

• A l' IAS, luminescence trouvée dans tous les cristaux testés, à 20mK

Montages en bolomètres (lumière & chaleur)

CaWO₄

- BGO
- LiF
- TeO₂
- Al₂O₃
- SrF₂

Cristaux seuls devant bolomètre optique (lumière)

- YAP:Ce (3)
- GSO:Ce
- CaF₂:Eu (2)
- Al₂O₃:Ti (4)

Montage en bolomètre à cible démontable (identification par les constantes de temps): quartz (SiO₂), LGBO (= $Li_6Gd(BO_3)_3$, LEB (= $Li_6Eu(BO_3)_3$)

+ tous ceux testés par Stefano Pirro (R&D INFN BoLux pour ββ0ν)

Moo, PbMoo, SiMoo, CdMoo, CaMoo, C CdMoo, CaE,

La grande applicabilité des bolomètres est gardée

Mesure de lumière difficile à rater:

- ✓ Détecteur optique adapté et sensible
- Signal de chaleur en coïncidence (mesure de l'énergie)
- Pour la désintégration $\beta\beta$ 0 ν :
 - ✓ Lumière Cherenkov:

Rejet de fond efficace dans la région d'intérêt pour tous les cristaux! (avec des bolomètres optiques suffisamment sensibles)

- Des bons scintillateurs contenant des noyaux
 et
 sont au menu (Zn , Zn O₄)
- Pour la matière noire:
 - il y a des scintillateurs avec des très bas seuils de discrimination neutrons vs. β/γ
 - mais le signal de lumière des reculs des noyaux à basse énergie reste au niveau du bruit
- Pour la détection des neutrons: recherche des nouveaux scintillateurs contenant et

L'optimisation de la scintillation à basse température

Phénomène qui doit être mieux compris

Multidisciplinarité

Scintillation à basse T (~10-20 mK)

Il s' agit d'une discipline nouvelle (~10 ans)

Il faut, d'abord, comprendre le mécanisme d'émission (plus compliqué pour les scintillateurs extrinsèques: émission due à la présence d'impuretés et/ou défauts)

- •Etude de la luminescence f(T)
- •Etude du spectre de scintillation f(T)
- •Etude des constantes de temps de scintillation f(T)

« Recommencer tout de 0 » Refaire le travail fait à 300K

Article Review: V.B. Mikhailik et al., Phys. Status Solidi B 247, No. 7 (2010)

Qqs montages pour l'étude de la scintillation à basse T

K Screen

Mylar Diaphragm

30 mm

Quartz Windows

80 K Screen-

Contraction 5

04/06/2013

Mesure de luminescence et constantes de temps du BGO et BaF2 sous excitation γ

Thèse M.A. Verdier, Université de Lyon, 2010

II. APPLICATIONS DES BOLOMETRES SCINTILLANTS

- a. Désintégrations alpha rarissimes
- b. Double désintégration beta sans neutrinos
- c. Détection de la matière noire (WIMPs)

Détection des désintégrations alpha rares avec des bolomètres scintillants

La détection des alphas de Q_{α} <3MeV est difficile :

- T_{1/2} est élevé (peu d'énergie disponible pour l'effet tunnel à travers la barrière nucléaire)
- $Q_{\alpha} \sim E \text{ des } \gamma \text{ des chaînes naturelles qui dominent le fond}$

Désintégrations alpha de✓ 209 Bi (IAS; 2002 & LNGS; 2010) $T_{\frac{1}{2}} \approx 2 \ 10^{19}$ ans✓ 180 W (CRESST;2004) $T_{\frac{1}{2}} \approx 2 \ 10^{18}$ ans

04/06/2013

Première détection de la désintégration α du ²⁰⁹Bi

P. de Marcillac et al., Nature 422, 876 (2003)

04/06/2013

Détection de la désintégration α du ¹⁸⁰W C. Cozzini et al., Physical Review C 70 (2004)

04/06/2013

Première détection de la désintégration α du ²⁰⁹Bi au premier niveau excité du ²⁰⁵Tl

J.W. Beeman et al., Phys. Rev. Lett. 108 (2012) 062501 (équipe de Milan)

... et après?

La détection de la désintégration α du ²⁰⁹Bi au niveau excité du ²⁰⁵Tl constitue le record en durée de vie en détection mono énergétique (la détection du mode ββ2v a des T_{1/2} plus longues mais le spectre est continu)

Branching ratio mesurée du niveau excité = 98.8%T_{1/2} au niveau fondamentale = 1.99×10^{19} ans

 $T_{1/2}$ au niveau excité = 1.7 x 10²¹ ans (avec un seul cristal)

• Et après? Peut être la raie de la désintégration ββ0ν

 $(T_{1/2} \text{ attendu} \ge 10^{25} \text{ ans})$

II. APPLICATIONS DES BOLOMETRES SCINTILLANTS

- a. Désintégrations alpha rarissimes
- b. Double désintégration beta sans neutrinos
- c. Détection de la matière noire (WIMPs)

La double désintégration ß sans neutrinos

Réaction recherchée pour les noyaux tels que

 $\checkmark (A,Z) \rightarrow (A,Z+1) + e^- + \overline{v}_e \qquad \text{est interdit énergétiquement}$

✓ $(A,Z) \rightarrow (A,Z+2) + 2e^- + 2\overline{\nu}_e$ est possible énergétiquement (ββ2ν)

 $(A,Z) \rightarrow (A,Z+2)+2e^{-1}$

violation du nombre leptonique $\Delta L=2$ ($\beta\beta 0\nu$)

ββ0v → v=v Particule de Majorana Echelle absolue de la masse du v_e (nous connaissons les (Δm)² par les oscillations v) Hiérarchie correcte des états propres de masse (1-2-3 ou 3-1-2)

Sensibilité au mode ββ0v

$$S \propto \sqrt{\frac{M \cdot t}{b \cdot \Delta E}}$$

- S: T_{1/2} maximale détectable qui peut être scrutée en considérant la limite signal=fluctuations du fond
- M: Masse de l'isotope ββ0ν
- t: Temps de mesure
- b: Fond (en évts/masse/t/ΔE)
- △E: Résolution (notre fenêtre de E)

Réduire le niveau de fond est aussi important qu'avoir une bonne résolution

Bolomètres pour la détection de ßß0v

Ce qu'on a appris de Cuoricino

Une solution évoqué en 2003: Lumière mesurée en TeO₂

04/06/2013

Séminaire d'instrumentation. Lidia Torres

R&D en Italie: ...et si on rajoutait la lumière?

- Trois lignes en parallèle:
 - 1. Dopage du TeO₂ avec Nb and Mn
 - 2. Mesure de la lumière dans ses cristaux de TeO₂-
 - 3. Tests lumière + chaleur des autres cristaux pour le double beta
 - S. Pirro et al. Physics of Atomic Nuclei, 69 (2006)

Sans succès

• En 2009 la lumière Cerenkov des β est proposée comme signature d'identification for les évènements ββ en bolomètres T. Tabarelli de Fatis, Eur. Phys. J.

ββ en bolometres C 65 (2010) 359 eO₂ est détecté (2011)

• L'émission de lumière des β/γ du TeO₂ est détecté (2011)

04/06/13

J.W. Beeman, Astropart. Phys. 35 (2012) 558

Bande β/γ : **48 eV/MeV** de lumière détectée (résultat de l'IAS : 50 eV/MeV)

+ tests de directionnalité qui confirment qu'il s'agit de lumière Cherenkov

d'instrumentation. Lidia Torres

Les noyaux ßß d'intérêt avec des bolomètres luminescents

Noyaux d' intérêt: ceux avec $Q_{\beta\beta} > E \gamma^{208}$ Tl à 2615 keV ¹¹⁶Cd $Q_{\beta\beta} = 2809 \text{ keV}$ ⁸²Se $Q_{\beta\beta} = 2998 \text{ keV}$ ¹⁰⁰Mo $Q_{\beta\beta} = 3034 \text{ keV}$ (⁴⁸Ca exclu à cause de a.i. basse et difficultés du Ca pour être enrichi) (¹⁵⁰Nd exclu à cause de C \uparrow)

04/06/13

LUCIFER (Zn)

ERC (Advanced GRANT 2010-2015)

• Le cryostat de "Cuoricino" abritera ~ 50 cristaux ZnSe \Rightarrow ~ 15 kg de ⁸²Se • \Rightarrow T_{1/2}($\beta\beta$ 0v) ~ (0.5 – 1) × 10²⁶ y en 5 ans

LUMINEU (Zn O₄) ANR (France 2012-2016)

- La Collaboration:
 - CSNSM Orsay (7) :
 - Tests des prototypes à Orsay et suivi des détecteurs à Modane (EDELWEISS)
 - Bolomètres optiques à effet Luke
 - Nouveaux senseurs de T: TES résistifs à basse de NbSi supra en serpentin
 - Coordination
 - IAS Orsay (3):
 - bolomètres optiques « classiques »
 - ICMCB Bordeaux (2):
 - Cristaux: contrôle des cristaux et caractérisation optique
 - CEA Saclay (12)
 - Production des senseurs Ge-NTD (procès complète): X-F Navick (SEDI)
 - Senseurs de T (GeNTD et NbSi): C. Nones (SPP)
 - Bolomètres optiques couples à des senseurs magnétiques (rapidité): M.Loidl et M. Rodrigues (LNHB)
 - Electronique et DAQ in Modane (EDW): M.Gros, B. Paul,
 - Irradiation de Ge à Orphée (Saclay): F.Koskas et O.Strazzer
 - S. Hervé, Y. Penichot, P. Magnier, M.Massinger

+ laboratoires associés: KINR et NIIC (Ukraine): Croissance des cristaux

LUMINEU (Zn O₄)

Démonstrateur setup avec 4 cristaux ⇒ mi-2014 @ cryostat d'Edelweiss (LSM) ≈ 0.7 kg ¹⁰⁰Mo ⇒ T_{1/2}(ββ0v) > 10²⁴ ans (1 an)
 Deuxième setup avec ~30 cristaux ≈ 7 kg ¹⁰⁰Mo ⇒ T_{1/2}(ββ0v) > 5.10²⁵ ans (5 ans)

➢ Première mesure de fond Zn^{nat}MoO₄ crystal (300g
 ⇒ Amplitude signal chaleur~ TeO₂
 ⇒ Pas d'événements e⁻/γ > 2.6 MeV (97 heures)

 \rightarrow Run de fond long en 2013

300g Zn^{nat}MoO₄ 97 hours live-time

Energy heat[keV]

LUMINEU dans cryo EDELWEISS

Niveau de fond β/γ à $E_{\beta\beta}$ est «presque 0»

D'après les simulations: [J.W.Beeman et al., Phys. Lett. B 710 (2012) 318]

- L'incontournable fond $\beta\beta 2\nu$ sera le fond limitant for 100 kg sous la forme d'empilements
- ➔ Un bolomètre optique rapide pourrait séparer l'empilement
- Bolomètre optique à senseur magnétique (LNHB/CEA) 04/06/13

II. APPLICATIONS DES BOLOMETRES SCINTILLANTS

- a. Désintégrations alpha rarissimes
- b. Double désintégration double beta sans neutrinos
- c. Détection de la matière noire (WIMPs)
- Spectroscopie des neutrons rapides

Signal de lumière

Détection de la matière sombre, une recherche bien motivée

Masse manquante dans les observations à échelle

- Galactique
 - courbes de rotation
- Amas
 - Dynamique des Amas(Coma, Zwicky)
 - collision du Bullet Cluster
- Cosmologique
 - formation de structures
 - Etude des anisotropies du CMB (WMAP et Planck)

Un candidat à faire partie du 25.8% de l'Univers: le WIMP

- ✓ Massive, neutre et stable
- ✓ Couplage à la matière ordinaire faible
- Froid (v<<c au moment du découplage radiation-matière)

Un oeil sur le LHC Signe de supersymétrie? La particule supersymétrique plus légère serait un bon candidat (+ conservation de la R-parité)

Détection directe de WIMPs

Bolomètres scintillants pour la matière noire

- Le signal cherché décroit «quasi» exponentiellement avec E
 bon seuil des bolomètres
- Mais le seuil de l'expérience est l'énergie à partir de la quelle on peut identifier les reculs de noyaux: « seuil de discrimination»
- Le signal de lumière des reculs nucléaires à E<100keV est dans le bruit (au niveau de sensibilité actuelle)
- Au seuil la rejection du fond β/γ est possible mais pas l'identification de l'évènement comme recul nucléaire (il y a d'autres évènements sans lumière).
- Les exigences pour les scintillateurs pour la matière noire sont plus contraignantes que pour le double bêta
- Un calcul simple:

0.6 eV /keV pour les reculs **12 eV à 20keV** FWHM bl des meilleurs bolomètres optiques = 16eV (seuil à 5σ de **34 eV**)

- Les reculs des différents noyaux ne peuvent pas être distingués
- Comparaison des noyaux lourds / légers dans différents cristaux

	Undoped crystals				
	CaWO ₄	BGO	LiF	TeO ₂	Al ₂ O ₃
Mass	54g	46g	16g	25g	50g
Light yield,Φ(γ) KeV/MeV on γ's	6	7.5	0.38	0.05	12.7
$Qf = \Phi(\gamma)/\Phi(recoil)$	10	12-15	6.5		21.5
Light yield, Φ(rec) KeV/MeV on rec	0.6	0.5 – 0.6	0.06		0.6

CRESST @ Gran Sasso

CRESST

Cryogenic Rare Event Search with Superconducting Thermometers

Max-Planck-Institut für Physik University of Oxford Technische Universität München Laboratori Nazionali del Gran Sasso Universität Tübingen

Set-up CRESST-II

Carrousel détecteurs (pour 33 détecteurs de 300g)

Les détecteurs de CRESST 2.Réalisation

phonon channel:

<u>300 g detector module</u>

300g CaWO₄ (~10kg en total) Senseur: TES en W light channel: Si 30 x 30 x 0.4 mm³ W-SPT with AI phonon collector reflector: polymeric foil, teflon

Operating temperature ~10 mK

Le réflecteur astucieux (à utiliser d<u>ans toutes les applications)</u>

Les multicouches réfléchissantes scintillent!

Grace aux multicouches CRESST peut rejeter les des évènements superficiels:

Cristal avec contamination superficielle de ²¹⁰Po (il vient du ²²²Rn)

La lumière produite par le réflecteur permet d'identifier ce fond et de le rejeter

...Mais le réflecteur ne peut pas être monté aux points d'appui des suspensions (clamps)
 → Il y a un fond résiduel de reculs de ²⁰⁶Pb dans la région de WIMPs

Résultats de CRESST (730 kg-jour)

- ce ne sont pas des neutrons (d'après cal Am-Be)
- ce ne sont pas des reculs ²⁰⁶Pb (d'après simul SRIM)

...et si les 67 évènements étaient des WIMPs? Les régions (σ_w , m_w) de l'espace de paramètres sont déduitesmais prudence... **Table 1** The exposures, lower energy limits E_{acc}^{min} of the acceptance regions, and the number of observed events in the acceptance region of each detector module

Module	Exposure [kg d]	$E_{\rm acc}^{\rm min}$ [keV]	Acc. events
Ch05	91.1	12.3	11
Ch20	83.0	12.9	6
Ch29	81.1	12.1	17
Ch33	97.0	15.0	6
Ch43	98.1	15.5	9
Ch45	93.1	16.2	4
Ch47	99.0	19.0	5
Ch51	88.5	10.2	9
Total	730.9	_	67

04/06/2013

Une possible explication: contribution du ²¹⁰Pb sous-estimée

La surface réelle est rugueuse (~2A)

M. Kuzniak Astrop. Phys 36 (2012) 77

En tenant compte de la géométrie des détecteurs de CRESST ils trouvent un fond de (simulation GEANT4) 53-68 évènements qui pourrait expliquer l'excès de CRESST

Un banc de test « Matière Noire »: ROSEBUD dans les pyrénées aragonaises

IAS – UZ 2007 ROSEBUD au Laboratoire Souterrain de Canfranc

Détecteurs

BGO 46 g + optical bolometer: (tested for 1st time underground):

high Z material

²⁰⁹Bi:
$$\uparrow A \Rightarrow \uparrow \sigma_{sl}$$
,
J = 9/2 $\Rightarrow \sigma_{sp}$

- LiF 33 g + optical bolometer:
- low Z material
- monitoring of neutrons through the capture reaction: $n+^{6}Li \rightarrow \alpha+t$ $E = Q + E_{n} = 4.78 \text{ MeV} + E_{n}$
- AI_2O_3 50 g + optical bolometer:
- low Z material

04/06/2013

high β/γ background rejection down to 8keV

Les fonds de ROSEBUD au LSC en saphir 50g

Trop grande pour être dû aux neutrons du laboratoire (site souterrain et blindage n partiel) Avec ce fond d'origine inconnu dans la bande des reculs les détecteurs ne sont pas qualifiés pour la matière noire

04/06/2013

Al₂O_{3.} Seuil de discrimination et reproductibilité

Ce saphir est actuellement la meilleur cible pour scruter le WIMP de basse masse pour un recherche avec des bolomètres scintillants

Mais reproductibilité pas encore obtenue 64

Très bon seuil de discrimination des reculs nucléaires (<10 keV)

21.3

99.99 %

Bolomètres scintillants: la seule technique multi-cibles

@ Modane

 $CaWO_{4}$ (chaleur + lum) autres?

CRESST, EDELWEISS, ROSEBUD, CERN + new

groups

United Kingdom

France

Oxford (H Kraus, coordinator)

Germany

MPI für Physik, Munich

Technische Universität München

Universität Tübingen

Universität Karlsruhe

Forschungszentrum Karlsruhe

Russia

DNLP Dubna

CEA/DAPNIA Saclay CEA/DRECAM Saclay CNRS/CRTBT Grenoble **CNRS/CSNSM** Orsay CNRS/IPNL Lvon CNRS/ICMCB Bordeaux **CNRS/IAS Orsay**

Zaragoza

CERN

Détection des neutrons rapides Principes

Cristaux contenant ⁶Li et / ou ¹⁰B

Si le neutron est rapide, les produits de la réaction se partagent le surplus d'énergie Spectroscopie de neutrons possible: E_n = E – E_{th}

(principe vérifié avec neutrons mono-énergétiques au réacteur AMANDE/CEA-Cadarache)

Cristaux testés à l'IAS: LiF, ⁶LiF, LiEuBO, LiGdBO

Neutrons rapides

252Cf

Neutrons thermiques

Conclusions

- Les bolomètres scintillants sont des détecteurs polyvalents avec des sensibilités très compétitives pour la détection des évènements rares
- Croissance spectaculaire en moins de 15 ans avec des records de sensibilité battus
- Pour la détection de la désintégration ββ0ν
 - Avec des bolomètres optiques plus sensibles la technique peut être étendue à tous les cristaux (avec C raisonnable) grâce à l'émission Cherenkov
 - Défi dans l'avenir: rejection du fond intrinsèque $\beta\beta 2\nu$
 - Bonne résolution à retenir
 - Séparation des empilements avec des bolomètres optiques plus rapides (à basse de senseur magnétique?)
- Pour la matière noire
 - CRESST montre le niveau de sensibilité aux WIMPs de la technique
 - Expériences multi-cibles à venir (EURECA)
 - Le phénomène de la scintillation à basse T doit être mieux compris pour bénéficier d'une sélection astucieuse de cibles (sans/avec J, noyaux légers/lourds)
 - Détections des neutrons rapides in situ (le fond directement vu par les autres détecteurs)