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General discussion: E.L. Phys. Rev. D83, 096012

(2011)

INT Seattle Workshop, February 2012:

http://www.int.washington.edu/PROGRAMS/12-

49w/

Meant to resolve controversy. Has opened up

Pandora’s box!
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Important question: how are the momentum and

angular momentum of a nucleon built up from the

momenta and angular momenta of its constituents?
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• Controversy in QCD : how to split the total angular

momentum into separate quark and gluon components

• We measure spin of gluon, but all textbooks on QED

tell us that you cannot split photon angular momentum

in a gauge invariant way into a spin an orbital part. •
Chen, Lu, Sun, Wang and Goldman (Chen et al) set

the cat amongst the pigeons by claiming all textbooks

of past 50 years are wrong • Ji vs Chen et al vs Waka-

matsu vs Hatta vs Canonical

• Different results for momentum and angular momen-

tum carried by quarks and gluons e.g. as µ2 →∞
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OUTLINE

• Pedagogical: Canonical and Belinfante angular mo-

mentum

• The new schemes and the claim that all textbooks

on QED have been wrong for past 50 years

• Physical content of the new schemes

• Interpretation of ∆G(x)
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Actually two kinds of problem:

•Any interacting particles

•Specific to gauge theories

Since controversy arose in QCD, will first discuss gauge

aspect

Since problem already arises in QED, will illustrate via

QED
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Theory invariant under space-time and Lorentz

transformations

From Lagrangian via Noether’s theorem, derive:

Conserved energy-momentum tensor tµν ∂µtµν = 0

Conserved angular momentum tensor

Mµνλ ∂µMµνλ = 0

Call these CANONICAL: tµνcan and Mµνλ
can
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Theory invariant under space-time and Lorentz

transformations

From Lagrangian via Noether’s theorem, derive:

Conserved energy-momentum density

tµν ∂µtµν = 0

Conserved angular momentum density

Mµνλ ∂µMµνλ = 0

Call these CANONICAL: tµνcan and Mµνλ
can
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Total 4-momentum: Pµcan =
∫
d3x t

0µ
can(x)

Total angular momentum: M ij
can ≡

∫
d3xM0ij

can(x)

Jkcan =
1

2
ϵkijM

ij
can
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THESE ARE GENERATORS OF SPACE-TIME AND

LORENTZ TRANSFORMATIONS

For any set of fields ϕr(x):

i [Pµcan, ϕr(x)] = ∂µ ϕr(x)

i[M ij
can , ϕr(x)] = (xi∂j − xj∂i)ϕr(x) + (Σij) sr ϕs(x)
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Pros and Cons of

Jcan

Similar issues in QED and QCD: mainly discuss QED

for simplicity.
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Jcan =
∫
d3xψ†γγ5ψ+

∫
d3xψ†[x× (−i∇)]ψ

+
∫
d3x (E ×A) +

∫
d3xEi[x×∇Ai]

= Scan(el) + Lcan(el) + Scan(γ) + Lcan(γ)

Pros:

J Looks like sum of free electron plus free photon terms

Total energy looks like electron energy plus photon en-

ergy plus Hint
Photon angular momentum is split into SPIN and OR-

BITAL parts
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d3xψ†γγ5ψ+

∫
d3xψ†[x× (−i∇)]ψ

+
∫
d3x (E ×A) +

∫
d3xEi[x×∇Ai]

= Scan(el) + Lcan(el) + Scan(γ) + Lcan(γ)

Pros:

• J Looks like sum of free electron plus free photon
terms

• Total energy looks like electron energy plus photon
energy plus Hint

• Photon angular momentum is split into SPIN and
ORBITAL parts: similar in QCD.....gluon spin!
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Cons:

• ONLY electron spin term is Gauge Invariant

• All Textbooks on QED say:

The angular momentum of the photon cannot be

split in a gauge invariant way into a spin part and

an orbital part
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Does it matter if the individual terms are NOT gauge

invariant??

Ji: Yes: If experimentally measurable, the operators

should be gauge invariant.

E.L: No: What you measure are matrix elements. The

physical matrix elements must be gauge invariant.
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An example: Non-gauge invariance of the QED mo-

mentum operator

Theorem : Theory invariant under local c-number

gauge transformations.

Aµ(x)→ Aµ(x) + ∂µΛ(x)

where Λ(x) is a c-number field satisfying �Λ(x) = 0

and vanishing at infinity.

Pµ the total momentum operator, defined as the gen-

erator of space-time translations.

Then Pµ cannot be a gauge invariant operator.

23



Proof: Let F be the generator of gauge transforma-

tions, so that

i[F,Aµ(x)] = ∂µΛ(x)

From the Jacobi identity

[F; [P

�

; A

�

]] + [A

�

; [F; P

�

]] + [P

�

; [A

�

; F ]] = 0

Since [A

�

; F ] is a c-number, one �nds

[[F; P

�

]; A

�

] 6= 0

so that P

�

is not gauge invariant.
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Proof: Let F be the generator of gauge transforma-

tions, so that

i[F,Aµ(x)] = ∂µΛ(x)

From the Jacobi identity

[F, [Pµ, Aν]] + [Aν, [F, Pµ]] + [Pµ, [Aν, F ]] = 0

Since [Aν, F ] is a c-number, one finds

[[F, Pµ], Aν] ̸= 0

so that Pµ is not gauge invariant.
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However, lack of gauge invariance of no physical
significance.

Example, covariantly quantized QED: generator of trans-
lations is Pcan: show that the matrix element of P jcan
between any normalizable physical states, unaffected
by gauge changes in the operator. Lautrup-Nakanishi
Lagrangian density: combination of the Classical La-
grangian (Clas) and a Gauge Fixing part (Gf)

L = LClas+ LGf
where

LClas = −
1

4
FµνF

µν +
1

2
[ψ̄(i ̸∂ −m+ e ̸A)ψ+h.c.]

and

LGf = B(x) ∂µA
µ(x) +

a

2
B2(x)
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B(x): gauge-fixing field.

GeneratorF =
∫
d3x [(∂0B)Λ−B∂0Λ+ ∂j(F

0jΛ)].

Physical states |Ψ⟩ of the theory defined to satisfy

B(+)(x)|Ψ⟩ = 0

For arbitrary physical states

⟨Ψ′|B(x)|Ψ⟩ = 0
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Theorem: Physical matrix elements of P j are invariant

under gauge transformations.

Proof: Consider the general physical matrix element

⟨Ψ′|P j|Ψ⟩ =
∫
d3p d3p′ ϕ(p)ϕ′(p′) ⟨p′|P j|p⟩

Change induced in ⟨p′|P j|p⟩ is ⟨p′|i[F, P j]|p⟩.
Using expression for F can show ⟨Ψ′|P j|Ψ⟩ is indeed

invariant under gauge transformations.

32



Theorem: Physical matrix elements of P j are invariant

under gauge transformations.

Proof: Consider the general physical matrix element

⟨Ψ′|P j|Ψ⟩ =
∫
d3p d3p′ ϕ(p)ϕ′(p′) ⟨p′|P j|p⟩

Change induced in ⟨p′|P j|p⟩ is ⟨p′|i[F, P j]|p⟩.

Using expression for F can show ⟨Ψ′|P j|Ψ⟩ is indeed

invariant under gauge transformations.

33



Theorem: Physical matrix elements of P j are invariant

under gauge transformations.

Proof Consider the general physical matrix element

⟨Ψ′|P j|Ψ⟩ =
∫
d3p d3p′ ϕ(p)ϕ′(p′) ⟨p′|P j|p⟩

Change induced in ⟨p′|P j|p⟩ is ⟨p′|i[F, P j]|p⟩.

Using expression for F can show ⟨Ψ′|P j|Ψ⟩ is indeed

invariant under gauge transformations.

34



However, this is a contentious issue. Above held for
Classical gauge transformations.

But in Quantized Theory cannot go from say Coulomb
to Lightcone gauge via classical gauge transformation.

We don't know how to do operator gauge transforma-

tions.

In fact we can go from Covariant to Coulomb but it in-

volves an operator transformation, which is not a gauge

transformation!

Maybe Path Integral is only way.
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The Belinfante energy-momentum and angular

momentum densities

Suppose we add a spatial divergence, say ∂
∂xj

Hjµ(x)

to t
0µ
can(x) where

lim
|x|→∞

Hjµ(x) = 0.

Then

∫
all space

d3x
∂

∂xj
Hjµ(x) = Hjµ(t, |x| =∞) = 0
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Can define the Belinfante energy-momentum density
which :

• is symmetric: tνµbel(x) = t
µν
bel(x)

• is gauge invariant

• t0µbel(x) = t
0µ
can(x) + spatial divergence

It follows that

P
µ
bel ≡

∫
d3x t

0µ
bel(x) = Pµcan

IF the fields vanish at infinity.
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Similarly for Belinfante angular momentum density;

M0ij
bel (x) =M0ij

can(x) + spatial divergence

so that

Jbel = Jcan

IF the fields vanish at infinity.
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Digression: does it make sense to talk about fields

vanishing at infinity?

Classical: Yes. Field strength has a numerical value

Quantum: No. What do you mean by an operator

vanishing??????

Come back to this later.
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Digression: does it make sense to talk about fields

vanishing at infinity?

Classical: Yes. Field strength has a numerical value

Quantum: No. What do you mean by an operator van-

ishing??????

Come back to this presently.
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What does Jbel look like ?

Jbel =
∫
d3xψ†γγ5ψ+

∫
d3xψ†[x× (−iD)]ψ

+
∫
d3xx× (E ×B)

= Sbel(el) + Lbel(el) + Jbel(γ)

where

D = ∇− ieA.

Pros: Each term is gauge invariant

Cons: Jbel(γ) NOT split into spin and orbital parts.
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There are several delicate questions involved in the

above, even at classical level.

1) Classical: a circularly polarized light beam

Applying the above to a free classical electromagnetic

field, one gets

Jcan =
∫
d3x (E ×A)︸ ︷︷ ︸
spin term

+
∫
d3xEi(x×∇Ai)︸ ︷︷ ︸

orbital term

and

Jbel =
∫
d3x [x× (E ×B)]
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Consider a left-circularly polarized (= positive helicity)

beam propagating along OZ i.e. along e(z):

Aµ =
(
0,
E0

ω
cos(kz − ωt),

E0

ω
sin(kz − ωt), 0

)
gives correct E and B.

E, B and A all rotate in the XY plane.
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Now consider the component of J along OZ.

Note that

∇Ax,y ∝ e(z) so that (x×∇Ax,y)z = 0

so only the spin term contributes to Jcan, z.
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Find

Jcan, z per unit volume =
E2
0

ω

For one photon per unit volume E2
0 = ~ω so that

Jcan, z per photon = ~
√

For Belinfante case

E ×B ∝ ez

so that

J bel, z per unit volume =
∫
d3x [x×(E×B)]z = 0 ×
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2) Quantum: what does it mean to say an operator

vanishes at infinity?

Usually we are interested in expectation values of these

operators i.e their forward matrix elements. For these

it may be possible to justify neglecting the contribution

at infinity.
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2.1) Spatial divergence of a local operator

A local operator O(x) is defined at one space-time point
and must satisfy the law of translation i.e.

eia·PO(x)e−ia·P = O(x+ a)

For the spatial divergence of a local operator we have

⟨p′ | ∂jO(x) |p ⟩ =
∂

∂xj
⟨p′ |O(x) |p ⟩

=
[
∂

∂xj
e−ix·(p−p

′)
]
⟨p′|O(0)|p ⟩

= i(p′j − pj)⟨p′ |O(0) |p ⟩ e−ix·(p−p
′)

Therefore as p′ → p

⟨p | ∂jO(x) |p ⟩ = 0 if ⟨p |O(0) |p ⟩ is non-singular
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2.2) Spatial divergence of a compound operator

In the angular momentum case the spatial divergence

involves an operator of the form xO(x). While this is

defined at one space-time point it is NOT a local op-

erator.

To see this suppose that Q(x) = xO(x) is a local oper-

ator. Then

Q(x) = e−ix·PQ(0) eix·P = 0 for all x, since Q(0) = 0
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It is then much more difficult to show that one can

neglect the expectation value of the spatial divergence

of a compound operator. It can be done, but requires

use of localised wave packets, as demonstrated by Shore

and White .

Conclusion

For momentum and angular momentum it is safe to

neglect spatial divergence terms.
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The problem of defining separate quark and

gluon momenta

Two separate issues:

(1) general problem of how to define the separate mo-

menta for a system of interacting particles,

(2) more specific to gauge theories and includes the

issue of splitting the angular momentum of a gauge

particle into a spin and orbital part.
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(1) The general problem: System of interacting par-

ticles E and F . Split the total momentum into two

pieces

P j = P
j
E + P

j
F

which we associate with the momentum carried by the

individual particles E and F respectively.

Note that Eq. (1) is totally misleading, and should be

written

P j = P
j
E(t) + P

j
F (t)

to reflect the fact that the particles exchange momen-

tum as a result of their interaction.
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Key question is: what should be the criterion for identi-

fying PE,F as the momentum associated with particles

E,F respectively?

The seductively obvious answer would be to demand

that

i[P jE, ϕ
E(x)] = ∂jϕE(x) (1)

and similarly for F

But there is no way we can check this, since P
j
E(t)

depends on t and, without solving the entire theory, we

are only able to compute equal time commutators .
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We suggest, therefore, that the minimal requirement

for identifying an operator P jE with the momentum car-

ried by E , is to demand that at equal times

i[P jE(t) , ϕ
E(t,x)] = ∂jϕE(t,x).

67



Analogously, for an angular momentum operator M ij
E

( J i = ϵijkMjk) we suggest that at equal times

i[M ij
E (t) , ϕEr (t,x)] = (xi∂j−xj∂i)ϕEr (t,x)+(Σij) sr ϕ

E
s (t,x)

where r and s are spinor or Lorentz labels and (Σij) sr
is the relevant spin operator.
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Implications

For the total momentum there is no essential difference

between Pcan and Pbel since their integrands differ by the

spatial divergence of a local operator.

But, if we split Pcan into Pcan,E + Pcan, F and Pbel into

Pbel, E+Pbel, F , then the integrands of Pcan,E and Pbel, E
do not differ by a spatial divergence

Hence Pcan,E and Pbel, E do not generate the same

transformation on ϕE(x), and similarly for F .
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Pbel, E+Pbel, F , then the integrands of Pcan,E and Pbel, E
do not differ by a spatial divergence.

Hence Pcan,E and Pbel, E do not generate the same

transformation on ϕE(x), and similarly for F .
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Since, by construction, Pcan,E and Pcan, F do gener-

ate the correct transformations on ϕE(x) and ϕF (x)

respectively, we conclude that with the above minimal

requirement we are forced to associate the momentum

and angular momentum of E and F with the canonical

version of the relevant operators.
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Analogous statements for QCD. However this is a

prejudice. It is a matter of taste. You can use any

scheme you like.

However you

CAN NO LONGER TALK ABOUT J(quark) and J(gluon)

MUST SPECIFY WHICH SCHEME FOR J

YOU ARE USING

and similarly for momentum P .
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No worse than realization that for PDFs must specify

factorization scheme:

q(x)MS q(x)MS q(x)DIS
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THE CONTROVERSY

Chen, Lu, Sun, Wang and Goldman (Chen et al):

They insist on gauge invariant operators, but then using
Jbel in analogous QCD case, what do you mean by the
gluon spin???????

IT IS POSSIBLE to split photon or gluon angular
momentum into a spin part and an orbital part in a

GAUGE INVARIANT way !!!

Put A = Aphys+Apure with

∇.Aphys = 0 ∇×Apure = 0

Corresponds exactly to what is usually called the trans-
verse A⊥ and longitudinal A∥ parts respectively
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Adding a spatial divergence to Jcan they get

Jchen =
∫
d3xψ†γγ5ψ+

∫
d3xψ†[x× (−iDpure)]ψ

+
∫
d3x (E ×Aphys) +

∫
d3xEi[x×∇Aiphys]

= Sch(el) + Lch(el) + Sch(γ) + Lch(γ)

where

Dpure = ∇− ieApure

Under gauge transformation:

Apure → Apure+∇Λ Aphys → Aphys

so each term in Jchen is indeed gauge invariant.
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Does this imply that all textbooks of past 50 years are

wrong?

NO!

Aphys is not a local field:

Aphys = A−
1

∇2
∇(∇ ·A)

Recall

1

∇2
f(x) ≡

1

4π

∫
d3x′

f(x′)

|x− x′|
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What does this actually mean physically?

Since Chen et al. is gauge invariant, can choose gauge

Apure = 0 i.e. Aphys = A which implies

∇.A = 0

which is the Coulomb gauge !

Thus

Jchen ≡ Jcan|Coulomb Gauge
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Summary of Chen, Lu, Sun, Wang and Goldman

• it is a Gauge Invariant Extension of the Canonical

case in the Coulomb gauge

• it involves non-local fields

• Aµ does not transform as a 4-vector under Lorentz

transformations

• the physical content is exactly the same as in the

canonical case in the Coulomb gauge
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FURTHER DEVELOPMENTS

Wakamatsu proposed a covariant generalization of Chen

et al.. He actually has 2 versions. I’ll deal with Waka-

matsu II.

Split

Aµ = A
µ
phys+Aµpure

Fµνpure = 0

NB Wakamatsu does NOT give a specific formula for

A
µ
pure
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Lorcé: Exists Stueckelberg transformation

Aµpure → Aµpure+ ∂µC(x) A
µ
phys → A

µ
phys − ∂

µC(x)

∴ Aµ → Aµ so NOT a gauge transformation

So there are an INFINITE number of possible Aµpure.

QED: Aµpure = ∂µΛ(x) anyΛ

QCD: Aµpure = U−1∂µU ; U anySU(3)matrix
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Physical content of Wakamatsu II

Wakamatsu II is an infinite family of schemes.

Physical content will depend upon the choice of Aµpure

Now suppose we uniquely specify the scheme JFwakII by

fixing A
µ
pure via

Aµpure|F = F (Aµ)

where F is some given function.
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Since the scheme is gauge invariant, choose the gauge

which makes Aµpure|F = 0. Call it Gauge F.

Then

A
µ
phys = Aµ|Gauge F

and from the expression for JwakII one sees that

JFwakII = Jcan|Gauge F

Thus the family of schemes Wakamatsu II is identical

to the canonical scheme in various choices of gauge.
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Hatta

Hatta gave a precise concrete example of Aµpure, i.e. a

specific choice of the function F (Aµ).

It turns out that

Aµpure|Hatta = 0

corresponds to the lightcone gauge A+ = 0. Thus

JHatta = Jcan|GaugeA+=0
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Hatta

Hatta gave a precise concrete example of Aµpure, i.e. a

specific choice of the function F (Aµ).

It turns out that

Aµpure|Hatta = 0

corresponds to the lightcone gauge A+ = 0.

Thus JHatta = Jcan|GaugeA+=0
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Several other papers——no time to discuss:

Bashinsky and Jaffe; Stoilov; Cho, Ge and Zhang; Zhang

and Pak; Zhou and Huang; Xiang-Song Chen.

Lorcé: general underlying mathematical structure.
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WHICH SCHEME SHOULD YOU LOVE AND
TRUST??

Two fundamental schemes: Canonical and Belinfante

Belinfante favoured by Ji and collaborators:
Pros:
N Each term is gauge invariant
N Nucleon expectation values can be related to GPDs
.....but this is now controversial!

Cons:
HPhoton (gluon) angular momentum NOT split into
spin and orbital parts
HOperators do NOT generate rotations
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Canonical: favoured by me and by Jaffe-Manohar

Pros:

N At equal times operators are generators of rotations

N Photon (gluon) angular momentum is split into spin

and orbital parts.

N Operators have same form as for free field case

N Operators in the gauge A+ = 0 can be related to

PDFs and GPDs. (see presently)

N Gets right answer for circularly polarized classical

plane light wave

Cons:

H Terms are not gauge invariant
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SUMMARY

1) There are, I believe, only two fundamental schemes:

Canonical and Belinfante

2) You may use whichever you prefer, but you must

indicate which scheme you are using

3) Though not gauge invariant, I prefer Canonical be-

cause the operators generate rotations at least at equal

times

4) All the new gauge invariant schemes involve non-

local fields and correspond to the Canonical version

viewed in a particular choice of gauge. Thus the new

schemes, in my opinion, do not contain any new physics.
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EXTRA SLIDES
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An apparent conundrum

We: the canonical versions of the momentum and an-
gular momentum operators should be regarded as phys-
ically meaningful.

Nucleon moving fast along the OZ axis: xBq(xB) is the
fraction of the “ + ” component of the quark momen-
tum.

But this corresponds, via the OPE, to the matrix ele-
ment of the Bellinfante version of the momentum op-
erators!

In fact, no contradiction in the special case of the lon-
gitudinal components of the momentum and angular
momentum.
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An apparent conundrum

I claim the canonical versions of the momentum and
angular momentum operators should be regarded as
physically meaningful.

Nucleon moving fast along the OZ axis: xB q(xB) is the
fraction of the “ + ” component of the quark momen-
tum.

But this, we’ll see presently, corresponds to the matrix
element of the Belinfante version of the momentum
operators!

In fact, no contradiction in the special case of the
longitudinal components of the momentum and angular
momentum.
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From the gauge invariant expression for the unpolar-

ized quark number density q(x) (including Wilson line

operator) one finds∫ 1

0
dxx [q(x)+q̄(x) ] =

i

4(P+)2
⟨P | ψ̄(0) γ+

←→
D+ψ(0) |P ⟩

with
←→
D+ =

−→
∂ + −

←−
∂ + − 2igA+(0).

But the quark part of tµνbel(qG) is given by

t
µν
q, bel(z) =

i

4
[ψ̄(z)γµ

←→
D (z)νψ(z) + (µ↔ ν)]− gµνLq

where Lq is the quark part of LqG .
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Since g++ = 0

t++
q, bel(0) =

i

2
{ψ̄(0) γ+

←→
D+ψ(0)}

so that∫ 1

0
dx x [ q(x) + q̄(x) ] =

1

2(P+)2
⟨P | t++

q, bel(0) |P ⟩.

Consider the physical interpretation of the LHS in the

parton model. The parton model is not synonymous

with QCD. It is a picture of QCD in the gauge A+ = 0

and it is in this gauge, and in an infinite momentum

frame that x can be interpreted as the momentum frac-

tion carried by a quark in the nucleon.
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But since A+ = 0 we have

←→
D+ =

←→
∂ + (gaugeA+ = 0)

Thus for these particular components of the tensors

there is no difference between the canonical and Bellinfante

versions

t++
q, can(0) = t++

q, bel(0) (gaugeA+ = 0).

Hence the fraction of longitudinal momentum carried

by the quarks in an infinite momentum frame is given

equally well by either the canonical or Belllinfante ver-

sions of the energy momentum tensor density.
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A key issue:the polarized gluon density ∆G(x)

∆G(x) is measurable

∆G(x) is gauge invariant

In what sense does it correspond to the spin of the

gluon?

137



As stated: my view: The parton model is a PICTURE

of QCD in the gauge A+ = 0.

All is well, since can show that

∆G(x) = ⟨ P̂ � Scan(gluon) ⟩|GaugeA+=0

where ⟨..⟩ means expectation value in a longitudinally

polarized nucleon.
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