ICECUBE: NEUTRINO ASTRONOMY AT THE SOUTH POLE

Catherine De Clercq Vrije Universiteit Brussel www.iihe.ac.be

SACLAY 4 February 2013

An adventure at the bottom of the world

A DETECTOR AT THE SOUTH POLE

Catherine De Clercq

IceCube results

Amundsen Scott South Pole station

Outline

- Neutrino astronomy: why and how?
- The IceCube detector
- Event reconstruction
- Search for sources of high-energy neutrinos:
 - point sources
 - diffuse fluxes
- Indirect dark matter search
- Many other research activities
- Summary

NEUTRINO ASTRONOMY: WHY AND HOW?

IceCube Mission

Model for AGN jets $\frac{dN}{dE_{\nu}} \sim E_{\nu}^{-2}$

7

Expected neutrino energies

Neutrino detection : pros

- Are not absorbed by interstellar matter
- Are not bent by magnetic fields
- Convey information from the interior of objects
- Reach us from far away sources
- Point straight back to the source

Neutrino detection : cons

 Observed rate = neutrino flux from source x absorption in Earth x neutrino cross section(weak interactions!) x size of detector x range of muon (4 to 15 km w.e. for $E_v \sim 10 - 1000$ TeV)

Neutrino detection

•Relativistic muon → Cherenkov light cone
•Record Cherenkov light pattern
•Reconstruct muon track
•Assume muon track aligned to neutrino path

$$\theta(\nu,\mu) \approx 30^{\circ} \cdot \sqrt{\frac{1}{E(GeV)}}$$

 $1 TeV \rightarrow 1^{\circ}$

$$\nu_{\mu} + N \to \mu + X$$

Muon track Charge Current interaction neutrino

THE ICECUBE DETECTOR

AMUNDSEN SCOTT SOUTH POLE STATION

Clear ice and dust layers

5160 Digital Optical Modules

✓ Photo Multipliers in pressure sphere ✓ Record arrival time and pulse height ✓ Oriented downwards

IceCube results

Access during summer November-February

Inaccessible during February-November

200 scientists -30°C

About 20 winter-overs -70°C

Drilling the holes

- 2450m deep 60cm diameter
- hot-water-drill 80°C
- Drill a hole in 24h
- 16-20 holes per season
- South Pole accessible during November-February

Installing the sensors

60 Digital Optical Modules on a string installed in 20 h

Completed on 18 December 2010!

(Nature.com) Giant, frozen neutrino telescope completed - December 18, 2010

ScienceDaily (Dec. 19, 2010) — Culminating a decade of planning, innovation and testing, construction of the world's largest neutrino observatory, installed in the ice of the Antarctic plateau at the geographic South Pole, was successfully completed December 18, 2010, New Zealand time.

EVENT RECONSTRUCTION

v_{μ} : track reconstruction

- Through the recorded light pattern
- A muon track is reconstructed
- The muon track is assumed to give the neutrino path
- the neutrino path gives the source direction

signal and background

Pointing resolution: Moon shadow

- **Downgoing atmospheric muons** recorded by IC59
- deficit due to absorption of cosmic rays by the Moon
- Simulation 1 TeV muon : $\Delta \Psi \approx 1^{\circ}$
- Moon shadow observed in IC59 with 12σ

SEARCH FOR SOURCES OF HIGH-ENERGY NEUTRINOS

strategies

- Search for a clustering of high-energy neutrinos in certain directions
 - Full sky search for point sources
 - look into directions of catalogued active galaxies
 - Look for neutrinos from catalogued Gamma Ray Bursts
 - Look for neutrinos from temporarily active (flaring) objects
- Search for a diffuse flux of high energy muon neutrinos or cascade-like events
- Search for a diffuse flux of very high energy neutrinos

Hotspots in the neutrino skymap Neutrinos from Gamma Ray Bursts

POINT SOURCES

IC40+IC59+IC79 neutrino skymap

>375 days (IC40) + 348 days (IC59) + 316 days (IC79)

Hotspots? Use pointing & energy

Hotspots? Significance map

Hotspots? Significance map

Gamma ray bursts

- Search for neutrinos emitted in time Δt around observed GRB
- Position & time given background from offsource data

IC40 + IC59 GRB results

- 215 GRBs in Northern sky
- 2 events found, compaticle with atmospheric background

Atmospheric neutrinos Astrophysical muon neutrinos Extremely High Energy neutrinos

DIFFUSE NEUTRINO FLUXES

diffuse ν_{μ} flux

relies on energy reconstruction upgoing neutrinos from Northern sky

IC59 Diffuse v_{μ} Search fit to data

IC59 diffuse v_{μ} flux upper limit for neutrino flux with E⁻² energy spectrum 90% C.L. upper limit $\Phi_{lim}E^2 < 1.44 \times 10^{-8} \text{ GeV sr}^{-1} \text{ s}^{-1} \text{ cm}^{-2}$ $E_v^2 d\Phi/dE_v$ [GeV cm⁻² s⁻¹ sr⁻¹] AMANDA v., 2000-2003 90%CL limit ANTARES v. 07-09 90%CL limit IC59 diffuse sensitivity IC59 diffuse 90%CL limit 10⁻⁵ IC40 atmospheric unfolding conventional atmospheric v_u (HKKM07) conventional (HKKM07) + prompt (Enberg et al.) v. Waxman-Bahcall upper bound (2011) Mannheim 1995 BBR I 2005 steep spectra sources 10⁻⁶ Stecker AGN (Sevfert) 2005 High Peaked BL Lac (max) Mucke 2003 Prompt GRB Razzague et al. 2008 10-7 sensitivity 10-8 Factor 1.5 above the Waxman-Bahcall 10⁻⁹ upper bound Preliminary 5 6 log10(E [GeV])

Extremely High Energy neutrinos

- Cosmic Ray connection: GZK(*) effect observed Energies and rates of the cosmic-ray particles in charged CR BESS98 ⊢ AMS 10^{0} protons only -> expect neutrino flux Rvan et al. Grigorov
- Near accelerator of CR

$$p + \gamma_{CMB} \rightarrow \Delta^+ \rightarrow \pi^+ n \rightarrow \nu$$

(*)Greisen Zatsepin Kuzmin

Two v_{e} like events

- IC79+IC86 May 2010 May 2012 672 days
- Remove background with an energy cut
- Earth becomes opaque at PeV -> search for downgoing neutrinos
- First PeV events observed in IceCube
- Find 2 events, expect ~0.14 background (atm. μ & conventional & prompt atm. v_{μ})

After unblind - Observation of 2 events

Run119316-Event36556705 NPE 9.628x10⁴ GMT time: 2012/1/3 9:34:01

"Ernie"

No counter arguments to the hypothesis of neutrino induced cascades so far

2 events / 671 days background (atm. μ + conventional atm. ν) expectation 0.06 events

Run118545-Event6373366 NPE 6.9928x10⁴ GMT time: 2012/8/812:23:18

"Bert"

p-value $1.9x10^{-3}$ (2.9σ) beyond conventional background

INDIRECT DARK MATTER SEARCH

Gravitational evidence for missing mass

three complementary strategies

Catherine De Clerc

Indirect detection

dark matter particles are attracted by heavy objects through gravitation They are massive, stable and weakly interacting **WIMPs** They can annihilate with each other and produce known particles

iceCube searches

 Neutrinos from WIMP annihilations in the Sun

 Neutrinos from WIMP annihilations in galactic halo, galactic centre, dwarf spheroidal galaxies

 Neutrinos from WIMP annihilations in the centre of the Earth

IC79 Solar WIMP search

- Any excess above atmospheric background in the direction of the Sun?
- New: DeepCore + IceCube veto
- Extend down to $E_{\nu} \sim 20 \; GeV$ and to austral summer
- No evidence for excess

Upper limits on the muon flux

WIMP-nucleon cross section uper limits

arXiv:1212.4097v1

IceCube results

complementarities

54

IceCube results

Summary

© Freija Descamps 6 March 2011

To conclude

- IceCube is largest operating neutrino detector
- > Data taking with full detector since 2011
- Search for point sources of HE neutrinos: no evidence yet
- Search for neutrinos from GRBs: tension with fireball model
- Search for diffuse flux of HE and EHE neutrinos: upward fluctuations show up?
- > Many exciting topics in (astro-)particle physics
- ➤ And hopefully unexpected surprises soon ...

The IceCube Collaboration

University of Alberta

University of Oxford

Ecole Polytechnique Fédérale de Lausanne University of Geneva

> Université Libre de Bruxelles Université de Mons University of Gent Vrije Universiteit Brussel

Stockholm University Uppsala Universitet

University of the West Indies

38 Institutions ~220 collaborators

Deutsches Elektronen-Synchrotron Humboldt Universität Ruhr-Universität Bochum RWTH Aachen University Technische Universität München Universität Bonn Universität Dortmund Universität Mainz Universität Wuppertal

Chiba University

University of Adelaide

University of Canterbury

More information: icecube.wisc.edu

International Funding Agencies

Clark Atlanta University

Ohio State University

Stony Brook University

University of Alabama

University of Maryland

Georgia Institute of Technology

Pennsylvania State University

University of Alaska Anchorage University of California-Berkeley University of California-Irvine University of Delaware University of Kansas

University of Wisconsin-Madison University of Wisconsin-River Falls

Lawrence Berkeley National Laboratory

Southern University and A&M College

Fonds de la Recherche Scientifique (FRS-FNRS) Fonds Wetenschappelijk Onderzoek-Vlaanderen (FWO-Vlaanderen) Federal Ministry of Education & Research (BMBF) German Research Foundation (DFG) Deutsches Elektronen-Synchrotron (DESY) Knut and Alice Wallenberg Foundation Swedish Polar Research Secretariat The Swedish Research Council (VR) University of Wisconsin Alumni Research Foundation (WARF) US National Science Foundation (NSF)

BACKUP MATERIAL

Catherine De OberCqbe results

Catherine De Clercq

Sources of high-energy neutrinos

Upgoing and downgoing muons

IceCube results

