# Deeply Virtual Compton Scattering at HERMES – an Overview

**Caroline K. Riedl** 



I L L I N O I S UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

### Outline: DVCS @ HERMES

- Setting the scene
- Results on the proton target
- Results using recoil-proton detection
- Results on targets heavier than the proton

#### **Nucleon Tomography** sea louarks px in momentum space pion valence cloud quarks b $f_1^{\rm er}\left(z=0,2\right)$ 10-3 -1.0 -0.5 0.0 py C (x-0.8 Х 10-2 0.02 0.5 -1.0 -0.5 0.0 0.5 Pa (Selv 3 ... 10-1 100 -0.5 0.2 -1.0 -1.0 -0.5 0.0 0.5 p<sub>8</sub> (GeV) in position space Courtesy A. Bacchetta ۰X (Università di Pavia) 0.5

Correlation between **spin** and **transverse momentum**?

Correlation between longitudinal momentum and transverse position ?



### DVCS as Laboratory for Probing Hadrons



Access to Generalized Parton Distributions

• "Nucleon Tomography"

🖛 Global analysis



Access to total angular

momentum of quarks through Ji sum rule

$$J_{q} = \frac{1}{2} \lim_{t \to 0} \int_{-1}^{1} dx \ x \left[ H^{q}(x,\xi,t) + E^{q}(x,\xi,t) \right]$$

-Ji, PRL 78 (1997) 610-



### DVCS on hadrons other than the nucleon

Spin-1: tensor and coherent signatures?

How does the nuclear environment modify the DVCS amplitude?

### Hard Exclusive Reactions and GPDs



4 chiral-even quark GPDs at leading twist

| Spin- <sup>1</sup> /2                   | flips nucleon<br>helicity | conserves<br>nucleon helicity |                                                 |
|-----------------------------------------|---------------------------|-------------------------------|-------------------------------------------------|
| does not<br>depend on<br>quark helicity | E                         | H forw                        | → q <sup>+</sup> +q <sup>-</sup><br>ard limit   |
| depends on<br>quark helicity            | Ê                         | <b>Ξ Γ Γ</b>                  | 0, t→0<br>→ <b>q<sup>+</sup>-q</b> <sup>-</sup> |

- x,  $\xi$  : longitudinal momentum fractions of probed quark
- t : squared 4-momentum transfer to target
- DVCS: Deeply Virtual Compton Scattering = electroproduction of a real photon

### **Deeply Virtual Compton Scattering**





criedl@illinois.edu - HERMES DVCS Results

### **Azimuthal Asymmetries and GPDs**



criedl@illinois.edu - HERMES DVCS Results





### HERMES



### **Results on the proton target**

Proton target with longitudinal (50 /pb) & transverse polarization (150 /pb); unpolarized (1200 /pb, thereof 670 /pb with fully operational recoil detector)

- Deuteron target with longitudinal polarization (200 /pb); unpolarized (800 /pb)
- ► Nuclear Targets: He, N, Ne, Kr, Xe (300 /pb)





## **Beam-Charge Asymmetry**

- · - · GGL11

KM09 (a)

KM09(b)



criedl@illinois.edu - HERMES DVCS Results

Overall

10<sup>-2</sup>

**10**<sup>-1</sup>

-t [GeV<sup>2</sup>]

 ${\sf A}_{\sf C}^{\cos{(0\varphi)}}$ 

 ${f A}_{C}^{\cos\phi}$ 

 ${\sf A}_{\sf C}^{\cos{(2\phi)}}$ 

Assoc.  $\mathbf{A}_{\mathbf{C}}^{\cos{(3\phi)}}$ 

0.1

0

-0.1

0.2

0.1

0

0.1

0

-0.1

0.1

0

-0.1

0.4

0.2

0

**10**<sup>-1</sup>

X<sub>B</sub>

CEA-Saclay, March 27, 2013

JHEP 07 (2012) 032

**GPD H** 

All 1996-2007

proton data



## **Beam-Helicity Asymmetry**

All 1996–2007 proton data



JHEP 07 (2012) 032

criedl@illinois.edu - HERMES DVCS Results



**GPD H 2-Dimensional** (-t, Q<sup>2</sup>) Binning

> All 1996-2007 proton data





criedl@illinois.edu - HERMES DVCS Results

 $\mathbf{A}_{\mathsf{LU,I}}^{\mathsf{sin}\, \phi}$ 

A<sup>sin ∲</sup> LU,DVCS

 ${\bm A}_{{\sf L}{\sf U},{\sf I}}^{{\sf sin}~(2\phi)}$ 

Assoc. fraction

### **GPD E**

### **Transverse Target-Spin Asymmetry**



JHEP 06 (2008) 066

#### criedl@illinois.edu - HERMES DVCS Results

# Double-Spin (LT) Asymmetry

### **Charge-difference**

2002–2005 transversely polarized proton data

**GPD E** 



Phys. Lett. B 704 (2011) 15-23

#### criedl@illinois.edu - HERMES DVCS Results

# Double-Spin (LT) Asymmetry



Phys. Lett. B 704 (2011) 15-23

**GPD E** 

## Total angular momentum of quarks



criedl@illinois.edu - HERMES DVCS Results

# Longitudinal Target-Spin Asymmetry

target-spin asymmetry



criedl@illinois.edu - HERMES DVCS Results

GPD H~



# Global analysis of DVCS data

Kresimir Kumericki & Dieter Müller Nucl. Phys. B841 (2010) 1-58

- Global fit to extract GPD H at cross-over line  $\xi=x$ . NNLO
- HERMES  $A_C$ , CLAS  $A_{LU}$  and Hall A x-section.
- Small-x behavior from HERA collider data. GPD H



Global fit to  $H(x,\xi=x,t)$  from DVCS data



#### **Compton Form Factors**

- Herve Moutarde PRD 79, 094021 (2009)
  - Global fit to extract Re(H) & Im(H)
  - Hall A x-section & CLAS ALU
- Michel Guidal arXiv:1011.4195
  - Model-independent fit of Re(CFF) & Im(CFF)
  - HERMES:  $A_C$ ,  $A_{LU}$ ,  $A_{UT}$ ,  $A_{UL}$ ,  $A_{LL}$
  - CLAS: ALU, AUL
    - Hall A: x-section

### **Results using recoil-proton detection**

### The HERMES Recoil Detector





criedl@illinois.edu - HERMES DVCS Results

### Improvement by recoil detector

# Adding the Recoil Proton



### **Unresolved Reference Sample**

**Disentangling the effects of recoil-detector acceptance and purification** 



### **Available Statistics**

|                          | $P_{\ell} > 0$     | $P_{\ell} < 0$       | total                                |
|--------------------------|--------------------|----------------------|--------------------------------------|
| integrated luminosity    | $430{\rm pb}^{-1}$ | $240  {\rm pb}^{-1}$ | $670{\rm pb}^{-1}$                   |
| DIS events $(/10^6)$     | 15.8               | 8.7                  | 24.5                                 |
| unresolved               | 23000              | 12300                | 35300                                |
| unresolved-reference     | 17000              | 9200                 | 26200                                |
| pure                     | 11000              | 6000                 | 17000                                |
| $\langle P_\ell \rangle$ | 0.402              | -0.394               | $\langle  P_{\ell}  \rangle = 0.399$ |

### Beam-Helicity Asymmetry with Recoil-Proton Detection <sup>2006/2007</sup> proton data



criedl@illinois.edu - HERMES DVCS Results

### Beam-Helicity Asymmetry with Recoil-Proton Detection <sup>2006/2007</sup> proton data



### Global fit of world data

JLab, HERMES and HERA, dashed excludes JLab Hall A cross section K. Kumericki and D. Müller, Nucl. Phys. B 841 (2010) 1

#### criedl@illinois.edu - HERMES DVCS Results

### GPD model calculation "VGG Regge"

Phys.Rev. D60 (1999) 094017 and Prog.Nucl.Phys. 47 (2001) 401

#### JHEP 10 (2012) 042

### Associated Electroproduction of Real Photons ep→eγ(πN) in the Δ-resonance region

- The charged particle of  $(\pi N)$  reconstructed by the recoil detector.
- Kinematic event fitting under the hypotheses:
  - $ep \rightarrow e\gamma \pi^0 p$ : neutral-pion mass as constraint plus identified p in recoil detector
  - $ep \rightarrow e\gamma \pi^+ n$ : neutron mass as constraint plus identified  $\pi^+$  in recoil detector
  - $\Delta^+(1232)$  mass as constraint

| Reject | : "pure" ep→epγ e | vents                                  | corrected<br>for                  | corrected<br>for |                    |
|--------|-------------------|----------------------------------------|-----------------------------------|------------------|--------------------|
|        | Kinematic bin     | $ep \rightarrow e\gamma \pi^0 p ~(\%)$ | $ep \rightarrow e\gamma p \ (\%)$ | SIDIS'(%)        |                    |
|        | Overall           | $85.7 \pm 1.8$                         | $1.1 \pm 0.1$                     | $13.2 \pm 1.9$   | variation 5-26%    |
|        | Kinematic bin     | $ep \rightarrow e\gamma \pi^+ n ~(\%)$ | $ep \to e\gamma p \ (\%)$         | SIDIS (%)        |                    |
|        | Overall           | $75.6 \pm 2.6$                         | $0.1 \pm 0.1$                     | $24.4 \pm 3.4$   | variation 9-43%    |
| -      |                   |                                        |                                   | pre              | eliminary analysis |

criedl@illinois.edu - HERMES DVCS Results

### Beam-Helicity Asymmetry in $ep \rightarrow e\gamma(\pi N)$



#### 2006/2007 proton data

 This result is consistent with the slight increase of the beam-helicity asymmetry amplitude for the pure sample.

 Associated process acts as small dilution in the asymmetries for the unresolved sample.

 Only existing model prediction for sinφ amplitude: π<sup>0</sup>p: -0.15 π<sup>+</sup>n: -0.10

P.A.M. Guichon, L. Mossé, M. Vanderhaeghen: Pion production in deeply virtual Compton scattering, Phys. Rev. D68, 034018 (2003).

preliminary analysis

criedl@illinois.edu - HERMES DVCS Results

# Results on targets heavier than the proton

Proton target with longitudinal (50 /pb) & transverse polarization (150 /pb); unpolarized (1200 /pb, thereof 670 /pb with fully operational recoil detector)

Deuteron target with longitudinal polarization (200 /pb); unpolarized (800 /pb)

► Nuclear Targets: He, N, Ne, Kr, Xe (300 /pb)

## **Deuteron Target**

Spin-I 
$$H_1, H_2, H_3, H_4, H_5, H_1, \widetilde{H}_2, \widetilde{H}_3, \widetilde{H}_4$$
  $b_1(x)$   
tensor

structure function

 9 chiral-even quark GPDs at leading twist

► H<sub>3</sub>, H<sub>5</sub> associated with 5% D-wave component of deuteron wave function

#### 4 chiral-even quark GPDs at leading twist



### Longitudinally polarized deuteron

- $\implies$  Vector polarization P<sub>z</sub>≈0.85
- ➡→ Tensor polarization P<sub>zz</sub>≈0.83
- Dedicated data set with with P<sub>zz</sub>=-1.656 && P<sub>z</sub>≈0

$$P_{z} = \frac{n^{+} - n^{-}}{n^{+} + n^{-} + n^{0}}$$
$$P_{zz} = \frac{n^{+} + n^{-} - 2n^{0}}{n^{+} + n^{-} + n^{0}}$$

GPD H<sub>1</sub>~

1998–2000 longitudinally

polarized deuteron data

## Target-Spin Asymmetry on p and d

### **Search for coherent signature**

0.2 VGG Regge p + n 0.6 VGG Regge p + n --| (∲) Cos(0<sup>(</sup>) P<sup>−</sup>Cos(0) **V** incoherent coherent VGG Regge p ⇔ sin A UL • 0.2 , VGG Regge p **DVCS** -0.2 -0.4 A sin(2¢) UL 7.0- 0. 0.4 0.4
 0.2
 0
 0 Δ' Å **Bethe-**-0.2 -0.4 -0.4 Heitler .ں (¢) ۲۹ רך 0.2 • 2.0 − ر sin(3∳) UL Nucleon: **Deuteron**: probe spin-1/2 probe spin-1 object object -0.2 -0.4 -0.4 **10<sup>-1</sup>** 10<sup>-1</sup> 0.4 -t[GeV<sup>2</sup>] -t [GeV<sup>2</sup>] overall overall 0 fraction 0 **Proton:** 0.2  $\mathcal{R}e(\mathcal{H})$  (incoherent) coherent fraction o resonant fraction Deuteron: **10<sup>-1</sup>**  $\mathcal{R}e(\mathcal{H}_1)$  (coherent @low -t)  $-t [GeV^2]$ overall (incoherent @larger -t) Nucl. Phys. B 842 (2011) 265-298

criedl@illinois.edu - HERMES DVCS Results

**GPDs H1**, **H**<sub>5</sub>

## **Beam-Helicity Asymmetry on p and d**

### **Search for tensor signature**

1998–2000 longitudinally polarized deuteron data



### **Nuclear Data Sets**

| Target | Spin        | L (pb <sup>-1</sup> ) |
|--------|-------------|-----------------------|
| 'Η     | I/2         | 227                   |
| He     | 0           | 32                    |
| Ν      | I           | 51                    |
| Ne     | 0           | 86                    |
| Kr     | 0           | 77                    |
| Xe     | 0, 1/2, 3/2 | 47                    |

1000 N /N<sub>DIS</sub> Xe Monte Carlo sum coherent BH incoherent BH associated BH incoherent enriched coherent 0.05 enriched 0.08 0.1 0.02 0.06 0.12 0 04

Heavy target data taken at the end of each HERA fill ("high density runs")

- Separation of coherent-enriched and incoherentenriched data samples by t-cutoff such that ≈same average kinematics for each target.
- Coherent enriched samples:  $\approx 65\%$  coherent fraction
- Incoherent enriched samples: ≈60% incoherent fraction

### **DVCS Asymmetries on Nuclei**

1996-2005 nuclear data



 $\circ$  Targets with only one beam charge available. No A<sub>C</sub> and single-charge A<sub>LU</sub> with entangled s<sub>1</sub> coefficients

0.2

0.4

0.6

-t [GeV<sup>2</sup>]

criedl@illinois.edu - HERMES DVCS Results

0.2

0.6

-t [GeV<sup>2</sup>]

0

0.4

0.2

0.4

0.6

-t [GeV<sup>2</sup>]

0

Phys. Rev. C 81 (2010) 035202

### **DVCS Nuclear Mass Dependence**



**Beam-charge asymmetry** 

**Beam-helicity asymmetry** 

- How does the nuclear medium modify parton-parton correlations?
- How do the nucleon properties change in the nuclear medium?
- Is there an enhanced 'generalized EMC effect', which could be revealed through the rise if  $\tau_{DVCS}$  with A?

Phys. Rev. C 81 (2010) 035202



- Results on the proton, the deuteron and nuclear targets.
- Complete and so far unique set of azimuthal asymmetry amplitudes with respect to beam charge, beam helicity and longitudinal / transverse target polarization.
- Unpolarized data allows access to GPD H; beam charge projects real part of CFF related to H; beam helicity its imaginary part.
   Polarized data allows access to GPDs H~ and E.
- Heavier targets allow searches for coherent and tensor signatures.
- DVCS at HERMES possible without recoil detector; contamination by associated DVCS can only be separated with full event reconstruction using recoil-detector data.

### Backup

# The Spin of the Nucleon





### **Dynamic Hologram of the Nucleon**



Wigner phase-space distributions [X. Ji, PRL 2003; A. Belitsky, X. Ji, F. Yuan, PRD 2004]

criedl@illinois.edu - HERMES DVCS Results

43

[Meissner, Metz, Schlegel, JHEP 0908:056, 2009]

### Nucleon Tomography



### Holographic principle in DVCS



 BH reference amplitude magnifies DVCS
 Measure magnitude A <u>and</u> phase φ of DVCS amplitude T<sub>DVCS</sub>=Ae<sup>iφ</sup>

# Parameterization of observables in terms of GPDs



### Harmonic analysis:

measure azimuthal asymmetries in DVCS with respect to beam helicity, beam charge, and/or target polarization

#### **Compton Form Factors:**

$$\mathcal{F}(\xi,t) = \sum_{q} \int_{-1}^{1} \mathrm{d}x \ C_{q}^{\mp}(\xi,x) F^{q}(x,\xi,t)$$

 $\begin{array}{c} Cross-section \ measurement \\ (collider \ example): \ integration \ over \ \Phi \end{array}$ 

$$\frac{\mathrm{d}\sigma}{\mathrm{d}t}(W,t,Q^2) \approx \frac{4\pi\alpha^2}{Q^4} \frac{W^2\xi^2}{W^2 + Q^2} \left[ |\mathcal{H}|^2 - \frac{t}{4M^2} |\mathcal{E}|^2 \right] (\xi,t,Q^2)$$

 $\frac{t}{4M^2} \left[ (2-x_B)F_1 \mathcal{E} - 4\frac{1-x_B}{2-x_B}F_2 \mathcal{H} \right]$ 

### **Correction for neutral pions**

- Correct unresolved samples.
- No correction for the pure sample since assumed to be free from pions.
- Reconstruct 2-photon asymmetry amplitudes A<sub>semi</sub> from real data.

- Propagate statistical uncertainty and correct (increase) δA<sub>meas</sub> for removal of events.
- Systematic uncertainty:

$$\delta A_{\text{syst.}}^{\text{bg}} = \frac{1}{2} |A_{\text{final}} - A_{\text{meas}}|$$

# Example for "all-in-one" systematic uncertainty: VGG variant 1



criedl@illinois.edu - HERMES DVCS Results

VGG model

M. Vanderhaeghen, P.A.M.Guichon and M. Guidal, *Deeply virtual* <u>electroproduction of photons and mesons on the nucleon: leading order</u> <u>amplitudes and power corrections, Phys. Rev. D60 (1999) 094017,</u> arXiv:hep-ph/9905372

K. Goeke, M.V. Polyakov and M. Vanderhaeghen, *Hard exclusive* reactions and the structure of hadrons, *Prog. Nucl. Phys.* 47 (2001) 401-515, arXiv:hep-ph/0106012

- Based on double distributions. Factorized or Regge ansatz.
   With or w/o D-term. Variable skewness parameters b<sub>val</sub> and b<sub>sea</sub>.
- Used to display model curves: stand-alone VGG code.
   At HERMES available in two versions: the original one from Vanderhaeghen "VGG01" and a later one from Guidal "VGG05".
   Width of model band comes from variation of b<sub>val</sub> and b<sub>sea</sub>
- Used for systematics: "leading-order type" only (no twist 3 [?])
   Reconstruction with HERMES gmcDVCS MC. Models 1–5.
  - ➡ Generation with "qplot" code, which contains "fast VGG" models 1–5

V. A. Korotkov, W.-D. Nowak, *Future Measurements of Deeply Virtual Compton Scattering at Hermes*, arXiv:hep-ph/018077

# Momentum reconstruction with the recoil detector



criedl@illinois.edu - HERMES DVCS Results

## **Proton / Pion Separation**

Combine up to 9 layers to determine log-likelihood PID value:

$$\text{PID} \equiv \log \frac{\mathcal{P}(\Delta E | \text{proton}, p)}{\mathcal{P}(\Delta E | \text{pion}, p)}$$





## **Commissioning of Recoil Analysis**

- $\bullet$  Reconstruct e and  $\gamma$  in the traditional way
- $\bullet$  Calculate expected kinematics  $K_{exp}$  of recoil proton from e &  $\gamma$  kinematics
- Measure kinematics K<sub>meas</sub> of recoil proton
- <u>Missing kinematics</u>:  $\Delta K = K_{meas} K_{exp}$





criedl@illinois.edu - HERMES DVCS Results

### **HERMES** polarized target



criedl@illinois.edu - HERMES DVCS Results

### EML method for amplitude extraction

$$\frac{-\log \mathcal{L}_{\rm EML}}{\underset{\rm Quantity to}{\text{minimize}}} = -\sum_{i=1}^{N} \log(1 + P_i \mathcal{A}_{\rm LU,i}(\phi)) + \underbrace{\mathcal{N}_{\rm Normalization}}_{\text{Normalization}}$$

$$\mathcal{A}_{\rm LU} = A_{\rm LU}^{\cos(0\phi)} + A_{\rm LU}^{\sin\phi} \sin\phi + A_{\rm LU}^{\sin(2\phi)} \sin(2\phi)$$

$$\mathcal{N} = \underbrace{\left(\frac{L}{L_{P_{\rightarrow}}}\right)}_{1 - \underbrace{\left(\frac{\langle P_{\rightarrow} \rangle}{\langle P_{\rightarrow} \rangle}\right)}} + \underbrace{\left(\frac{L}{L_{P_{\rightarrow}}}\right)}_{1 - \underbrace{\left(\frac{\langle P_{\rightarrow} \rangle}{\langle P_{\rightarrow} \rangle}\right)}} + \underbrace{\left(\frac{L}{L_{P_{\rightarrow}}}\right)}_{1 - \underbrace{\left(\frac{\langle P_{\rightarrow} \rangle}{\langle P_{\rightarrow} \rangle}\right)}}$$

→←: beam helicity +1/ -1,
 P<sub>i</sub>: beam polarization for event i
 <P>: effective beam polarization

 $A_{LU}^{cos(0\phi)}$ : test of normalization, should be compatible with zero for beam-helicity asymmetry

### **Beam-Charge Asymmetry on p and d**



criedl@illinois.edu - HERMES DVCS Results

CEA-Saclay, March 27, 2013

### **Beam-Helicity Asymmetry on p and d**



criedl@illinois.edu - HERMES DVCS Results

### **Coherent vs. incoherent**



eA→e(A-1)Nγ

BH (proton) » BH (neutron)

due to elastic electric form factor

criedl@illinois.edu - HERMES DVCS Results

eA→eAγ

CEA-Saclay, March 27, 2013

-t [GeV<sup>2</sup>]

### Asymmetries on polarized deuterons



HERMES data set available

Not all combinations of beam-charge and beam-helicity available!

criedl@illinois.edu - HERMES DVCS Results

# **The Future of DVCS**

**Jefferson Laboratory** 

- Hall A (E07-007 for p, E08-025 for n): Interference-DVCS<sup>2</sup> separation and Q<sup>2</sup>-dependence of total cross-section (2010)
- CLAS: transversely polarized HD-Ice target (2012)
- JLab 12 GeV upgrade:  $Q^{2}_{max} = 13...14 \text{ GeV}^{2}$ , e<sup>+</sup> beam COMP<sub>A</sub>SS @ CERN
  - 2008-09: DVCS test runs, small Recoil detector



- 2012-15: GPD H, large Recoil detector: beam-charge and -spin asys + x-section
- 2015+ (?): GPD E, transversely polarized target



10

7.5

• LHeC



criedl@illinois.edu - HERMES DVCS Results