

Participation du SPP à CTA

J-F. Glicenstein/P.Brun

CSTS du SPP, 17/06/13

Participation du SPP à CTA

10 fold sensitivity of current instruments 10 fold energy range improved angular resolution two sites (North / South) operated as observatory

> Over hundred telescopes About 150 MEuros (2006)

The future in VHE gamma ray astronomy:

cherenkov telescope array

M.Martinez, Rome consortium meeting (2012)

CTA à l'IRFU

- ~ 30 personnes, 8 FTE (2013)
- caméra NectarCAM: SPP, SEDI, SIS
- Miroirs pour les télescopes moyens: SPP, SEDI, SIS
- "Développement du site": SAp
- Traitement et archivage des données: SAp, SEDI, SPP
- Mécanique des télescopes MST: SEDI, SPP → quadrupode du prototype de Zeuthen
 → carbone remplacé par acier
 → non retenu

CTA au SPP

NectarCam

Miroirs

Traitement de données

CSTS du SPP, 17/06/13

Participation du SPP à CTA

Quelles caméras pour quels télescopes?

- Télescope SST simple miroir: FlashCAM (PMT, digital)
- Télescope SST double miroir: CHEC, ASTRI (SiPM ou MaPMT, analogue)
- Télescope SCT (double miroir): CHEC (SiPM, analogue)
- Télescope MST (simple miroir, PMT): FlashCAM (digital), NectarCAM (analogue)
- Télescope LST (simple miroir, PMT): DragonCAM (analogue)

The NectarCAM camera project

J-F.GLICENSTEIN¹, M.BARCELO¹¹, J-A. BARRIO¹², O.BLANCH¹¹, J.BOIX¹¹, J.BOLMONT⁴, C.BOUTONNET² S.CAZAUX¹, E.CHABANNE⁷, C.CHAMPION², F.CHATEAU¹, S.COLONGES², P.CORONA⁴, S.COUTURIER⁵, B.COURTY², E.DELAGNES¹, C.DELGADO¹⁰, J-P.ERNENWEIN⁶, S.FEGAN⁵, O.FERREIRA⁵, M.FESQUET¹, G.FONTAINE⁵, N.FOUQUE⁷, F.HENAULT⁸, D.GASCÓN¹³, D.HERRANZ¹², R.HERMEL⁷, D.HOFFMANN⁶, J.HOULES⁶, S.KARKAR⁴, B.KHELIFI⁵, J.KNÖDLSEDER³, G.MARTINEZ¹⁰, K.LACOMBE³, G.LAMANNA⁷, T.LEFLOUR⁷, R.LOPEZ-COTO¹¹, F.LOUIS¹, A.MATHIEU⁵, E.MOULIN¹, P.NAYMAN⁴, F.NUNIO¹, J-F. OLIVE³, J-L. PANAZOL⁷, P-O. PETRUCCI⁸, M.PUNCH², J.PRAST⁷, P.RAMON³, M.RIALLOT¹, M.RIBÓ¹³, S.ROSIER-LEES⁷, A.SANUY¹³, J.SIERO¹³, J-P.TAVERNET⁴, L.A.TEJEDOR¹², F.TOUSSENEL⁴⁵⁵, G.VASILEIADIS⁹, V.VOISIN⁴, V.WAEGEBERT³, C.ZURBACH⁹, FOR THE CTA CONSORTIUM.

IRFU, CEA-Saclay, Gif-sur-Yvette, France
 APC, IN2P3/CNRS, Paris, France
 IRAP, INSU/CNRS, Toulouse, France
 LPNHE, IN2P3/CNRS/UPMC/UPD, Paris, France
 LLR, IN2P3/CNRS, Palaiseau, France
 CPPM, IN2P3/CNRS, Marseille, France
 CPPM, IN2P3/CNRS, Annecy, France
 IAPP, IN2P3/CNRS, Grenoble, France
 IPAG, INSU/CNRS, Grenoble, France
 LUPM, IN2P3/CNRS, Montpellier, France
 CIEMAT, Madrid, Spain
 IFAE, Barcelona, Spain
 Universidad Complutense, Madrid, Spain

13 ICC-UB, Bercelona, Spain

La caméra NectarCAM

- placée au foyer des télescope MST
- champ de vue: 7 à 8 degrés (H.E.S.S: 5 degrés)
- motivation physique: surveys, grands restes de SN
- − gamme en énergie 50 GeV à 50 TeV (similaire à HESS) \Rightarrow gamme dynamique ~ 1000 en signal
- image de la gerbe électromagnétique dans le plan focal ~ (1 degré)²
- − taille du pixel (PMT): 0.18 degré $\Rightarrow \sim 1900$ pixels
- durée du signal dans chaque pixel ~ 5 ns
- durée totale du signal: <plusieurs dizaines de ns (dépend de l'éloignement de la gerbe).

600

La caméra NectarCAM (2)

- 2 mesures de base:
 - Charge intégrée/pixel sur ~ 5-10 ns
 - Temps d'arrivée des photons/pixel (erreur ~ 1 ns)
- Mesure du temps d'arrivée:
 - pulses très courts (2 ns FWHM)
 - \Rightarrow Bande passante analogique B > 300 MHz
- Echantillonage signal > 2B, idéalement 1-2 GHz
- Fenêtre d'intégration courte ~ 20 ns pour minimiser le rapport signal/bruit

- Nécessité d'un déclenchement flexible pour lire les pixels à des temps décalés (durée totale événement < 100 ns)
- Gamme dynamique/pixel > 1000 (signal)x10 (calibration photoélectron simple) > 13 bits (14 bits requis par CTA)

CSTS du SPP, 17/06/13

Module

FEB V1 and trigger mezzanines

Architecture de la NectarCAM

Architecture modulaire:

~ 250 modules de 7 pixels à l'avant de la caméra slow control, switches Ethernet etc à l'arrière

CSTS du SPP, 17/06/13

Participation du SPP à CTA

- Signal dans une région compacte (quelques modules) et coincidents en temps
- Trois niveaux de déclenchement:
 - niveau module (L0)
 - niveau caméra (L1)
 - trigger multi-télescope
- 2 implementations possibles L0,L1: analogue (CIEMAT, Uni. Complutense, IFAE) ou digital (DESY)
- propagation de l'inforrmation L1 aux modules en moins de 400 ns.

CSTS du SPP, 17/06/13

Déclenchement et acquisition de la NectarCAM

- trigger stéréo: coincidences temporelles entre télescopes (latence ~5µs)
- transfert des triggers caméra sur le "camera server" (> 2 mn données)

Participation du SPP à CTA

Organisation de la NectarCAM

Basé sur un WBS stable depuis début 2012

—IRFU impliqué dans:

- -Management (SPP,SEDI)
- -Integration (SPP,SEDI)
- -Mécanique/cooling (SEDI, SIS)
- -Electronique de lecture (SEDI)

Plan de développement et prototypes

	Phases				
Item	Phase A Penthilty	Phase B Preliminary definition	Phase C Detailed defection	Phase D Qualification and production	
Reviews	258. Asbest regimenses Conferences of Seability -Para management, system 73.	Pali. Polimmary design is requirement -Verification plan	CDR. Peak Seeps Valdas asserticos	<u>AR</u> -Qualification -Start mans production -Delivery	
Activities					
Requirements					
Trade-offs			-		
Definition					
Verification					
Production					
Operation					
Models				24 million - 14 mi	
Single module camera	a second s				
7 modules cluster					
Camera demonstrator					
Qualification Model					
Camera N1 & mass production					

Prototypes:

- 1 module (2009-2012)
- 7 modules (en cours)
- 19 modules (demande ANR en cours)
- modèle de qualification: après le démarrage du TGI
- caméras

CSTS du SPP, 17/06/13

Participation du SPP à CTA

Positionnement par rapport à la concurrence

- Collaboration avec caméra pour le LST ("DragonCAM") (Japon/Espagne/Italie)
 - Architecture similaire
 - Travail en commun sur la mécanique et le refroidissement, le contrôle, le déclenchement.
 - Différence principale: mémoire analogique (NECTAr vs DRS4)
- Concurrent sur le marché des MST: FlashCAM (consortium MPIK/Tübingen/Zurich/Pologne)
 - Caméra digitale, avec des FADC 250 MHz

Front end electronics

Module components

Module NECTAr (2009-2012)

– tests:

- résolution en charge
- gamme dynamique
- préamplificateurs ACTA
- photoélectron unique au gain nominal PMT
- bande passante analogique

Prototype à 7 modules

– Buts:

- Validation finale amplificateur ACTA
- Correction des problèmes vus avec le module NECTAr
- Trigger L1 analogue et digital
- Développement des banc de test module (inclus le software), NECTAr

CSTS du SPP, 17/06/13 Participation du SPP à CTA

Electronique de front-end: puces NECTAr

- Double fonctionnalité:
 - mémoire analogique (1024 canaux, sampling 0.5-3.2 GHz)
 - +digitisation(12 bits, 20 MHz)
- amélioration du SAM (H.E.S.S.-2)
- évolutions prévues: doublement du nombre de canaux par puce
- développement initial ans l'ANR 08-BLAN-014 (2009-2012)
- utilisation dans l'upgrade de l'électronique des caméras de H.E.S.S.-1

- banc test à l'IRFU pour H.E.S.S ⇒utilisation pour CTA
- changement d'échelle (5000 puces \rightarrow 100000 puces)

Démonstrateur 19-modules

- Démonstrateur de caméra
- -19 modules NECTAr
 - ⇒permet de tester la latence L1, le trigger "flexible"
- Structure mécanique+refroidissement
- Acquisition des 19 modules+ simulation de l'acquisition des autres modules
- Slow-control et services
- intégration du démonstrateur de caméra à l'IRFU
- demande ANR 2013 (6 laboratoires français + 6 associés) 607 k€ + 170 k€ (instituts) + contribution espagnole

Démontrateur 19-modules: aspects financiers

Partner	IRFU				С	ost per ye	ar
Description	Туре	Unity cost (k€)	Quantity	Total (k€)	Year 1	Year 2	Year 3
Camera integration and tests				8,00	0	8	0
Integration site unfrastructure	Equipment	26,00	1	NA			
Test Equipments	Equipment	27,00	1	NA			
Software dev. and Equipments	Equipment	5,00	1	5,00			
Analysis tools	Aux. Equipment	3,00	1	3,00			
Cooling system				20,00	20	0	0
Cooling system	Equipment	6,00	1	6,00			
Dummy boards and power	Equipment	11,00	1	11,00			
Humidity regulation system	Aux. Equipment	3,00	1	3,00			
Auxiliary measurement	Aux. Equipment	2,00	1	NA			
Front end				50,00	10	40	0
NECTAr chip	Subcontracting	50,00	1	50,00			
NECTAr chip test bench	Equipment	10,00	1	NA			
Clock distribution and time stamp (APC)				18,00	14	4	
Crate, optical fibers, tools	Equipment	12,40	1	12,40			
PCBs production	Subcontracting	5,60	1	5,60			
Project management				0,00	0	0	0
Computer, software, equipments	Equipment	6,00	1	NA			
Total request	96,00				44	52	0

Contribution de l'IRFU: 71 k€

CSTS du SPP, 17/06/13

Participation du SPP à CTA

Mécanique, contrôle de température

- caméra scellée pour protéger de la poussière
- -dissipation de puissance dans la NectarCam estimée 7.5 kW
- puissance dissipée dans l'électronique de lecture: 4.5 kW
- → mécanique doit être adaptée au refroidissement

- 3 possibilités pour le refroidissement: air, eau ou mixte
- groupe de travail IRFU-LLR-CIEMAT-Japon
- simulations à l'IRFU, comparaison à un prototype au CIEMAT

Caméras du MST

- réponse française à l'EOI: intérêt pour la construction de 39 caméras MST
- financement: TGI (2016) + contribution étrangère.

		Contribution française		
Produit	Code	Laboratoires impliqués	Quantité	Coût
Cout fixe				
Cellule projet		Irfu, SPP SEDI LPNHE, LLR	8 ans	440 k€
Démonstrateur		Tous labos français		800 k€
Camera N1		Tous labos français		1,5 M€
Intégration (fixe)		Irfu SEDI		200 k€
			Total cout fixe	2,94M€
Cout par caméra r	écurent		100 AND 100	
Camera	5.3			
Mechanics	5.3.1	LLR, Irfu SIS (cooling)	1	332 k€
Focal plane optics & common comp.	5.3.2 8.4.2	IPAG, IRAP, LLR	1	132 k€
Signal processing	5.3.4	LPNHE, Irfu SEDI	271	149 k€
Camera DAQ	5.3.5	CPPM, LUPM, APC	1	20 k€
Calibration sys.	5.3.6	LUPM	1	
Camera aux. sys.	5.3.7	LAPP, LLR	1	72 k€
Intégration (variable)		Irfu SEDI	1	100 k€
		. 1	fotal par caméra	805 k€
		Total	pour 38 caméras	29,5 M€
		Total de la contribution po	our 39 caméras *	32,4 M€

CSTS du SPP, 17/06/13

Participation du SPP à CTA

Scénarios d'intégration des caméras (1)

- intégration sur un ou plusieurs sites dont Saclay par une prestation extérieure (modèle XFEL)
- suivant le budget, une caméra ou plusieurs dans un pipeline
 CSTS du SPP, 17/06/13
 Participation du SPP à CTA

Scénarios d'intégration (2)

Composants intégrés sur plusieurs sites, intégration finale à l'IRFU

Perspectives NectarCAM

- Fin 2013: finalisation proto 7 modules
- Financement 19 modules ? -> dépend du résultat ANR
- Comparaison avec FlashCAM/DragonCAM à l'aide d'un banc test (à venir)
- Renforcement de l'équipe au niveau physiciens/ post-doc
- Renforcement de l'équipe au niveau système

DÉVELOPPEMENTS DE MIROIRS POUR CTA

P. Brun, P-H. Carton, T. Chaleil, G. Decock, J-L. Dominique, D. Durand, J-F. Glicenstein, C. Jeanney, M.C. Medina, P. Micolon, B. Peyaud

CSTS – *17 juin 2013*

BESOINS DE CTA

- * 40 télescopes MST = 3500 miroirs = 4200 m²
- ★ Marché de l'ordre de 7 M€
- * Proposition Saclay: fournir la moitié
- ★ Spécifications des facettes
 - \rightarrow M<35 kg
 - → Focale 16.07 m
 - → 80% de réflexion < 1 mrad
 - → Diamètre 1.2 m

HISTORIQUE DU DÉVELOPPEMENT

- ★ Premiers prototypes en 2008
- * Tests avec un moule de 30 m de courbure, carré 50 cm x 50 cm
- ★ ~50 prototypes & différents matériaux (optique et thermique)

Fin 2009: acquisition d'un moule 1.2 m
Eté 2010: premiers miroirs nominaux

CONCEPT ACTUEL

+ Métallisation aluminium : AI + SiO₂/HfO₂/SiO₂ Concepts alternatifs encore considérés

Composite mirror facets for ground based gamma ray astronomy

P. Brun, P.-H. Carton, D. Durand, J.-F. Glicenstein, C. Jeanney, M.C. Medina*, P. Micolon, B. Peyaud

TESTS DES MIROIRS PROTOTYPES

★ Dispositif optique au sous-sol du 123 (SIS)

- ★ Source mobile : distance focale
- ★ Image sur un écran : résolution angulaire
- * Concentration sur une photodiode : réflectivité absolue à 0.8 mrad

Exemples résolution angulaire et réflectivité

TESTS MÉCANIQUES

- * Cycles thermiques sur échantillons
- ★ Test en pression
- ★ Extérieur
- ★ Impacts

Première revue miroir

- ★ Revue CTA des technologies miroirs sept. 2011
- ★ Concurrents principaux:
 - → INAF Brera : miroirs minces alu-verre, expérience de MAGIC
 - → Sanko (Japon) : miroirs épais alu-verre
 - → Ensuite: verre massif (Arménie), structure complexe (Pologne)
- ★ Décision de mettre en place des tests communs
- * Nécessité de démontrer faisabilité industrielle
- * Nécessité de plus d'études mécaniques & vieillissement

* Présentation de l'accord de transfert de technologie

KERDRY Thin Film Technologies

- Créé en 2003
- Activité: dépots optiques
- PME 15 employés
- Grands halls disponibles
- Soutient fort de la région

Pré-série industrielle

- * Décision de produire 20 miroirs purement 'Kerdry'
- * Prêt du moule de Saclay
- ★ Déterminant pour:
 - → Qualité des miroirs non-prototypes
 - → Faisabilité de la chaine de production
 - → Estimation réaliste des cadences, besoins etc.
 - → Estimation réaliste des coûts

COURBES D'APPRENTISSAGE

Bons mirroirs dès le début

Vraie difficulté : rayon de courbure

COURBES D'APPRENTISSAGE

- 2500 euros/mirroir
- Importants progrès sur la maîtrise du coating

SECONDE REVUE MIROIRS

★ Septembre 2012

★ Comité convaincu que 3 équipes proposent des miroirs au niveau

Miroirs	+	
CEA Saclay - Kerdry	Bonne réflectivité, production homogène, solides, produits en série	Résolution angulaire moyenne
INAF Brera – Media Lario	Bonne résolution angulaire, poids réduit, produits en série, process certifié ISO	Fragiles, taille non conforme Diffusivité importante
Japon - Sanko	Bonne réflectivité, produits en série	Fragiles, Résolution angulaire moyenne
Pologne	Bonne résolution angulaire et bonne réflectivité	Poids important, pas de partenariat industriel, process lourd

★ Recommandations:

- \rightarrow obtenir les certifications ISO
- → Produire rapidement un échantillon plus grand que ~20 miroirs
- → Consolider les équipements de test communs

PERSPECTIVES MIROIRS

- * Tests en cours avec un nouveau procédé
- * Poursuite mise en place des procédures communes de test
- * Besoin d'un échantillon de 100 miroirs
- * Etudes poussées tenue en temps nécessaire
- ★ Demande ANR « laboratoires communs » avec Kerdry
 - → Axé sur les applications industrielles
 - → Pourrait aider pour les 100 miroirs
 - → Permettrait de poursuivre développements télescopes à optique secondaire

Résumé & conclusions

NectarCAM

- ★ Financement 19 modules ? -> dépend du résultat ANR
- * Renforcement de l'équipe au niveau physiciens/post-doc

Miroirs

- * Besoin d'un échantillon de 100 miroirs
- * Etudes poussées tenue en temps nécessaire
- ★ Demande ANR « laboratoires communs » avec Kerdry
 → Inclut 1 demande post-doc

Backup

CSTS du SPP, 17/06/13

Participation du SPP à CTA

Intégration des caméras MST – CTA

Intégration sur le site du CEA Saclay par une prestation extérieure (XFEL model)

Responsabilité du CEA

- Spécifications techniques
- Définition des procédures d'intégration
- Appel d'offre restreint (sociétés sélectionnées)
- Choix et justification de la société prestataire
- Marché

Prestations du sous traitant

- Gestion organisationnelle
 - Encadrement des équipes prestataires
 - Logistique & coordination des flux (réception, stockage, expédition)
 - Assurance & Contrôle qualité
 - Interface avec l'IRFU
- Intégration des caméra
 - Intégration d'un modèle d'apprentissage (réalisation conjointe IRFU/ sous traitant)
 - Intégration du premier modèle tête de série (réalisé par le sous traitant)
 - Intégration de la série

Intégration des caméras MST – CTA

Suivi de la prestation IRFU

- Réunions régulières IRFU/Prestataire
- Besoin personnel IRFU
 - Vérification des livrables (Data Acceptance Package)
 - Audit
 - Réactivité aux impondérables (technique, main d'œuvre)
 - Expertise

Le type d'intégration va être fonction

- des délais imposés
- des couts
 - main d'œuvre
 - disponibilité des bancs de tests
 - infrastructure nécessaire
 - outillages

Intégration opérateurs multitâches (une ligne d'intégration)

Intégration par ateliers spécialisés (une ligne d'intégration)

INDUSTRIALIZATION IN KERDRY

- ★ Kerdry currently setting up quality plan & hiring plans
- ★ Opened their doors to members of the consortium
- ★ Quality : better to keep the whole chain in one place
- ★ Ideal production rate: 700 mirrors a year
- ★ Production cost (€) :

Type & No. of Mirrors	1 year	2 years	3 years
4000 MST mirrors	N/A	2000	1850
2000 MST mirrors	N/A	2120	1970

SACLAY MIRRORS GENERAL FEATURES

* 1.2 m face-to-face, R = 32.14 m, Weight = 25 kg, thickness <85 mm

★ 5 layers:

- \rightarrow 2 glass sheets (2 mm)
- \rightarrow 2 G10 sheets (1.5 mm)
- → Al honeycomb (80 mm)
- ★ Gluing process in 2 steps :
 - → 1: back panel
 - \rightarrow 2: reflective surface
- ★ Aluminum honeycomb:
 - \rightarrow 50 μ m, 80 mm height, 19 mm cells
 - \rightarrow Flexible, not milled
 - → Micro punched (improve vacuum and more homogenous gluing)
- Thick side walls integrated in the assembling process (help to constrain the edges to bend)
- ★ 3 point support centered on a 640 mm radius

Construction substrat & dépôt aluminium sous vide

Installation miroir

Enceinte vaporisation sous vide

TEST SAMPLE

25 small samples were built and submitted to t°/h cycles

Test stabilty of glue & G10 150 cycles : -20°C/+60°C Immersion in water

No cracking/ ungluing
 Same resitance to ripping

EFFECT OF PRESSURE

PSF measured with different pressures inside the mirror

Plan: build at sea level, seal in altitude

AIR TIGHTNESS & HUMIDITY

★ One mirror equipped with sensors stayed outdoor

Humidity inside the mirror:

- Low values < 25%
- Stable during weeks
- Uncorrelated with External Humidity
- front/back $\Delta T < 1^{\circ}C$

IMPACT TESTS

★ Mechanical damage test

Steel balls thrown 10 times :

Diameter [mm]	Height [cm]	Degree of severity
20	100	2
30	50	3

No deformation for severity 1 & 2