Three-dimensional structure of hadrons through hard exclusive processes

Samuel Wallon

> Université Pierre et Marie Curie and
> Laboratoire de Physique Théorique CNRS / Université Paris Sud Orsay

Service de Physique Nucléaire
October 11th 2013
(1) Introduction
(2) Collinear factorizations

- Extensions from DIS
- Extensions from DVCS
- More technical
(3) A few developments
- Hybrid mesons
- Spin transversity in the nucleon
- Threshold effects for DVCS and TCS
(4) QCD at large s
- Theorical motivations
- k_{T} factorization
- Meson production at HERA
- Exclusive processes at Tevatron, RHIC, LHC, ILC
- Most recent signs of BFKL dynamics at LHC
(5) Beyond leading twist
- Light-Cone Collinear Factorization
- Minimal set of ρ meson DAs: n-independence and QCD equations of motion
- Dipole representation and saturation effects
- Chiral-odd pion generalized parton distributions beyond leading twist

6 Conclusion

Exclusive processes are theoretically challenging

How to deal with QCD?

example: Compton scattering

- Aim: describe M by separating:
- quantities non-calculable perturbatively
some tools:
- Discretization of QCD on a 4-d lattice: numerical simulations
- $\mathrm{AdS} / \mathrm{CFT} \Rightarrow \mathrm{AdS} / \mathrm{QCD}: A d S_{5} \times S^{5} \leftrightarrow$ QCD

Polchinski, Strassler '01
for some issues related to Deep Inelastic Scattering (DIS):
B. Pire, L. Szymanowski, C. Roiesnel, S. W. Phys.Lett.B670 (2008) 84-90 for some issues related to Deep Virtual Compton Scattering (DVCS):
C. Marquet, C. Roiesnel, S. W. JHEP 1004:051 (2010) 1-26

- pertubatively calculable quantities
- We will here focus on theory and phenomenology of exclusive processes for which the dynamics is governed by QCD in the perturbative regime

Exclusive processes are phenomenologically challenging

Key question of QCD:
how to obtain and understand the tri-dimensional structure of hadrons in terms of quarks and gluons?

Can this be achieved using hard exclusive processes?

- The aim is to reduce the process to interactions involving a small number of partons (quarks, gluons), despite confinement
- This is possible if the considered process is driven by short distance phenomena ($d \ll 1 \mathrm{fm}$) $\Longrightarrow \alpha_{s} \ll 1$: Perturbative methods
- One should hit strongly enough a hadron Example: electromagnetic probe and form factor

τ electromagnetic interaction $\sim \mathcal{T}$ parton life time after interaction $\ll \tau$ caracteristic time of strong interaction

To get such situations in exclusive reactions is very challenging phenomenologically: the cross sections are very small

Introduction

Hard processes in QCD

- This is justified if the process is governed by a hard scale:
- virtuality of the electromagnetic probe
in elastic scattering $e^{ \pm} p \rightarrow e^{ \pm} p$
in Deep Inelastic Scattering (DIS) $e^{ \pm} p \rightarrow e^{ \pm} X$
in Deep Virtual Compton Scattering (DVCS) $e^{ \pm} p \rightarrow e^{ \pm} p \gamma$
- Total center of mass energy in $e^{+} e^{-} \rightarrow X$ annihilation
- t-channel momentum exchange in meson photoproduction $\gamma p \rightarrow M p$
- A precise treatment relies on factorization theorems
- The scattering amplitude is described by the convolution of the partonic amplitude with the non-perturbative hadronic content

The partonic point of view... and its limitations

- Counting rules:

$$
F_{n}\left(q^{2}\right) \simeq \frac{C}{\left(Q^{2}\right)^{n-1}} \quad n=\text { number of minimal constituents: }\left\{\begin{array}{l}
\text { meson: } n=2 \\
\text { baryon: } n=3
\end{array}\right.
$$

Brodsky, Farrar '73

- Large angle (i.e. $s \sim t \sim u$ large) elastic processes $h_{a} h_{b} \rightarrow h_{a} h_{b}$
e.g. : $\pi \pi \rightarrow \pi \pi$ or $p p \rightarrow p p$
$\frac{d \sigma}{d t} \sim\left(\frac{\alpha_{S}\left(p_{\perp}^{2}\right)}{s}\right)^{n-2} n=\#$ of external fermionic lines $(n=8$ for $\pi \pi \rightarrow \pi \pi)$
Brodsky, Lepage ' 81
Other contributions might be significant, even at large angle: e.g. $\pi \pi \rightarrow \pi \pi$

Brodsky Lepage mecanism: $\frac{d \sigma_{B L}}{d t} \sim\left(\frac{1}{s}\right)^{6}$

Landshoff '74 mecanism: $\frac{d \sigma_{L}}{d t} \sim\left(\frac{1}{s}\right)^{5}$

Accessing the perturbative proton content using inclusive processes no $1 / Q$ suppression
example: DIS

$$
\begin{aligned}
s_{\gamma^{*} p} & =\left(q_{\gamma}^{*}+p_{p}\right)^{2}=4 E_{\mathrm{c} . \mathrm{m} .}^{2} \\
Q^{2} & \equiv-q_{\gamma^{*}}^{2}>0 \\
x_{B} & =\frac{Q^{2}}{2 p_{p} \cdot q_{\gamma}^{*}} \simeq \frac{Q^{2}}{s_{\gamma^{*} p}}
\end{aligned}
$$

- $x_{B}=$ proton momentum fraction carried by the scattered quark
- $1 / Q=$ transverse resolution of the photonic probe $\ll 1 / \Lambda_{Q C D}$

Introduction

DIS
The various regimes governing the perturbative content of the proton

- "usual" regime: x_{B} moderate ($x_{B} \gtrsim .01$):

Evolution in Q governed by the QCD renormalization group
(Dokshitser, Gribov, Lipatov, Altarelli, Parisi equation)

$$
\sum_{n}\left(\alpha_{s} \ln Q^{2}\right)^{n}+\alpha_{s} \sum_{n}\left(\alpha_{s} \ln Q^{2}\right)^{n}+\cdots
$$

- perturbative Regge limit: $s_{\gamma^{*} p} \rightarrow \infty$ i.e. $x_{B} \sim Q^{2} / s_{\gamma^{*} p} \rightarrow 0$ in the perturbative regime (hard scale Q^{2})
(Balitski Fadin Kuraev Lipatov equation)

$$
\sum_{n}\left(\alpha_{s} \ln s\right)^{n}+\alpha_{s} \sum_{\text {NLLs }}\left(\alpha_{s} \ln s\right)^{n}+\cdots
$$

From inclusive to exclusive processes

Experimental effort

- Inclusive processes are not $1 / Q$ suppressed (e.g. DIS);

Exclusive processes are suppressed

- Going from inclusive to exclusive processes is difficult
- High luminosity accelerators and high-performance detection facilities

HERA (H1, ZEUS), HERMES, JLab@6 GeV (Hall A, CLAS), BaBar, Belle, BEPC-II (BES-III), LHC future: COMPASS-II, JLab@12 GeV, PANDA, LHeC, EIC, ILC

- What to do, and where?
- Proton form factor: JLab@6 GeV future: PANDA (timelike proton form factor through $p \bar{p} \rightarrow e^{+} e^{-}$)
- $e^{+} e^{-}$in $\gamma^{*} \gamma$ single-tagged channel: Transition form factor $\gamma^{*} \gamma \rightarrow \pi$, exotic hybrid meson production BaBar, Belle, BES,...
- Deep Virtual Compton Scattering (GPD)

HERA (H1, ZEUS), HERMES, JLab@6 GeV future: JLab@12GeV, COMPASS-II, EIC, LHeC

- Non exotic and exotic hybrid meson electroproduction (GPD and DA), etc... NMC (CERN), E665 (Fermilab), HERA (H1, ZEUS), COMPASS, HERMES, CLAS (JLab)
- TDA (PANDA at GSI)
- TMDs (BaBar, Belle, COMPASS, ...)
- Diffractive processes, including ultraperipheral collisions LHC (with or without fixed targets), ILC, LHeC

From inclusive to exclusive processes

Theoretical efforts

Very important theoretical developments during the last decade

- Key words:

DAs, GPDs, GDAs, TDAs ... TMDs

- Fundamental tools:
- At medium energies: JLab, HERMES, COMPASS, BaBar, Belle, PANDA, EIC collinear factorization
- At asymptotical energies: HERA, Tevatron, LHC, LHeC, ILC (EIC and COMPASS at the boundary)
k_{T}-factorization
We will now explain and illustrate these concepts, and discuss issues and possible solutions...

The ultimate picture

Extensions from DIS

- DIS: inclusive process \rightarrow forward amplitude $(t=0)$ (optical theorem)
(DIS: Deep Inelastic Scattering)
ex: $e^{ \pm} p \rightarrow e^{ \pm} X$ at HERA
$x \Rightarrow$ 1-dimensional structure

Structure Function
$=$ Coefficient Function \otimes Parton Distribution Function (hard)
(soft)

- DVCS: exclusive process \rightarrow non forward amplitude $\left(-t \ll s=W^{2}\right)$ (DVCS: Deep Vitual Compton Scattering)

Fourier transf.: $t \leftrightarrow$ impact parameter (x, t) \Rightarrow 3-dimensional structure

Amplitude
$=\underset{\text { (hard) }}{\text { Coefficient Function }} \otimes \underset{\text { (soft) }}{\text { Generalized }}$ Parton Distribution

Extensions from DVCS

- Meson production: γ replaced by ρ, π, \cdots

Amplitude
$=\underset{(\text { soft })}{\mathrm{GPD}} \otimes \underset{\text { (hard) }}{\mathrm{CF}} \otimes \otimes \underset{(\text { soft })}{\text { Distribution Amplitude }}$

Collins, Frankfurt, Strikman '97; Radyushkin '97

proofs valid only for some restricted cases [backup]

- Crossed process: $s \ll-t$

Amplitude
$=\underset{\text { (hard) }}{\text { Coefficient Function }} \otimes \underset{\text { (soft) }}{\text { Generalized Distribution Amplitude }}$

Diehl, Gousset, Pire, Teryaev '98

Extensions from DVCS

- Starting from usual DVCS, one allows: initial hadron \neq final hadron (in the same octuplet): transition GPDs

Even less diagonal:
baryonic number (initial state) \neq baryonic number $_{\text {(final state) }} \rightarrow$ TDA Example:

Pire, Szymanowski '05
which can be further extended by replacing the outgoing γ by any hadronic state

$$
\text { Amplitude }=\underset{\substack{\text { Transition Distribution Amplitude } \\ \text { (soft) }}}{\text { Thard) }} \underset{\text { (hard) }}{\mathrm{CF}} \otimes \underset{\text { (soft) }}{\mathrm{DA}}
$$

Lansberg, Pire, Szymanowski '06

Extensions from DVCS

TDA at PANDA

TDA $\pi \rightarrow \gamma$
TDA $p \rightarrow \gamma$ at PANDA (forward scattering of \bar{p} on a p probe)

TDA $p \rightarrow \pi$ at PANDA (forward scattering of \bar{p} on a p probe)

Spectral model for the $p \rightarrow \pi$ TDA: Pire, Semenov, Szymanowski '10

Collinear factorization

A bit more technical: DVCS and GPDs
The two steps for factorization, in a nutshell

- momentum factorization: light-cone vector dominance for $Q^{2} \rightarrow \infty$
p_{1}, p_{2} : the two light-cone directions $\begin{cases}p_{1}=\frac{\sqrt{E}}{2}\left(1,0_{\perp}, 1\right) & p_{1}^{2}=p_{2}^{2}=0 \\ p_{2}=\frac{\sqrt{s}}{2}\left(1,0_{\perp},-1\right) & 2 p_{1} \cdot p_{2}=s \sim s_{\gamma^{*} p} \gtrsim Q^{2}\end{cases}$
Sudakov decomposition: $k=\alpha p_{1}+\beta p_{2}+k_{\perp}$
 key point:
large (+) $\times(-)$ flux
\Rightarrow short distance
(masses neglected)
$\int d^{4} k S(k, k+\Delta) H(q, k, k+\Delta)=\int d k^{-} \int d k^{+} d^{2} k_{\perp} S(k, k+\Delta) H\left(q, k^{-}, k^{-}+\Delta^{-}\right)$
- Quantum numbers factorization (Fierz identity: spinors + color)

$$
\Rightarrow \quad \mathcal{M}=\mathrm{GPD} \otimes \text { Hard part }
$$

Collinear factorization

ρ-meson production: from the wave function to the
What is a $\rho-$ meson in QCD?
It is described by its wave function Ψ which reduces in hard processes to its Distribution Amplitude

$\int d^{4} \ell M\left(q, \ell, \ell-p_{\rho}\right) \Psi\left(\ell, \ell-p_{\rho}\right)=\int d \ell^{+} M\left(q, \ell^{+}, \ell^{+}-p_{\rho}^{+}\right) \int d \ell^{-} \int^{\left|\ell_{\perp}^{2}\right|<\mu_{F}^{2}} d^{2} \ell_{\perp} \Psi\left(\ell, \ell-p_{\rho}\right)$
Hard part
DA $\Phi\left(u, \mu_{F}^{2}\right)$
(see Chernyak, Zhitnitsky '77; Brodsky, Lepage '79; Efremov, Radyushkin '80; ... in the case of form-factors studies)

Collinear factorization

Meson electroproduction: factorization with a GPD and a DA

$\int d^{4} k d^{4} \ell$

$$
S(k, k+\Delta)
$$

$$
H(q, k, k+\Delta)
$$

$$
\Psi\left(\ell, \ell-p_{\rho}\right)
$$

$=\int d k^{-} d \ell^{+} \int d k^{+} \int^{\left|k_{\perp}^{2}\right|<\mu_{F_{2}}^{2}} d^{2} k_{\perp} S(k, k+\Delta) H\left(q ; k^{-}, k^{-}+\Delta^{-} ; \ell^{+}, \ell^{+}-p_{\rho}^{+}\right) \int d \ell^{-} \int^{\left|\ell_{\perp}^{2}\right|<\mu_{F_{1}}^{2}} d^{2} \ell_{\perp} \Psi\left(\ell, \ell-p_{\rho}\right)$ GPD $F\left(x, \xi, t, \mu_{F_{2}}^{2}\right) \quad$ Hard part $T\left(x / \xi, u, \mu_{F_{1}}^{2}, \mu_{F_{2}}^{2}, \mu_{R}^{2}\right) \quad$ DA $\Phi\left(u, \mu_{F_{1}}^{2}\right)$

Collins, Frankfurt, Strikman '97; Radyushkin '97

Collinear factorization

Meson electroproduction: factorization with a GPD and a DA
The building blocks

Γ, Γ^{\prime} : Dirac matrices compatible with quantum numbers: C, P, T, chirality

Similar structure for gluon exchange

Collinear factorization

Meson electroproduction: factorization with a GPD and a DA
The building blocks

Collinear factorization

Physical interpretation for GPDs

Emission and reabsoption of an antiquark
~ PDFs for antiquarks DGLAP-II region

Emission of a quark and emission of an antiquark
\sim meson exchange ERBL region

Emission and reabsoption of a quark
~ PDFs for quarks DGLAP-I region

Collinear factorization

Classification of twist 2 GPDs

- For quarks, one should distinguish the exchanges
- without helicity flip (chiral-even Γ^{\prime} matrices): 4 chiral-even GPDs: $H^{q} \xrightarrow{\xi=0, t=0}$ PDF $q, E^{q}, \tilde{H}^{q} \xrightarrow{\xi=0, t=0}$ polarized PDFs $\Delta q, \tilde{E}^{q}$

$$
\begin{aligned}
F^{q} & =\left.\frac{1}{2} \int \frac{d z^{+}}{2 \pi} e^{i x P^{-} z^{+}}\left\langle p^{\prime}\right| \bar{q}\left(-\frac{1}{2} z\right) \gamma^{-} q\left(\frac{1}{2} z\right)|p\rangle\right|_{z^{-}=0, z_{\perp}=0} \\
& =\frac{1}{2 P^{-}}\left[H^{q}(x, \xi, t) \bar{u}\left(p^{\prime}\right) \gamma^{-} u(p)+E^{q}(x, \xi, t) \bar{u}\left(p^{\prime}\right) \frac{i \sigma^{-\alpha} \Delta_{\alpha}}{2 m} u(p)\right], \\
\tilde{F}^{q} & =\left.\frac{1}{2} \int \frac{d z^{+}}{2 \pi} e^{i x P^{-} z^{+}}\left\langle p^{\prime}\right| \bar{q}\left(-\frac{1}{2} z\right) \gamma^{-} \gamma_{5} q\left(\frac{1}{2} z\right)|p\rangle\right|_{z^{-}=0, z_{\perp}=0} \\
& =\frac{1}{2 P^{-}}\left[\tilde{H}^{q}(x, \xi, t) \bar{u}\left(p^{\prime}\right) \gamma^{-} \gamma_{5} u(p)+\tilde{E}^{q}(x, \xi, t) \bar{u}\left(p^{\prime}\right) \frac{\gamma_{5} \Delta^{-}}{2 m} u(p)\right] .
\end{aligned}
$$

- with helicity flip (chiral-odd Γ^{\prime} mat.): 4 chiral-odd GPDs:
$H_{T}^{q} \xrightarrow{\xi=0, t=0}$ quark transversity PDFs $\Delta_{T} q, E_{T}^{q}, \tilde{H}_{T}^{q}, \tilde{E}_{T}^{q}$

$$
\begin{aligned}
& \left.\frac{1}{2} \int \frac{d z^{+}}{2 \pi} e^{i x P^{-} z^{+}}\left\langle p^{\prime}\right| \bar{q}\left(-\frac{1}{2} z\right) i \sigma^{-i} q\left(\frac{1}{2} z\right)|p\rangle\right|_{z^{-}=0, z_{\perp}=0} \\
& =\frac{1}{2 P^{-}} \bar{u}\left(p^{\prime}\right)\left[H_{T}^{q} i \sigma^{-i}+\tilde{H}_{T}^{q} \frac{P^{-} \Delta^{i}-\Delta^{-} P^{i}}{m^{2}}+E_{T}^{q} \frac{\gamma^{-} \Delta^{i}-\Delta^{-} \gamma^{i}}{2 m}+\tilde{E}_{T}^{q} \frac{\gamma^{-} P^{i}-P^{-} \gamma^{i}}{m}\right]
\end{aligned}
$$

Collinear factorization

Twist 2 GPDs

Classification of twist 2 GPDs

- analogously, for gluons:
- 4 gluonic GPDs without helicity flip:

```
\(H^{g} \xrightarrow{\xi=0, t=0}\) PDF \(x g\)
\(E^{g}\)
\(\tilde{H}^{g} \xrightarrow{\xi=0, t=0}\) polarized PDF \(x \Delta g\)
\(\tilde{E}^{g}\)
```

- 4 gluonic GPDs with helicity flip:
H_{T}^{g}
E_{T}^{g}
\tilde{H}_{T}^{g}
\tilde{E}_{T}^{g}
(no forward limit reducing to gluons PDFs here: a change of 2 units of helicity cannot be compensated by a spin $1 / 2$ target)

A few applications

Quark model and meson spectroscopy

- spectroscopy: $\vec{J}=\vec{L}+\vec{S}$; neglecting any spin-orbital interaction $\Rightarrow S, L=$ additional quantum numbers to classify hadron states

$$
\vec{J}^{2}=J(J+1), \quad \vec{S}^{2}=S(S+1), \quad \vec{L}^{2}=L(L+1)
$$

with $J=|L-S|, \cdots, L+S$

- In the usual quark-model: meson $=q \bar{q}$ bound state with

$$
C=(-)^{L+S} \quad \text { and } \quad P=(-)^{L+1}
$$

- Thus:

$$
\begin{array}{llll}
S=0, & L=J, & J=0,1,2, \ldots: & J^{P C}=0^{-+}(\pi, \eta), 1^{+-}\left(h_{1}, b_{1}\right), 2^{-+}, 3^{+-}, \ldots \\
S=1, & L=0, & J=1: & J^{P C}=1^{--}(\rho, \omega, \phi) \\
& L=1, & J=0,1,2: & J^{P C}=0^{++}\left(f_{0}, a_{0}\right), 1^{++}\left(f_{1}, a_{1}\right), 2^{++}\left(f_{2}, a_{2}\right) \\
& L=2, & J=1,2,3: & J^{P C}=1^{--}, 2^{--}, 3^{--}
\end{array}
$$

- \Rightarrow the exotic mesons with $J^{P C}=0^{--}, 0^{+-}, 1^{-+}, \cdots$ are forbidden

Experimental candidates for light hybrid mesons (1)

three candidates:

- $\pi_{1}(1400)$
- GAMS '88 (SPS, CERN): in $\pi^{-} p \rightarrow \eta \pi^{0} n$ (through $\eta \pi^{0} \rightarrow 4 \gamma$ mode) $\mathrm{M}=1406 \pm 20 \mathrm{MeV} \quad \Gamma=180 \pm 30 \mathrm{MeV}$
- E852 '97 (BNL): $\pi^{-} p \rightarrow \eta \pi^{-} p$ $\mathrm{M}=1370 \pm 16 \mathrm{MeV} \quad \Gamma=385 \pm 40 \mathrm{MeV}$
- VES '01 (Protvino) in $\pi^{-} B e \rightarrow \eta \pi^{-} B e, \pi^{-} B e \rightarrow \eta^{\prime} \pi^{-} B e$, $\pi^{-} B e \rightarrow b_{1} \pi^{-} B e$ $\mathrm{M}=1316 \pm 12 \mathrm{MeV} \quad \Gamma=287 \pm 25 \mathrm{MeV}$ but resonance hypothesis ambiguous
- Crystal Barrel (LEAR, CERN) ' 98 ' 99 in $\bar{p} n \rightarrow \pi^{-} \pi^{0} \eta$ and $\bar{p} p \rightarrow 2 \pi^{0} \eta$ (through $\pi \eta$ resonance) $\mathrm{M}=1400 \pm 20 \mathrm{MeV} \quad \Gamma=310 \pm 50 \mathrm{MeV}$ and $\mathrm{M}=1360 \pm 25 \mathrm{MeV} \quad \Gamma=220 \pm 90 \mathrm{MeV}$

A few applications

Production of an exotic hybrid

Experimental candidates for light hybrid mesons (2)

- $\pi_{1}(1600)$
- E852 (BNL): in peripheral $\pi^{-} p \rightarrow \pi^{+} \pi^{-} \pi^{-} p$ (through $\rho \pi^{-}$mode) '98 '02, $\mathrm{M}=1593 \pm 8 \mathrm{MeV} \quad \Gamma=168 \pm 20 \mathrm{MeV} \pi^{-} p \rightarrow \pi^{+} \pi^{-} \pi^{-} \pi^{0} \pi^{0} p$ (in $b_{1}(1235) \pi^{-} \rightarrow\left(\omega \pi^{0}\right) \pi^{-} \rightarrow\left(\pi^{+} \pi^{-} \pi^{0}\right) \pi^{0} \pi^{-}{ }^{\prime} 05$ and $f_{1}(1285) \pi^{-}{ }^{\prime} 04$ modes), in peripheral $\pi^{-} p$ through $\eta^{\prime} \pi^{-}$'01 $\mathrm{M}=1597 \pm 10 \mathrm{MeV} \quad \Gamma=340 \pm 40 \mathrm{MeV}$ but E852 (BNL) '06: no exotic signal in $\pi^{-} p \rightarrow(3 \pi)^{-} p$ for a larger sample of data!
- VES '00 (Protvino): in peripheral $\pi^{-} p$ through $\eta^{\prime} \pi^{-}$'93, '00, $\rho\left(\pi^{+} \pi^{-}\right) \pi^{-}$ ${ }^{\prime} 00, b_{1}(1235) \pi^{-} \rightarrow\left(\omega \pi^{0}\right) \pi^{-}$'00
- Crystal Barrel (LEAR, CERN) '03 $\bar{p} p \rightarrow b_{1}(1235) \pi \pi$
- COMPASS '10 (SPS, CERN): diffractive dissociation of π^{-}on Pb target through Primakov effect $\pi^{-} \gamma \rightarrow \pi^{-} \pi^{-} \pi^{+}$(through $\rho \pi^{-}$mode) $\mathrm{M}=1660 \pm 10 \mathrm{MeV} \quad \Gamma=269 \pm 21 \mathrm{MeV}$
- $\pi_{1}(2000)$: seen only at E852 (BNL) '04 '05 (through $f_{1}(1285) \pi^{-}$and $\left.b_{1}(1235) \pi^{-}\right)$

What about hard processes?

- Is there a hope to see such states in hard processes, with high counting rates, and to exhibit their light-cone wave-function?
- hybrid mesons $=q \bar{q} g$ states T. Barnes '77; R. L. Jaffe, K. Johnson, and Z. Ryzak, G. S. Bali
- popular belief: $H=q \bar{q} g \Rightarrow$ higher Fock-state component \Rightarrow twist-3 \Rightarrow hard electroproduction of H versus ρ suppressed as $1 / Q$
- This is not true!! Electroproduction of hybrid is similar to electroproduction of usual ρ-meson: it is twist 2 dominated
I. V. Anikin, B. Pire, O. V. Teryaev, L. Szymanowski, S.W. '04

A few applications

Distribution amplitude of exotic hybrid mesons at twist 2

- One may think that to produce $|q \bar{q} g\rangle$, the fields $\Psi, \bar{\Psi}, A$ should appear explicitly in the non-local operator $\mathcal{O}(\Psi, \bar{\Psi} A)$

- If one tries to produce $H=1^{-+}$from a local operator, the dominant operator should be $\bar{\Psi} \gamma^{\mu} G_{\mu \nu} \Psi$ of twist $=$ dimension - spin $=5-1=4$
- It means that there should be a $1 / Q^{2}$ suppression in the production amplitude of H versus the usual ρ-production (which is twist 2 dominated)
- But collinear approach describes hard exclusive processes in terms of non-local light-cone operators, among which are the twist 2 operator

$$
\bar{\psi}(-z / 2) \gamma_{\mu}[-z / 2 ; z / 2] \psi(z / 2)
$$

where $[-z / 2 ; z / 2]$ is a Wilson line, necessary to fullfil gauge invariance (i.e. a "color tube" between q and \bar{q}) which thus hides gluonic degrees of freedom: the needed gluon is there, at twist 2.
This does not requires to introduce explicitely A !

A few applications

Accessing the partonic structure of exotic hybrid mesons

- Electroproduction $\gamma^{*} p \rightarrow H^{0} p$: JLab, COMPASS, EIC

- Channels $\gamma^{*} \gamma \rightarrow H$ and $\gamma^{*} \gamma \rightarrow \pi \eta$: BaBar, Belle, BES-III

I. V. Anikin, B. Pire, O. V. Teryaev, L. Szymanowski, S.W.

Eur.Phys.J.C47 (2006)
\Longrightarrow the partonic content of exotic hybrid meson is experimentally accessible This is very complementary to spectroscopy studies, e.g. GLUEx (JLab@12Gev, Hall D) devotted to hybrid meson studies (with a photon source based on a diamond crystal)

A few applications

What is transversity?

- Tranverse spin content of the proton:

$$
\begin{array}{rll}
|\uparrow\rangle_{(x)} & \sim & |\rightarrow\rangle+|\leftarrow\rangle \\
|\downarrow\rangle_{(x)} & \sim & |\rightarrow\rangle-|\leftarrow\rangle \\
\text { spin along } x & & \text { helicity state }
\end{array}
$$

- An observable sensitive to helicity spin flip gives thus access to the transversity $\Delta_{T} q(x)$, which is very badly known (first data have recently been obtained by COMPASS)
- The transversity GPDs are completely unknown
- Chirality: $\quad q_{ \pm}(z) \equiv \frac{1}{2}\left(1 \pm \gamma^{5}\right) q(z)$ with $q(z)=q_{+}(z)+q_{-}(z)$ Chiral-even: chirality conserving $\bar{q}_{ \pm}(z) \gamma^{\mu} q_{ \pm}(-z)$ and $\bar{q}_{ \pm}(z) \gamma^{\mu} \gamma^{5} q_{ \pm}(-z)$
Chiral-odd: chirality reversing

$$
\bar{q}_{ \pm}(z) \cdot 1 \cdot q_{\mp}(-z), \quad \bar{q}_{ \pm}(z) \cdot \gamma^{5} \cdot q_{\mp}(-z) \text { and } \bar{q}_{ \pm}(z)\left[\gamma^{\mu}, \gamma^{\nu}\right] q_{\mp}(-z)
$$

- For a massless (anti)particle, chirality $=(-)$ helicity
- Transversity is thus a chiral-odd quantity
- QCD and QED are chiral even $\Rightarrow \mathcal{A} \sim(\text { Ch.-odd })_{1} \otimes(\text { Ch.-odd })_{2}$

How to get access to transversity?

- The dominant DA for ρ_{T} is of twist 2 and chiral-odd ([$\left.\gamma^{\mu}, \gamma^{\nu}\right]$ coupling)
- Unfortunately $\gamma^{*} N^{\uparrow} \rightarrow \rho_{T} N^{\prime}=0$
- this is true at any order in perturbation theory (i.e. corrections as powers of α_{s}), since this would require a transfer of 2 units of helicity from the proton: impossible!
Diehl, Gousset, Pire '99; Collins, Diehl '00
- diagrammatic argument at Born order:

$$
\text { vanishes: } \gamma^{\alpha}\left[\gamma^{\mu}, \gamma^{\nu}\right] \gamma_{\alpha}=0
$$

Can one circumvent this vanishing?

- This vanishing is true only a twist 2
- At twist 3 this process does not vanish
- However processes involving twist 3 DAs may face problems with factorization (end-point singularities: see [back-up])
- Classification of twist 3 chiral-odd GPDs: see later based on our Light-Cone Collinear Factorization framework recently developped (Pire, Szymanowski, S. W.)

A few applications

$$
\gamma N \rightarrow \pi^{+} \rho_{T}^{0} N^{\prime} \text { gives access to transversity }
$$

- Factorization à la Brodsky Lepage of $\gamma+\pi \rightarrow \pi+\rho$ at large s and fixed angle (i.e. fixed ratio $t^{\prime} / s, u^{\prime} / s$)
\Longrightarrow factorization of the amplitude for $\gamma+N \rightarrow \pi+\rho+N^{\prime}$ at large $M_{\pi \rho}^{2}$

- a typical non-vanishing diagram:

M. El Beiyad, P. Pire, M. Segond, L. Szymanowski, S.W

Phys.Lett.B688:154-167,2010
see also, at large s, with Pomeron exchange:
R. Ivanov, B. Pire, L. Symanowski, O. Teryaev '02
R. Enberg, B. Pire, L. Symanowski '06

- These processes with 3 body final state can give access to all GPDs: $M_{\pi \rho}^{2}$ plays the role of the γ^{*} virtuality of usual DVCS (here in the time-like domain) JLab, COMPASS

Threshold effects for DVCS and TCS

DVCS and TCS

Deeply Virtual Compton Scattering

$$
l N \rightarrow l^{\prime} N^{\prime} \gamma
$$

Timelike Compton Scattering

$$
\gamma N \rightarrow l^{+} l^{-} N^{\prime}
$$

- TCS versus DVCS:
- universality of the GPDs
- another source for GPDs (special sensitivity on real part)
- spacelike-timelike crossing and understanding the structure of the NLO corrections
- Where to measure TCS? In Ultra Peripheral Collisions LHC, JLab, COMPASS, AFTER

Threshold effects for DVCS and TCS
 DVCS and TCS at NLO

One loop contributions to the coefficient function

(2)
Belitsky, Mueller, Niedermeier, Schafer, Phys.Lett.B474, 2000
Pire, Szymanowski, Wagner
Phys.Rev.D83, 2011

$$
\mathcal{A}^{\mu \nu}=g_{T}^{\mu \nu} \int_{-1}^{1} d x\left[\sum_{q}^{n_{F}} T^{q}(x) F^{q}(x)+T^{g}(x) F^{g}(x)\right]
$$

(symmetric part of the factorised amplitude)

Threshold effects for DVCS and TCS

Resummations effects are expected

- The renormalized quark coefficient functions T^{q} is

$$
\begin{aligned}
& T^{q}=C_{0}^{q}+C_{1}^{q}+C_{\text {coll }}^{q} \log \frac{\left|Q^{2}\right|}{\mu_{F}^{2}} \\
& C_{0}^{q}=e_{q}^{2}\left(\frac{1}{x-\xi+i \varepsilon}-(x \rightarrow-x)\right) \\
& C_{1}^{q}=\frac{e_{q}^{2} \alpha_{S} C_{F}}{4 \pi(x-\xi+i \varepsilon)}\left[\log ^{2}\left(\frac{\xi-x}{2 \xi}-i \varepsilon\right)+\ldots\right]-(x \rightarrow-x)
\end{aligned}
$$

- Usual collinear approach: single-scale analysis w.r.t. Q^{2}
- Consider the invariants \mathcal{S} and \mathcal{U} :

$$
\begin{aligned}
\mathcal{S} & =\frac{x-\xi}{2 \xi} Q^{2} & \ll Q^{2} & \text { when } x \rightarrow \xi \\
\mathcal{U} & =-\frac{x+\xi}{2 \xi} Q^{2} & \ll Q^{2} & \text { when } x \rightarrow-\xi
\end{aligned}
$$

\Rightarrow two scales problem; threshold singularities to be resummed analogous to the $\log \left(x-x_{B j}\right)$ resummation for DIS coefficient functions

Threshold effects for DVCS and TCS

Soft-collinear resummation effects for the coefficient function

- The resummation easier when using the axial gauge $p_{1} \cdot A=0\left(p_{\gamma} \equiv p_{1}\right)$
- The dominant diagram are ladder-like [backup]
resummed formula (for DVCS), for $x \rightarrow \xi$:

$$
\begin{aligned}
& \left(T^{q}\right)^{\mathrm{res}}=\left(\frac { e _ { q } ^ { 2 } } { x - \xi + i \epsilon } \left\{\cosh \left[D \log \left(\frac{\xi-x}{2 \xi}-i \epsilon\right)\right]\right.\right. \\
& \left.\quad-\frac{D^{2}}{2}\left[9+3 \frac{\xi-x}{x+\xi} \log \left(\frac{\xi-x}{2 \xi}-i \epsilon\right)\right]\right\} \\
& \left.\quad+C_{\text {coll }}^{q} \log \frac{Q^{2}}{\mu_{F}^{2}}\right)-(x \rightarrow-x) \quad \text { with } \quad D=\sqrt{\frac{\alpha_{s} C_{F}}{2 \pi}}
\end{aligned}
$$

T. Altinoluk, B. Pire, L. Szymanowski, S. W.

JHEP 1210 (2012) 49; [arXiv:1206.3115]

- Our analysis can be used for the gluon coefficient function [In progress].
- The measurement of the phenomenological impact of this procedure on the data analysis needs further analysis with the implementation of modeled generalized parton distributions [backup].

QCD at large s

Theoretical motivations

A particular regime for QCD:

The perturbative Regge limit $s \rightarrow \infty$
Consider the diffusion of two hadrons h_{1} and h_{2} :

- $\sqrt{s}\left(=E_{1}+E_{2}\right.$ in the center-of-mass system) \gg other scales (masses, transfered momenta, ...) eg $x_{B} \rightarrow 0$ in DIS
- other scales comparable (virtualities, etc...) $\gg \Lambda_{Q C D}$
regime $\alpha_{s} \ln s \sim 1 \Longrightarrow$ dominant sub-series:

with $\alpha_{\mathbb{P}}(0)-1=C \alpha_{s}(C>0)$ hard Pomeron (Balitsky, Fadin, Kuraev, Lipatov)
- This result violates QCD S matrix unitarity $\left(S S^{\dagger}=S^{\dagger} S=1\right.$ i.e. \sum Prob. $\left.=1\right)$
- Until when this result could be applicable, and how to improve it?
- How to test this dynamics experimentally, in particular based on exclusive processes?

$$
\gamma^{*} \gamma^{*} \rightarrow \rho \rho \text { as an example }
$$

- Use Sudakov decomposition $k=\alpha p_{1}+\beta p_{2}+k_{\perp}\left(p_{1}^{2}=p_{2}^{2}=0,2 p_{1} \cdot p_{2}=s\right)$
- write

$$
d^{4} k=\frac{s}{2} d \alpha d \beta d^{2} k_{\perp}
$$

- t-channel gluons with non-sense polarizations $\left(\epsilon_{N S}^{u p}=\frac{2}{s} p_{2}, \epsilon_{N S}^{d o w n}=\frac{2}{s} p_{1}\right)$ dominate at large s

Impact representation for exclusive processes $\quad \underline{k}=$ Eucl. $\leftrightarrow k_{\perp}=$ Mink.
$\mathcal{M}=i s \int \frac{d^{2} \underline{k}}{(2 \pi)^{2} \underline{k}^{2}(\underline{r}-\underline{k})^{2}} \Phi^{\gamma^{*}\left(q_{1}\right) \rightarrow \rho\left(p_{1}^{\rho}\right)}(\underline{k}, \underline{r}-\underline{k}) \Phi^{\gamma^{*}\left(q_{2}\right) \rightarrow \rho\left(p_{2}^{\rho}\right)}(-\underline{k},-\underline{r}+\underline{k})$
$\Phi^{\gamma^{*}\left(q_{1}\right) \rightarrow \rho\left(p_{1}^{\rho}\right)}: \quad \gamma_{L, T}^{*}(q) g\left(k_{1}\right) \rightarrow \rho_{L, T} g\left(k_{2}\right)$ impact factor

Gauge invariance of QCD:

- probes are color neutral \Rightarrow their impact factor should vanish when $\underline{k} \rightarrow 0$ or $\underline{r}-\underline{k} \rightarrow 0$
- At twist-3 level (for the $\gamma_{T}^{*} \rightarrow \rho_{T}$ transition), gauge invariance is a non-trivial constraint when combining 2- and 3-body correlators

QCD at large s
 Phenomenological applications: Meson production at HERA

Diffractive meson production at HERA

HERA (DESY, Hambourg): first and single $e^{ \pm} p$ collider (1992-2007)

- The "easy" case (from factorization point of view): J / Ψ production ($u \sim 1 / 2$: non-relativistic limit for bound state) combined with k_{T}-factorisation Ryskin '93; Frankfurt, Koepf, Strikman '98; Ivanov, Kirschner, Schäfer, Szymanowski '00; Motyka, Enberg, Poludniowski '02
- Exclusive vector meson photoproduction at large t (= hard scale): $\gamma(q)+P \rightarrow \rho_{L, T}\left(p_{1}\right)+P$
based on k_{T}-factorization:
Forshaw, Ryskin '95; Bartels, Forshaw, Lotter, Wüsthoff '96; Forshaw, Motyka, Enberg, Poludniowski '03
- H1, ZEUS data seems to favor BFKL
- but end-point singularities for ρ_{T} are regularized with a quark mass: $m=m_{\rho} / 2$
- the spin density matrix is badly described
- Exclusive electroproduction of vector meson $\gamma_{L, T}^{*}(q)+P \rightarrow \rho_{L, T}\left(p_{1}\right)+P \quad$ Goloskokov, Kroll '05
based on improved collinear factorization for the coupling with the meson DA and collinear factorization for GPD coupling

Polarization effects in $\gamma^{*} P \rightarrow \rho P$ at HERA

- Very precise experimental data on the spin density matrix (i.e. correlations between γ^{*} and ρ polarizations)
- for $t=t_{\text {min }}$ one can experimentally distinguish
$\left\{\begin{array}{l}\gamma_{L}^{*} \rightarrow \rho_{L}: \text { dominates ("twist 2": amplitude }|\mathcal{A}| \sim \frac{1}{Q} \text {) } \\ \gamma_{T}^{*} \rightarrow \rho_{T}: \text { visible ("twist 3": amplitude }|\mathcal{A}| \sim \frac{1}{Q^{2}} \text {) }\end{array}\right.$
- How to calculate the $\gamma_{T}^{*} \rightarrow \rho_{T}$ transition from first principles?
- Can one avoid end-point singularities?

QCD at large s

Phenomenological applications: Meson production at HERA
Diffractive exclusive process $e^{-} p \rightarrow e^{-} p \rho_{L, T}$

$$
p
$$

p

Using a simple model for the proton impact factor:

Exclusive $\gamma^{(*)} \gamma^{(*)}$ processes $=$ gold place for testing QCD at large s
Proposals in order to test perturbative QCD in the large s limit (t-structure of the hard Pomeron, saturation, Odderon...)

- $\gamma^{(*)}(q)+\gamma^{(*)}\left(q^{\prime}\right) \rightarrow J / \Psi J / \Psi$ Kwiecinski, Motyka '98
- $\gamma_{L, T}^{*}(q)+\gamma_{L, T}^{*}\left(q^{\prime}\right) \rightarrow \rho_{L}\left(p_{1}\right)+\rho_{L}\left(p_{2}\right)$ process in $e^{+} e^{-} \rightarrow e^{+} e^{-} \rho_{L}\left(p_{1}\right)+\rho_{L}\left(p_{2}\right)$ with double tagged lepton at ILC

Pire, Szymanowski, S. W. '04; Pire, Szymanowski, Enberg, S. W. '06; Ivanov, Papa '06; Segond, Szymanowski, S. W. '07
conclusion: feasible at ILC (high energy and high luminosity); BFKL NLL enhancement with respect to Born and DGLAP contributions

- What about the Odderon? C-parity of Odderon $=-1$ consider $\gamma+\gamma \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}: \pi^{+} \pi^{-}$pair has no fixed C-parity
\Rightarrow Odderon and Pomeron can interfere
\Rightarrow Odderon appears linearly in the charge asymmetry
Pire, Schwennsen, Szymanowski, S. W. '07
= example of possibilities offered by ultraperipheral exclusive processes at LHC [backup]
(p, \bar{p} or A as effective sources of photon)
but the distinction with pure QCD processes (with gluons intead of a photon) is tricky...

Testing QCD in the perturbative Regge limit at LHC

Mueller-Navelet jets : the only observable for which a full NLO BFKL analysis is available
D. Colferai, F. Schwennsen, L. Szymanowski, S. W., JHEP 1012:026 (2010) 1-72
B. Ducloué, L. Szymanowsi, S. W., JHEP 1305 (2013) 096.

Surprisingly small decorrelation
Predictions are stable with respect to
s_{0}, μ_{F}, PDFs, in the range $4.5<\mathrm{Y}<8$

QCD at large s

Most recent signs of BFKL dynamics at LHC

QCD at large s

Most recent signs of BFKL dynamics at LHC
With Brodsky-Lepage-Mackenzie renormalization scale fixing: no free-parameter!
B. Ducloué, L. Szymanowski, S. W. [arXiv:1309.3229]

Testing QCD in the perturbative Regge limit at LHC

Mueller-Navelet jets : another mechanism ?

BFKL ladder

Color Glass Condensate ?
\sim MPI at small x ?

Similar issues for the ridge effect in pp, pA

Multiparton interactions (MPI) : accessing to correlations between two partons inside a nucleon?

Beyond leading twist
 Light-Cone Collinear Factorization versus Covariant Collinear Factorization

- The Light-Cone Collinear Factorization, a new self-consistent method, while non-covariant, is very efficient for practical computations Anikin, Ivanov, Pire, Szymanowski, S.W. '09
- inspired by the inclusive case Ellis, Furmanski, Petronzio '83; Efremov, Teryaev '84
- axial gauge
- parametrization of matrix element along a light-like prefered direction $z=\lambda n\left(n=2 p_{2} / s\right)$.
- non-local correlators are defined along this prefered direction, with contributions arising from Taylor expansion up to needed term for a given twist order computation
- their number is then reduced to a minimal set combining equations of motion and n-independency condition
- Another approach (Braun, Ball), fully covariant but much less convenient when practically computing coefficient functions, can equivalently be used
- We have established the dictionnary between these two approaches
- This as been explicitly checked for the $\gamma_{T}^{*} \rightarrow \rho_{T}$ impact factor at twist 3 Anikin, Ivanov, Pire, Szymanowski, S.W.
Nucl.Phys.B 828 (2010) 1-68; Phys.Lett.B682 (2010) 413

Beyond leading twist :

Light-Cone Collinear Factorization

- The impact factor $\Phi^{\gamma^{*}\left(\lambda_{\gamma}\right) \rightarrow \rho\left(\lambda_{\rho}\right)}$ can be written as

$$
\begin{array}{rc}
\Phi^{\gamma^{*}\left(\lambda_{\gamma}\right) \rightarrow \rho\left(\lambda_{\rho}\right)}=\int d^{4} \ell \cdots \operatorname{tr}\left[H^{\left(\lambda_{\gamma}\right)}(\ell \cdots)\right. & \left.S^{\left(\lambda_{\rho}\right)}(\ell \cdots)\right] \\
\text { hard part } & \text { soft part }
\end{array}
$$

(3-parton exchange)

- Soft parts:

$$
\begin{aligned}
S_{q \bar{q}}\left(\ell_{q}\right) & =\int d^{4} z e^{-i \ell_{q} \cdot z}\langle\rho(p)| \psi(0) \bar{\psi}(z)|0\rangle \\
S_{q \bar{q} q}\left(\ell_{q}, \ell_{g}\right) & =\int d^{4} z_{1} \int d^{4} z_{2} e^{-i\left(\ell_{q} \cdot z_{1}+\ell_{g} \cdot z_{2}\right)}\langle\rho(p)| \psi(0) g A_{\alpha}^{\perp}\left(z_{2}\right) \bar{\psi}\left(z_{1}\right)|0\rangle
\end{aligned}
$$

Light-Cone Collinear Factorization

- Sudakov expansion in the basis $p \sim p_{\rho}, n\left(p^{2}=n^{2}=0\right.$ and $\left.p \cdot n=1\right)$

$$
\begin{gathered}
\ell_{\mu}=u p_{\mu}+\ell_{\mu}^{\perp}+(\ell \cdot p) n_{\mu}, \quad u=\ell \cdot n \\
1 \\
1 / Q
\end{gathered}
$$

- Taylor expansion of the hard part $H(\ell)$ along the collinear direction p :

$$
H(\ell)=H(u p)+\left.\frac{\partial H(\ell)}{\partial \ell_{\alpha}}\right|_{\ell=u p}(\ell-u p)_{\alpha}+\ldots \quad \text { with } \quad(\ell-u p)_{\alpha} \approx \ell_{\alpha}^{\perp}
$$

- $l_{\alpha}^{\perp} \xrightarrow{\text { Fourier }}$ derivative of the soft term: $\int d^{4} z e^{-i \ell \cdot z}\langle\rho(p)| \psi(0) i \overleftrightarrow{\partial_{\alpha^{\perp}}} \bar{\psi}(z)|0\rangle$
- Color + spinor factorization $=$ Fierz transforms:

Beyond leading twist :

2-body non-local correlators

- vector correlator
kinematical twist 3 (WW) genuine twist 3
genuine + kinematical twist 3

$$
\langle\rho(p)| \bar{\psi}(z) \gamma_{\mu} \psi(0)|0\rangle \stackrel{\mathcal{F}}{=} m_{\rho} f_{\rho}\left[\varphi_{1}(y)\left(e^{*} \cdot n\right) p_{\mu}+\varphi_{3}(y) e_{\mu}^{* T}\right]
$$

- axial correlator

$$
\langle\rho(p)| \bar{\psi}(z) \gamma_{5} \gamma_{\mu} \psi(0)|0\rangle \stackrel{\mathcal{F}}{=} m_{\rho} f_{\rho} i \varphi_{A}(y) \varepsilon_{\mu \lambda \beta \delta} e_{\lambda}^{* T} p_{\beta} n_{\delta}
$$

- vector correlator with transverse derivative

$$
\langle\rho(p)| \bar{\psi}(z) \gamma_{\mu} i \overleftrightarrow{\partial_{\alpha}^{\perp}} \psi(0)|0\rangle \stackrel{\mathcal{F}}{=} m_{\rho} f_{\rho} \varphi_{1}^{T}(y) p_{\mu} e_{\alpha}^{* T}
$$

- axial correlator with transverse derivative

$$
\langle\rho(p)| \bar{\psi}(z) \gamma_{5} \gamma_{\mu} i \stackrel{\longleftrightarrow}{\partial_{\alpha}^{\perp}} \psi(0)|0\rangle \stackrel{\mathcal{F}}{=} m_{\rho} f_{\rho} i \varphi_{A}^{T}(y) p_{\mu} \varepsilon_{\alpha \lambda \beta \delta} e_{\lambda}^{* T} p_{\beta} n_{\delta}
$$

where $y(\bar{y} \equiv 1-y)=$ momentum fraction along $p \equiv p_{1}$ of the quark (antiquark) and

$$
\stackrel{\mathcal{F}}{=} \int_{0}^{1} d y \exp [i y p \cdot z], \text { with } z=\lambda n
$$

$\Rightarrow 5$ 2-body DAs

Beyond leading twist :

- vector correlator

$$
\langle\rho(p)| \bar{\psi}\left(z_{1}\right) \gamma_{\mu} g A_{\alpha}^{T}\left(z_{2}\right) \psi(0)|0\rangle \stackrel{\mathcal{F}_{2}}{=} m_{\rho} f_{3}^{V} B\left(y_{1}, y_{2}\right) p_{\mu} e_{\alpha}^{* T}
$$

- axial correlator

$$
\langle\rho(p)| \bar{\psi}\left(z_{1}\right) \gamma_{5} \gamma_{\mu} g A_{\alpha}^{T}\left(z_{2}\right) \psi(0)|0\rangle \stackrel{\mathcal{F}_{2}}{=} m_{\rho} f_{3}^{A} i D\left(y_{1}, y_{2}\right) p_{\mu} \varepsilon_{\alpha \lambda \beta \delta} e_{\lambda}^{* T} p_{\beta} n_{\delta}
$$

where $y_{1}, \bar{y}_{2}, y_{2}-y_{1}=$ quark, antiquark, gluon momentum fraction

$$
\text { and } \stackrel{\mathcal{F}_{2}}{=} \int_{0}^{1} d y_{1} \int_{0}^{1} d y_{2} \exp \left[i y_{1} p \cdot z_{1}+i\left(y_{2}-y_{1}\right) p \cdot z_{2}\right], \text { with } z_{1,2}=\lambda n
$$

$\Rightarrow 2$ 3-body DAs

Beyond leading twist :

Light-Cone Collinear Factorization

Minimal set of DAs

- Number of non-perturbative quantities: a priori 7 at twist 3 (5 2-parton DA and 2 2-parton DA)
- Non-perturbative correlators cannot be obtained perturbatively!
- One should reduce their number to a minimal set before any use of a model or any measure on the QCD lattice
- independence w.r.t the choice of the vector n defining
- the light-cone direction $z: z=\lambda n$
- the ρ_{T} polarization vector: $e_{T} \cdot n=0$
- the axial gauge: $n \cdot A=0$
$\mathcal{A}=H \otimes S \quad \frac{d \mathcal{A}}{d n_{\perp}^{\mu}}=0 \Rightarrow S$ are related

- We have proven that 3 independent Distribution Amplitudes are necessary:
$\begin{cases}\text { QCD equations of motion } & 2 \text { equations } \\ \text { Arbitrariness in the choice of } n & 2 \text { equations }\end{cases}$

```
\varphi (y) < 2-body twist 2 correlator
B(}\mp@subsup{y}{1}{},\mp@subsup{y}{2}{})\quad\leftarrow3\mathrm{ -body genuine twist }3\mathrm{ vector correlator
D(y1, y2) \leftarrow 3-body genuine twist 3 axial correlator
```


Beyond leading twist :

Dipole representation and saturation effects

The dipole picture at high energy

A key, inspiring and powerful paradigm for inclusive, diffractive, exclusive processes in e-p, p-p, $p-A, \ldots$

- Initial Ψ_{i} and final Ψ_{f} states wave functions of projectiles
- Primitive picture: proton $=$ color dipole scattering amplitude for two t - channel exchanged gluons:

$$
\mathcal{N}(\underline{r}, \underline{k})=\frac{4 \pi \alpha_{s}}{N_{c}}\left(1-e^{i \underline{k} \cdot \underline{r}}\right)\left(1-e^{-i \underline{k} \cdot \underline{r}}\right)
$$

- Real proton: $\mathcal{N} \rightarrow \hat{\sigma}_{\text {dipole-target }}=$ universal scattering amplitude
- color transparency for small $r_{\perp}: \hat{\sigma}_{\text {dipole-target }} \sim r_{\perp}^{2}$
- saturation for large $r_{\perp} \sim 1 / Q_{\text {sat }}: T \lesssim 1 \quad$ Golec-Biernat Wusthoff '98
- Data for ρ production calls for models encoding saturation Munier, Stasto, Mueller '04; Kowalski, Motyka, Watt '06
- The dipole representation is consistent with the twist 2 collinear factorization

A dipole picture beyond leading twist?

- New: the dipole picture is still consistent with collinear factorization at higher twist order:

twist $2+$ kinematical twist 3

genuine twist 3
A. Besse, L. Szymanowski, S. W., NPB 867 (2013) 19-60
- key ideas:
- reformulate the Light-Cone Collinear Factorization in the Fourier conjugated coordinate space: $\ell_{\perp} \leftrightarrow r_{\perp}$
- use QCD equations of motion

Beyond leading twist :

Factorization in coordinate space: the 2-parton contribution
Light-Cone Collinear Factorization in the coordinate space

- Recall: impact factors $\Phi_{q \bar{q}}^{\gamma^{*} \rightarrow \rho}=-\frac{1}{4} \int d^{4} \ell \operatorname{Tr}\left(H_{q \underline{q}} \Gamma\right)(\ell) S_{q \underline{q} \Gamma}(\ell)$
- Collinear approximation \Rightarrow expansion around $\ell_{\perp}=0$:

Gives the moments of $S_{q \underline{q} \Gamma}$

$$
\operatorname{Tr}\left(H_{q \underline{q}} \Gamma\right)(\ell)=\int \frac{d^{2} r_{\perp}}{2 \pi} \tilde{H}_{q \underline{q}}^{\Gamma}\left(y, r_{\perp}\right) e^{-i \ell_{\perp} \cdot r_{\perp}}=\int \frac{d^{2} r_{\perp}}{2 \pi} \underbrace{\tilde{H}_{q \underline{q}}^{\Gamma}\left(y, r_{\perp}\right)}_{\text {factorizes out }} \overbrace{(\underbrace{1-i \ell_{\perp} \cdot r_{\perp}}_{\text {twist } 2 \text { and } 3}+\cdots)}^{\overbrace{1}}
$$

- 2-parton impact factor up to twist 3 (Wandzura-Wilczek (WW) approximation):

$$
\begin{aligned}
\Phi_{q \bar{q}}^{\gamma^{*} \rightarrow \rho}=-\frac{1}{4} m_{\rho} f_{\rho} \int d y \int \frac{d^{2} r_{\perp}}{(2 \pi)}\left\{\tilde{H}_{q \underline{q}}^{\gamma, \mu}(y, \underline{r})\left(\varphi_{3}(y) e_{\rho \mu}^{*}+i \varphi_{1}^{T}(y) p_{1 \mu}\left(\underline{e}_{\rho}^{*} \cdot \underline{r}\right)\right)\right. \\
\left.\quad+\tilde{H}_{q \underline{q}}^{\gamma_{5} \gamma, \mu}(y, \underline{r})\left(i \varphi_{A}(y) \varepsilon_{\mu e_{\rho}^{*} p_{1} n}+\varphi_{A}^{T}(y) p_{1 \mu} \varepsilon_{r_{\perp} e_{\rho}^{*} p_{1} n}\right)\right\}
\end{aligned}
$$

- The Fourier transform of the hard part gives:

Cancels due to EOM in WW approx.

$$
\begin{aligned}
\Phi_{q \underline{q}}^{\gamma^{*} \rightarrow \rho}= & \int d y \int d^{2} \underline{r} \psi_{(q \underline{q})}^{\gamma_{T}^{*} \rightarrow \rho_{T}} \times \mathcal{N}(\underline{r}, \underline{k})+\operatorname{Hard} \text { Terms } \times \overbrace{\left(2 y \bar{y} \varphi_{3}(y)+(y-\bar{y}) \varphi_{1}^{T}(y)+\varphi_{A}^{T}(y)\right)} \\
& \Rightarrow \text { dipole picture! }
\end{aligned}
$$

Beyond leading twist :

Factorization in coordinate space: the 2-parton contribution

WW approximation: interpretation

- Scanning the ρ-meson wave function:

$$
\underbrace{\phi_{\lambda_{\rho}, h}^{W W}(y, \underline{r})} \propto\left(\underline{e}^{\left(\lambda_{\rho}\right)} \cdot \underline{r}\right) \frac{y \delta_{h, \lambda_{\rho}}+\bar{y} \delta_{h,-\lambda_{\rho}}}{y \bar{y}} \int^{\left|\ell_{\perp}\right|<\mu_{F}} d^{2} \ell_{\perp} \ell_{\perp}^{2} \varphi_{\lambda_{\rho}}^{(q \underline{q})}\left(y, \ell_{\perp}\right)
$$

\sim combination of DAs

Beyond leading twist :

Factorization in coordinate space: the complete twist 3 contribution

- The 3-parton amplitude in transverse coordinate space at twist 3:

$$
\begin{aligned}
\Phi_{q \underline{q} g}^{\gamma^{*} \rightarrow \rho}=- & \frac{i m_{\rho} f_{\rho}}{4} \int d y_{1} d y_{g} \int \frac{d^{2} r_{1 \perp}}{(2 \pi)^{2}} \frac{d^{2} r_{g \perp}}{(2 \pi)^{2}}\left[\zeta_{3 \rho}^{V} B\left(y_{1}, y_{2}\right) p_{\mu} e_{\rho \perp \alpha} \tilde{H}_{q \underline{q} g}^{\alpha, \gamma^{\mu}}\left(y_{1}, y_{g}, r_{1 \perp}, r_{g \perp}\right)\right. \\
& \left.+\zeta_{3 \rho}^{A} i D\left(y_{1}, y_{2}\right) p_{\mu} \varepsilon_{\alpha e_{\rho \perp} p n} \tilde{H}_{q \underline{q} g}^{\alpha, \gamma^{\mu} \gamma_{5}}\left(y_{1}, y_{g}, r_{1 \perp}, r_{g \perp}\right)\right]
\end{aligned}
$$

- 3-partons exchanged; however, no quadrupole structure involved (even at finite N_{c}, beyond the 't Hooft limit)
- 3-partons results:

$$
\begin{aligned}
& \Phi_{q \underline{q} g}^{\gamma_{T}^{*} \rightarrow \rho_{T}} \propto \int d y_{1} \int d y_{2} \int d^{2} \underline{r} \psi_{(q \underline{q} g)}^{\gamma_{T}^{*} \rightarrow \rho_{T}}\left(y_{1}, y_{2}, \underline{r}\right) \times \mathcal{N}(\underline{r}, \underline{k})+\int d y_{1} d y_{2} \frac{2 S\left(y_{1}, y_{2}\right)}{\bar{y}_{1}} \\
& \left(S\left(y_{1}, y_{2}\right)=\zeta_{\rho}^{V}\left(\mu^{2}\right) B\left(y_{1}, y_{2} ; \mu^{2}\right)+\zeta_{\rho}^{A}\left(\mu^{2}\right) D\left(y_{1}, y_{2} ; \mu^{2}\right)\right)
\end{aligned}
$$

- Full twist 3 impact factor:

$$
\begin{aligned}
\Phi^{\gamma_{T}^{*} \rightarrow \rho_{T}}=\Phi_{q \underline{q}}^{\gamma_{T}^{*}} \rightarrow \rho_{T}
\end{aligned}+\Phi_{q \underline{q} g}^{\gamma_{T}^{*} \rightarrow \rho_{T}} \propto \int d y_{i} \int d^{2} \underline{r} \mathcal{N}(\underline{r}, \underline{k})\left(\psi_{(q \underline{q})}^{\gamma_{T}^{*} \rightarrow \rho_{T}}(y, \underline{r})+\psi_{(q \underline{q} g)}^{\gamma_{T}^{*} \rightarrow \rho_{T}}\left(y_{1}, y_{2}, \underline{r}\right)\right) .
$$

$$
\Rightarrow \text { dipole picture again! }
$$

Beyond leading twist :

Comparison with H 1 and ZEUS data

A. Besse, L. Szymanowski, S.W.
[arXiv:1302.1766] to appear in JHEP

We use a model for the dipole cross-section $\hat{\sigma}$: running coupling Balitsky Kovchegov numerical solution (i.e. include saturation effects at Leading Order) Albacete, Armesto, Milhano, Quiroga Arias, Salgado, 2011

Beyond leading twist :

Kinematics and factorization

Consider the process $A \pi^{0} \rightarrow B \pi^{0}$

$$
\begin{aligned}
& \text { (e.g. } \gamma^{*} \pi^{0} \rightarrow \rho \pi^{0} \pi^{0} \text {, i.e. } B=\rho \pi^{0} \text {). } \\
& \qquad P \equiv \frac{p_{1}+p_{2}}{2} \quad \text { and } \quad \Delta \equiv p_{2}-p_{1}
\end{aligned}
$$

- Sudakov basis provided by p and $n\left(p^{2}=n^{2}=0, p \cdot n=1\right)$:

$$
k=(k \cdot n) p+(k \cdot p) n+k_{\perp} .
$$

- In particular $\Delta=-2 \xi p+(\Delta \cdot p) n+\Delta_{\perp}$.
- Symmetric kinematics for p_{1} and p_{2} :

$$
\begin{aligned}
& p_{1}=(1+\xi) p+\frac{m^{2}-\frac{\Delta_{\perp}^{2}}{4}}{2(1+\xi)} n-\frac{\Delta_{\perp}}{2}, \\
& p_{2}=(1-\xi) p+\frac{m^{2}-\frac{\Delta_{\perp}^{2}}{4}}{2(1-\xi)} n+\frac{\Delta_{\perp}}{2},
\end{aligned}
$$

makes P longitudinal (no \perp component): $P=p+(P \cdot p) n=p+\frac{m^{2}-\frac{\Delta_{1}^{2}}{4}}{1-\xi^{2}} n$.

Beyond leading twist :

Light-Cone Collinear Factorization

- The p, \perp, n basis is natural for the twist expansion
- To implement T-invariance, the basis P, \perp, n is more suitable
- We only consider 2- and 3-parton correlators

Beyond leading twist :

Light-Cone Collinear Factorization

- Loop integrations:

- Taylor expansion of the hard part w.r.t. loop momenta ℓ_{i}

$$
H\left(\ell_{i}\right)=H\left(y_{i} p\right)+\left.\frac{\partial H\left(\ell_{i}\right)}{\partial \ell_{\alpha}}\right|_{\ell_{i}=y_{i} p}\left(\ell_{i}-y p\right)_{\alpha}+\ldots
$$

with $\left(\ell_{i}-y_{i} p\right)_{\alpha}=\ell_{i \alpha}^{\perp}+(\ell \cdot p) n_{\alpha}$

- Using $\int d^{4} \ell_{i}=\int d^{4} \ell_{i} \int d y_{i} \delta\left(y_{i}-\ell_{i} \cdot n\right)$ we integrate according to

$$
\begin{aligned}
\int d^{4} \ell_{i}= & \int d y_{i} \times \int d\left(\ell_{i} \cdot n\right) \delta\left(y_{i}-\ell_{i} \cdot n\right) \times \int d^{2} \ell_{i \perp} \times \int d\left(\ell_{i} \cdot p\right) \\
& \hookrightarrow \text { fact. } \hookrightarrow \text { trivial } \quad \hookrightarrow \text { soft-part } \hookrightarrow \text { integration by res }
\end{aligned}
$$

- We can always close on the $\ell_{i}^{2}=0$ pole \Rightarrow this fixes the derivatives along n
- Fourier transf. w.r.t. $\ell_{i}^{\perp} \Rightarrow$ non-local operators with $\partial_{\perp}\left(\right.$ e.g. $\left.\bar{\psi} \partial^{\perp} \psi\right)$ \Rightarrow non-perturbative correlators $\Phi^{\perp}(l)$

Beyond leading twist :

Light-Cone Collinear Factorization

- For consistency, we stop at order 1: the A field and the derivative should appear in a QCD gauge invariant way, through the covariant derivative

$$
D_{\mu}=\partial_{\mu}-i g A_{\mu}(z)
$$

- Here: number of gluons $\leq 1 \Longrightarrow$ number of (transverse) derivatives ≤ 1
- Color + spinor factorization $=$ Fierz transforms

Beyond leading twist :

Parametrization of the non-local correlators 2-parton (with no derivative) non-local correlators

Based on C, P, T, this leads to the following set of 4 real GPDs:

$$
\left\langle\pi^{0}\left(p_{2}\right)\right| \bar{\psi}(z)\left[\begin{array}{c}
\sigma^{\alpha \beta} \\
\mathbb{1} \\
i \gamma^{5}
\end{array}\right] \psi(-z)\left|\pi^{0}\left(p_{2}\right)\right\rangle=\int_{-1}^{1} d x e^{i(x-\xi) P \cdot z+i(x+\xi) P \cdot z} \times
$$

$$
\left[\begin{array}{c}
-\frac{i}{m_{\pi}}\left(P^{\alpha} \Delta_{\perp}^{\beta}-P^{\beta} \Delta_{\perp}^{\alpha}\right) H_{T}+i m_{\pi}\left(P^{\alpha} n^{\beta}-P^{\beta} n^{\alpha}\right) H_{T 3}-i m_{\pi}\left(\Delta_{\perp}^{\alpha} n^{\beta}-\Delta_{\perp}^{\beta} n^{\alpha}\right) H_{T 4} \\
m_{\pi} H_{S} \\
0
\end{array}\right]
$$

twist 2 \& 4
twist 3 twist 4

Beyond leading twist:

Parametrization of the non-local correlators

2-parton (with derivative) and 3-parton non-local correlators: \square structure Based on C, P, T, this leads to the following set of 12 real GPDs:

$$
\begin{aligned}
& \left\langle\pi^{0}\left(p_{2}\right)\right| \bar{\psi}(z) \sigma^{\alpha \beta}\left\{\begin{array}{c}
i \overleftrightarrow{~} \\
g A^{\gamma}{ }^{\gamma}(y)
\end{array}\right\} \psi(-z)\left|\pi^{0}\left(p_{1}\right)\right\rangle=\left\{\begin{array}{l}
\int_{-1}^{1} d x e^{i(x-\xi) P \cdot z+i(x+\xi) P \cdot z} \\
\int d^{3}\left[x_{1,2, g}\right] e^{i P \cdot z\left(x_{1}+\xi\right)-i P \cdot y x_{g}+i P \cdot z\left(x_{2}-\xi\right)}
\end{array}\right\} \\
& \times\left[i m_{\pi}\left(P^{\alpha} g_{\perp}^{\beta \gamma}-P^{\beta} g_{\perp}^{\alpha \gamma}\right)\left\{\begin{array}{c}
T_{1}^{T} \\
T_{1}
\end{array}\right\}+\frac{i}{m_{\pi}}\left(P^{\alpha} \Delta_{\perp}^{\beta}-P^{\beta} \Delta_{\perp}^{\alpha}\right) \Delta_{\perp}^{\gamma}\left\{\begin{array}{c}
T_{2}^{T} \\
T_{2}
\end{array}\right\}(\text { twist } 3 \& 5)\right. \\
& +i m_{\pi}\left(\Delta_{\perp}^{\alpha} g_{\perp}^{\beta \gamma}-\Delta_{\perp}^{\beta} g_{\perp}^{\alpha \gamma}\right)\left\{\begin{array}{c}
T_{3}^{T} \\
T_{3}
\end{array}\right\}+i m_{\pi}\left(P^{\alpha} n^{\beta}-P^{\beta} n^{\alpha}\right) \Delta_{\perp}^{\gamma}\left\{\begin{array}{c}
T_{4}^{T} \\
T_{4}
\end{array}\right\} \text { (twist 4) } \\
& \left.+i m_{\pi}^{3}\left(n^{\alpha} g_{\perp}^{\beta \gamma}-n^{\beta} g_{\perp}^{\alpha \gamma}\right)\left\{\begin{array}{c}
T_{5}^{T} \\
T_{5}
\end{array}\right\}+i m_{\pi}\left(n^{\alpha} \Delta_{\perp}^{\beta}-n^{\beta} \Delta_{\perp}^{\alpha}\right) \Delta_{\perp}^{\gamma}\left\{\begin{array}{c}
T_{6}^{T} \\
T_{6}
\end{array}\right\}\right], \quad \text { (twist 5) } \\
& \int d^{3}\left[x_{1,2, g}\right] \equiv \int_{-1+\xi}^{1+\xi} d x_{g} \int_{-1}^{1} d x_{1} \int_{-1}^{1} d x_{2} \delta\left(x_{g}-x_{2}+x_{1}\right), \quad \text { and } \quad \overleftrightarrow{\partial_{\perp}^{r}} \equiv \frac{1}{2}\left(\overrightarrow{\partial_{\perp}^{\gamma}}-\overleftarrow{\partial_{\perp}^{\gamma}}\right) \text {. } \\
& T_{i}^{T} \equiv T_{i}^{T}(x, \xi, t) \quad \text { and } \quad T_{i} \equiv T_{i}\left(x_{1}, x_{2}, \xi, t\right)(i=1, \cdots 6) .
\end{aligned}
$$

Beyond leading twist :

Parametrization of the non-local correlators

2-parton (with derivative) and 3-parton non-local correlators:
Based on C, P, T, this leads to the following set of 4 real GPDs:

$$
\begin{aligned}
\left\langle\pi^{0}\left(p_{2}\right)\right| \bar{\psi}(z) \mathbb{1}\left\{\begin{array}{c}
i \overleftrightarrow{\partial_{\perp}^{\gamma}} \\
g A^{\gamma}(y)
\end{array}\right\} \psi(-z)\left|\pi^{0}\left(p_{1}\right)\right\rangle= & \left\{\begin{array}{l}
\int_{-1}^{1} d x e^{i(x-\xi) P \cdot z+i(x+\xi) P \cdot z} \\
\int d^{3}\left[x_{1,2, g}\right] e^{i P \cdot z\left(x_{1}+\xi\right)-i P \cdot y x_{g}+i P \cdot z\left(x_{2}-\xi\right)}
\end{array}\right\} \\
& \times m_{\pi} \Delta_{\perp}^{\gamma}\left\{\begin{array}{c}
H_{S}^{T 4} \\
T_{S}
\end{array}\right\} . \quad \text { (twist 4) }
\end{aligned}
$$

$$
\begin{aligned}
\left\langle\pi^{0}\left(p_{2}\right)\right| \bar{\psi}(z) i \gamma^{5}\left\{\begin{array}{c}
i \stackrel{\longleftrightarrow}{\partial_{\perp}^{\gamma}} \\
g A^{\gamma}(y)
\end{array}\right\} \psi(-z)\left|\pi^{0}\left(p_{1}\right)\right\rangle= & \left\{\begin{array}{c}
\int_{-1}^{1} d x e^{i(x-\xi) P \cdot z+i(x+\xi) P \cdot z} \\
\int d^{3}\left[x_{1,2, g}\right] e^{i P \cdot z\left(x_{1}+\xi\right)-i P \cdot y x_{g}+i P \cdot z\left(x_{2}-\xi\right)}
\end{array}\right\} \\
& \times m_{\pi} \epsilon^{\gamma n P \Delta_{\perp}}\left\{\begin{array}{c}
H_{P}^{T} \\
T_{P}
\end{array}\right\} . \quad \text { (twist 4) }
\end{aligned}
$$

Beyond leading twist :

Minimal set of GPDs

- Number of GPDs: a priori 20 up to twist 5
- Two constraints:
- QCD equations of motion (EOM)
- Arbitrariness of p and n

Minimal set of GPDs: QCD equations of motion

Dirac equation in a covariant form (no inclusion of mass effects):

$$
(i \not D \psi)_{\alpha}=0 \quad \text { and } \quad(i \not D \bar{\psi})_{\beta}=0
$$

i.e. at correlator level:

$$
\left\langle\pi^{0}\left(p_{2}\right)\right|(i D p \psi)_{\alpha}(-z) \bar{\psi}_{\beta}(z)\left|\pi^{0}\left(p_{1}\right)\right\rangle=0
$$

and

$$
\left\langle\pi^{0}\left(p_{2}\right)\right| \psi_{\alpha}(-z)(i \not D \bar{\psi})_{\beta}(z)\left|\pi^{0}\left(p_{1}\right)\right\rangle=0 .
$$

\Longrightarrow relations between various correlators.

Beyond leading twist :

Minimal set of GPDs: Arbitrariness of p and n

- P is fixed by the kinematics
- neither p nor n are fixed
- constraint: $n \cdot p=n \cdot P=1$
- start from an initial choice for p and n, denoted as $p^{(0)}$ and $n^{(0)}$
- expand

$$
\begin{align*}
& n=\alpha n^{(0)}-\frac{n_{\perp}^{2}}{2 \alpha} p^{(0)}+n_{\perp} \tag{1}\\
& p=\beta p^{(0)}-\frac{p_{\perp}^{2}}{2 \beta} n^{(0)}+p_{\perp} \tag{2}
\end{align*}
$$

- Use global Lorentz invariance \Longrightarrow consider (1) only
- The two generators of (1) are:
- scaling of $n^{(0)}$ (i.e. α)
- the two translations in \perp space (i.e. n_{\perp})

Beyond leading twist :

Minimal set of GPDs: Arbitrariness of p and n

Variation of a Wilson line

- When implementing the two above generators, one should not forget the hidden Wilson line, entering the non-local operators!
- Wilson line $[y, x]_{C}$ between x and y along an arbitrary path C, defined as

$$
[y, x]_{C} \equiv P_{C} \exp i g \int_{x}^{y} d x_{\mu} A^{\mu}(x)
$$

- Variation of a Wilson line from path C to path C^{\prime}

$$
\begin{aligned}
& \delta[y, x]_{C}= \\
& -i g \int_{0}^{1}[y, x[\sigma]]_{C} G_{\nu \gamma}(x[\sigma]) \delta x^{\gamma}[\sigma] \frac{d x^{\nu}}{d \sigma}[\sigma][x[\sigma], x]_{C} d \sigma \\
& +i g A(y) \cdot \delta x[1][y, x]_{C}-i g[y, x]_{C} A(x) \cdot \delta x[0],
\end{aligned}
$$

Beyond leading twist :

Minimal set of GPDs: Arbitrariness of p and n

Variation of a Wilson line

- consider now the Wilson line envolved in our non-local operators, like

$$
\bar{\psi}(z) \Gamma[z,-z] \psi(-z) \quad \text { with } \Gamma \in\left\{\sigma^{\alpha \beta}, \mathbb{1}, i \gamma^{5}\right\}
$$

- For simplicity, take a straight line from $-z$ to $z: x[\tau]=\tau z, \tau \in[-1,1]$.
- Consider the two above mentioned generators:
- Dilation: $\delta z^{\gamma}=z^{\gamma}$
- Translation: $\delta z^{\gamma}=\delta z_{\perp}^{\gamma}$

$$
\begin{aligned}
\Longrightarrow \quad & \frac{\partial}{\partial z^{\gamma}}[\bar{\psi}(z) \Gamma[z,-z] \psi(-z)]= \\
- & -\bar{\psi}(z) \Gamma[z,-z] \overrightarrow{D_{\gamma}} \psi(-z)+\bar{\psi}(z) \overleftarrow{D_{\gamma}} \Gamma[z,-z] \psi(-z) \\
& -i g \int_{-1}^{1} d v v \bar{\psi}(z)[z, v z] z^{\nu} G_{\nu \gamma}(v z) \Gamma[v z,-z] \psi(-z),
\end{aligned}
$$

with

- $\overrightarrow{D_{\alpha}}=\overrightarrow{\partial_{\alpha}}-i g A_{\alpha}(-z)$ and $\overleftarrow{D_{\alpha}}=\overleftarrow{\partial_{\alpha}}+i g A_{\alpha}(z)$
- $\frac{\partial}{\partial z^{\gamma}}$ acts either along the n direction or along the \perp direction

Minimal set of GPDs: Arbitrariness of p and n

Application to matrix elements

$$
\begin{align*}
& \frac{\partial}{\partial z^{\gamma}}\left[\left\langle\pi^{0}\left(p_{2}\right)\right| \bar{\psi}(z) \Gamma[z,-z] \psi(-z)\left|\pi^{0}\left(p_{1}\right)\right\rangle\right]= \\
& -\left\langle\pi^{0}\left(p_{2}\right)\right| \bar{\psi}(z) \Gamma[z,-z] \overrightarrow{D_{\gamma}} \psi(-z)+\bar{\psi}(z) \overleftarrow{D_{\gamma}} \Gamma[z,-z] \psi(-z)\left|\pi^{0}\left(p_{1}\right)\right\rangle \\
& -i g \int_{-1}^{1} d v v\left\langle\pi^{0}\left(p_{2}\right)\right| \bar{\psi}(z)[z, v z] z^{\nu} G_{\nu \gamma}(v z) \Gamma[v z,-z] \psi(-z)\left|\pi^{0}\left(p_{1}\right)\right\rangle \tag{3}
\end{align*}
$$

- Use light-like gauge: $n \cdot A=0$
- Thus

$$
z^{\nu} G_{\nu \gamma}=z^{\nu} \partial_{\nu} A_{\gamma}
$$

- Only the γ_{\perp} index contributes non-trivially
- Thus (3) only involves matrix elements with the \perp components of the field A_{γ} introduced before
- One finally gets a set of integral equations between GPDs
- Twist 5 case: 20 GPDs
- 8 EOM
- $8 n$-independence constraints
\Longrightarrow the 20 GPDs can be expressed in terms of 8 GPDs
($\left.T_{i}(i=1, \cdots, 6), T_{P}, T_{S},\right)$ satisfying 4 sum rules (note: 20-8-8=8-4).
- Twist 4 case: 16 GPDs
- 8 EOM
- $6 n$-independence constraints
\Longrightarrow the 16 GPDs can be expressed in terms of 6 GPDs
($T_{i}(i=1, \cdots, 4), T_{P}, T_{S}$,) satisfying 4 sum rules (note: 16-8-6=6-4).
- Twist 3 case: 7 GPDs
- 5 EOM
- $2 n$-independence constraints
\Longrightarrow the 7 GPDs can be expressed in terms of 2 GPDs
(T_{1} and T_{2}) satisfying 2 sum rules (note: 7-5-2=2-2).
- The vanishing Wandzura-Wilczek limit:
one assumes that the 3-parton correlators vanish
\Longrightarrow all GPDs vanish
\Longrightarrow amplitude of any process involving the chiral-odd π^{0} GPDs $=0$!

Conclusion

- Since a decade, there have been much progress in the understanding of hard exclusive processes
- at medium energies, there is now a conceptual framework starting from first principle, allowing to describe a huge number of processes
- at high energy, the impact representation is a powerful tool for describing exclusive processes in diffractive experiments; they are and will be essential for studying QCD in the hard Regge limit (Pomeron, Odderon, saturation...)
- Still, some problems remain:
- proofs of factorization have been obtained only for very few processes (ex.: $\gamma^{*} p \rightarrow \gamma p, \gamma_{L}^{*} p \rightarrow \rho_{L} p$)
- for some other processes factorization is highly plausible, but not fully demonstrated at any order (ex.: processes involving GDAs and TDAs)
- some processes explicitly show sign of breaking of factorization (ex.: $\gamma_{T}^{*} p \rightarrow \rho_{T} p$ which has end-point singularities at Leading Order)
- models and results from the lattice or from AdS/QCD for the non-perturbative correlators entering GPDs, DAs, GDAs, TDAs are needed, even at a qualitative level!
- QCD evolution, NLO corrections, choice of renormalization/factorization scale, power corrections, threshold resummations will be very relevant to interpret and describe the forecoming data
- Constructing a consistent framework including GPDs (skewness) and TMDs/uPDFs (k_{T}-dependency) with realistic experimental observables is an (almost) open problem (GTMDs)
- Links between theoretical and experimental communities are very fruitful!

Distribution amplitude and quantum numbers: C-parity

- Define the H DA as (for long. pol.)
$\langle H(p, 0)| \bar{\psi}(-z / 2) \gamma_{\mu}[-z / 2 ; z / 2] \psi(z / 2)|0\rangle_{\substack{z^{2}=0 \\ z+=0 \\ z \perp=0}}=i f_{H} M_{H} e_{\mu}^{(0)} \int_{0}^{1} d y e^{i(\bar{y}-y) p \cdot z / 2} \phi_{L}^{H}(y)$
- Expansion in terms of local operators

$$
\begin{aligned}
& \langle H(p, \lambda)| \bar{\psi}(-z / 2) \gamma_{\mu}[-z / 2 ; z / 2] \psi(z / 2)|0\rangle= \\
& \quad \sum_{n} \frac{1}{n!} z_{\mu_{1}} . . z_{\mu_{n}}\langle H(p, \lambda)| \bar{\psi}(0) \gamma_{\mu} \stackrel{\leftrightarrow}{D}_{\mu_{1}} . . \stackrel{\leftrightarrow}{D}_{\mu_{n}} \psi(0)|0\rangle
\end{aligned}
$$

- C-parity: $\begin{cases}H \text { selects the odd-terms: } & C_{H}=(-) \\ \rho \text { selects even-terms: } & C_{\rho}=(-)\end{cases}$

$$
\begin{aligned}
& \langle H(p, \lambda)| \bar{\psi}(-z / 2) \gamma_{\mu}[-z / 2 ; z / 2] \psi(z / 2)|0\rangle= \\
& \quad \sum_{n \text { odd }} \frac{1}{n!} z_{\mu_{1} . . . z_{\mu_{n}}\langle H(p, \lambda)| \bar{\psi}(0) \gamma_{\mu} \stackrel{\leftrightarrow}{D}_{\mu_{1}} . . \stackrel{\leftrightarrow}{D}_{\mu_{n}} \psi(0)|0\rangle}
\end{aligned}
$$

- Special case $n=1: \quad \mathcal{R}_{\mu \nu}=\mathrm{S}_{(\mu \nu)} \bar{\psi}(0) \gamma_{\mu} \stackrel{\leftrightarrow}{D}{ }_{\nu} \psi(0)$
$\mathrm{S}_{(\mu \nu)}=$ symmetrization operator: $\mathrm{S}_{(\mu \nu)} T_{\mu \nu}=\frac{1}{2}\left(T_{\mu \nu}+T_{\nu \mu}\right)$

Non perturbative imput for the hybrid DA

- We need to fix f_{H} (the analogue of f_{ρ})
- This is a non-perturbative imput
- Lattice does not yet give information
- The operator $\mathcal{R}_{\mu \nu}$ is related to quark energy-momentum tensor $\Theta_{\mu \nu}$:

$$
\mathcal{R}_{\mu \nu}=-i \Theta_{\mu \nu}
$$

- Rely on QCD sum rules: resonance for $M \approx 1.4 \mathrm{GeV}$
I. I. Balitsky, D. Diakonov, and A. V. Yung

$$
f_{H} \approx 50 \mathrm{MeV}
$$

$f_{\rho}=216 \mathrm{MeV}$

- Note: f_{H} evolves according to the $\gamma_{Q Q}$ anomalous dimension

$$
f_{H}\left(Q^{2}\right)=f_{H}\left(\frac{\alpha_{S}\left(Q^{2}\right)}{\alpha_{S}\left(M_{H}^{2}\right)}\right)^{K_{1}} \quad K_{1}=\frac{2 \gamma_{Q Q}(1)}{\beta_{0}}
$$

A few applications

Electroproduction of an exotic hybrid
Counting rates for H versus ρ electroproduction: order of magnitude

- Ratio:

$$
\frac{d \sigma^{H}\left(Q^{2}, x_{B}, t\right)}{d \sigma^{\rho}\left(Q^{2}, x_{B}, t\right)}=\left|\frac{f_{H}}{f_{\rho}} \frac{\left(e_{u} \mathcal{H}_{u u}^{-}-e_{d} \mathcal{H}_{d d}^{-}\right) \mathcal{V}^{(H,-)}}{\left(e_{u} \mathcal{H}_{u u}^{+}-e_{d} \mathcal{H}_{d d}^{+}\right) \mathcal{V}^{(\rho,+)}}\right|^{2}
$$

- Rough estimate:
- neglect \bar{q} i.e. $x \in[0,1]$
$\Rightarrow \operatorname{Im} \mathcal{A}_{H}$ and $\operatorname{Im} \mathcal{A}_{\rho}$ are equal up to the factor \mathcal{V}^{M}
- Neglect the effect of $\operatorname{Re} \mathcal{A}$

$$
\frac{d \sigma^{H}\left(Q^{2}, x_{B}, t\right)}{d \sigma^{\rho}\left(Q^{2}, x_{B}, t\right)} \approx\left(\frac{5 f_{H}}{3 f_{\rho}}\right)^{2} \approx 0.15
$$

- More precise study based on Double Distributions to model GPDs + effects of varying μ_{R} : order of magnitude unchanged
- The range around 1400 MeV is dominated by the $a_{2}(1329)\left(2^{++}\right)$ resonance
- possible interference between H and a_{2}
- identification through the $\pi \eta$ GDA, main decay mode for the π_{1} (1400) candidate, through angular asymmetry in θ_{π} in the $\pi \eta \mathrm{cms}$

A few applications

Electroproduction of an exotic hybrid
Hybrid meson production in $e^{+} e^{-}$colliders

- Hybrid can be copiously produced in $\gamma^{*} \gamma$, i.e. at $e^{+} e^{-}$colliders with one tagged out-going electron

BaBar, Belle

- This can be described in a hard factorization framework:

with

A few applications

Counting rates for H^{0} versus π^{0}

- Factorization gives:

$$
\mathcal{A}^{\gamma \gamma^{*} \rightarrow H^{0}}\left(\gamma \gamma^{*} \rightarrow H_{L}\right)=\left(\epsilon_{\gamma} \cdot \epsilon_{\gamma}^{*}\right) \frac{\left(e_{u}^{2}-e_{d}^{2}\right) f_{H}}{2 \sqrt{2}} \int_{0}^{1} d z \Phi^{H}(z)\left(\frac{1}{\bar{z}}-\frac{1}{z}\right)
$$

- Ratio H^{0} versus π^{0} :

$$
\frac{d \sigma^{H}}{d \sigma^{\pi^{0}}}=\left|\frac{f_{H} \int_{0}^{1} d z \Phi^{H}(z)\left(\frac{1}{z}-\frac{1}{\bar{z}}\right)}{f_{\pi} \int_{0}^{1} d z \Phi^{\pi}(z)\left(\frac{1}{z}+\frac{1}{\bar{z}}\right)}\right|^{2}
$$

- This gives, with asymptotical DAs (i.e. limit $Q^{2} \rightarrow \infty$):

$$
\frac{d \sigma^{H}}{d \sigma^{\pi^{0}}} \approx 38 \%
$$

still larger than 20% at $Q^{2} \approx 1 \mathrm{GeV}^{2}$ (including kinematical twist-3 effects à la Wandzura-Wilczek for the $H^{0} \mathrm{DA}$) and similarly

$$
\frac{d \sigma^{H}}{d \sigma^{\eta}} \approx 46 \%
$$

Threshold effects for DVCS and TCS

Resummation for Coefficient functions (1)
Computation of the n-loop ladder-like diagram

- All gluons are assumed to be on mass shell.
- Strong ordering in $\underline{k}_{i}, \alpha_{i}$ and β_{i}.
- The dominant momentum flows along p_{2} are indicated

Threshold effects for DVCS and TCS

Computation of the n-loop ladder-like diagram (2)

- Strong ordering is given as :

$$
\begin{aligned}
& \left|\underline{k}_{n}\right| \gg\left|\underline{k}_{n-1}\right| \gg \cdots\left|\underline{k}_{1}\right| \quad, \quad 1 \gg\left|\alpha_{n}\right| \gg\left|\alpha_{n-1}\right| \gg \cdots\left|\alpha_{1}\right| \\
& x \sim \xi \gg\left|\beta_{1}\right| \sim|x-\xi| \gg\left|x-\xi+\beta_{1}\right| \sim\left|\beta_{2}\right| \ggg\left|x-\xi+\beta_{1}+\beta_{2}-\cdots+\beta_{n-1}\right| \sim\left|\beta_{n}\right|
\end{aligned}
$$

- eikonal coupling on the left
- coupling on the right goes beyond eikonal
- Integral for n-loop:

$$
I_{n}=\left(\frac{s}{2}\right)^{n} \int d \alpha_{1} d \beta_{1} d_{2} \underline{k}_{1} \cdots \int d \alpha_{n} d \beta_{n} d_{2} \underline{k}_{n}(\mathrm{Num})_{n} \frac{1}{L_{1}^{2}} \cdots \frac{1}{L_{n}^{2}} \frac{1}{S^{2}} \frac{1}{R_{1}^{2}} \cdots \frac{1}{R_{n}^{2}} \frac{1}{k_{1}^{2}} \cdots \frac{1}{k_{n}^{2}}
$$

- Numerator:

$$
(\text { Num })_{2}=-4 \underbrace{s}_{\text {gluon } 1} \underbrace{\frac{-2 \underline{k}_{1}^{2}(x+\xi)}{\beta_{1}}\left[1+\frac{2(x-\xi)}{\beta_{1}}\right]}_{\text {gluon } 2} \underbrace{\frac{-2 \underline{k}_{2}^{2}(x+\xi)}{\beta_{2}}\left[1+\frac{2\left(\beta_{1}+x-\xi\right)}{\beta_{2}}\right]}_{\text {gluon } \mathrm{n}} \cdots \underbrace{\frac{-2 \underline{k}_{n}^{2}(x+\xi)}{\beta_{n}}\left[1+\frac{2\left(\beta_{n-1}+\cdots+\beta_{1}+x-\xi\right)}{\beta_{n}}\right]}_{\beta_{n}}
$$

- Propagators:

$$
\begin{array}{ll}
L_{1}^{2}=\alpha_{1}(x+\xi) s, & R_{1}^{2}=-\underline{k}_{1}^{2}+\alpha_{1}\left(\beta_{1}+x-\xi\right) s, \\
L_{2}^{2}=\alpha_{2}(x+\xi) s, & R_{2}^{2}=-\underline{k}_{2}^{2}+\alpha_{2}\left(\beta_{1}+\beta_{2}+x-\xi\right) s, \\
\vdots & \\
L_{n}^{2}=\alpha_{n}(x+\xi) s, & R_{n}^{2}=-\underline{k}_{n}^{2}+\alpha_{n}\left(\beta_{1}+\cdots+\beta_{n}+x-\xi\right) s,
\end{array}
$$

Threshold effects for DVCS and TCS

Resummation for Coefficient functions

Computation of the n-loop ladder-like diagram (3)

$$
\begin{gathered}
I_{n}=-4 \frac{(2 \pi i)^{n}}{x-\xi} \int_{0}^{\xi-x} d \beta_{1} \cdots \int_{0}^{\xi-x-\beta_{1}-\cdots-\beta_{n-1}} \frac{1}{d \beta_{n} \frac{1}{\beta_{1}+x-\xi} \cdots \frac{1}{\beta_{1}+\cdots+\beta_{n}+x-\xi}} \\
\times \int_{0}^{\infty} d_{N} \underline{k}_{n} \cdots \int_{\underline{k}_{2}^{2}}^{\infty} d_{N} \underline{k}_{1} \frac{1}{\underline{k}_{1}^{2}} \cdots \frac{1}{\underline{k}_{n-1}^{2}} \frac{1}{\underline{k}_{n}^{2}-\left(\beta_{1}+\cdots+\beta_{n}+x-\xi\right) s}
\end{gathered}
$$

integration over \underline{k}_{i} and β_{i} leads to our final result :

$$
I_{n}^{\mathrm{fin} .}=-4 \frac{(2 \pi i)^{n}}{x-\xi+i \epsilon} \frac{1}{(2 n)!} \log ^{2 n}\left[\frac{\xi-x}{2 \xi}-i \epsilon\right]
$$

Resummation :
remember that $K_{n}=-\frac{1}{4} e_{q}^{2}\left(-i C_{F} \alpha_{s} \frac{1}{(2 \pi)^{2}}\right)^{n} I_{n}$
$\left(\sum_{n=0}^{\infty} K_{n}\right)-(x \rightarrow-x)=\frac{e_{q}^{2}}{x-\xi+i \epsilon} \cosh \left[D \log \left(\frac{\xi-x}{2 \xi}-i \epsilon\right)\right]-(x \rightarrow-x)$
where $D=\sqrt{\frac{\alpha_{s} C_{F}}{2 \pi}}$

Threshold effects for DVCS and TCS

Inclusion of our resummed formula into the NLO coefficient function

The inclusion procedure is not unique and it is natural to propose two choices:

- modifying only the Born term and the $\log ^{2}$ part of the C_{1}^{q} and keeping the rest of the terms untouched :

$$
\begin{gathered}
\left(T^{q}\right)^{\mathrm{res} 1}=\left(\frac{e_{q}^{2}}{x-\xi+i \epsilon}\left\{\cosh \left[D \log \left(\frac{\xi-x}{2 \xi}-i \epsilon\right)\right]-\frac{D^{2}}{2}\left[9+3 \frac{\xi-x}{x+\xi} \log \left(\frac{\xi-x}{2 \xi}-i \epsilon\right)\right]\right\}\right. \\
\left.+C_{\text {coll }}^{q} \log \frac{Q^{2}}{\mu_{F}^{2}}\right)-(x \rightarrow-x)
\end{gathered}
$$

- the resummation effects are accounted for in a multiplicative way for C_{0}^{q} and C_{1}^{q} :

$$
\begin{array}{r}
\left(T^{q}\right)^{\mathrm{res} 2}=\left(\frac{e_{q}^{2}}{x-\xi+i \epsilon} \cosh \left[D \log \left(\frac{\xi-x}{2 \xi}-i \epsilon\right)\right]\left[1-\frac{D^{2}}{2}\left\{9+3 \frac{\xi-x}{x+\xi} \log \left(\frac{\xi-x}{2 \xi}-i \epsilon\right)\right\}\right]\right. \\
\left.+C_{c o l l}^{q} \log \frac{Q^{2}}{\mu_{F}^{2}}\right)-(x \rightarrow-x)
\end{array}
$$

These resummed formulas differ through logarithmic contributions which are beyond the precision of our study.

Threshold effects for DVCS and TCS

- We use a Double Distribution based model S. V. Goloskokov and P. Kroll, Eur. Phys. J. C 50, 829 (2007)
- Blind integral in the whole x-range: amplitude $=$ NLO result $\pm 1 \%$
- To respect the domain of applicability of our resummation procedure:
- restrict the use of our formula to $\xi-a \gamma<|x|<\xi+a \gamma$
- width $a \gamma$ defined through $|D \log (\gamma /(2 \xi))|=1$
- theoretical uncertainty evaluated by varying a
- a more precise treatment is beyond the leading logarithmic approximation

$$
R_{a}(\xi)=\frac{\left[\int_{\xi-a \gamma}^{\xi+a \gamma}+\int_{-\xi-a \gamma}^{-\xi+a \gamma}\right] d x\left(C^{\mathrm{res}}-C_{0}-C_{1}\right) H(x, \xi, 0)}{\left|\int_{-1}^{1} d x\left(C_{0}+C_{1}\right) H(x, \xi, 0)\right|}
$$

$$
\begin{aligned}
& \operatorname{Re}\left[R_{a}(\xi)\right] \text { : black upper curves } \\
& \operatorname{Im}\left[R_{a}(\xi)\right] \text { : grey lower curves } \\
& a=1 \text { (solid) } \\
& a=1 / 2 \text { (dotted) } \\
& a=2 \text { (dashed) }
\end{aligned}
$$

- chirality $=$ helicity for a particule, chirality $=$-helicity for an antiparticule
- for massless quarks: QED and QCD vertices = chiral even (no chirality flip during the interaction)
\Rightarrow the total helicity of a $q \bar{q}$ produced by a γ^{*} should be 0
\Rightarrow helicity of the $\gamma^{*}=L_{z}^{q \bar{q}}$ (z projection of the $q \bar{q}$ angular momentum)
- in the pure collinear limit (i.e. twist 2), $L_{z}^{q \bar{q}}=0 \Rightarrow \gamma_{L}^{*}$
- at $t=0$, no source of orbital momentum from the proton coupling \Rightarrow helicity of the meson $=$ helicity of the photon
- in the collinear factorization approach, $t \neq 0$ change nothing from the hard side \Rightarrow the above selection rule remains true
- thus: 2 transitions possible (s-channel helicity conservation (SCHC)):
- $\gamma_{L}^{*} \rightarrow \rho_{L}$ transition: QCD factorization holds at $\mathrm{t}=2$ at any order in perturbation (i.e. LL, NLL, etc...)

Collins, Frankfurt, Strikman '97 Radyushkin '97

- $\gamma_{T}^{*} \rightarrow \rho_{T}$ transition: QCD factorization has problems at $\mathrm{t}=3$

Mankiewicz-Piller '00
$\int_{0}^{1} \frac{d u}{u}$ or $\int_{0}^{1} \frac{d u}{1-u}$ diverge (end-point singularity)

Improved collinear approximation: a solution?

- keep a transverse ℓ_{\perp} dependency in the q, \bar{q} momenta, used to regulate end-point singularities
- soft and collinear gluon exchange between the valence quark are responsible for large double-logarithmic effects which are conjectured to exponentiate
- this is made easier when using the impact parameter space b_{\perp} conjugated to $\ell_{\perp} \Rightarrow$ Sudakov factor

$$
\exp [-S(u, b, Q)]
$$

- S diverges when $b_{\perp} \sim O\left(1 / \Lambda_{Q C D}\right)$ (large transverse separation, i.e. small transverse momenta) or $u \sim O\left(\Lambda_{Q C D} / Q\right) \quad$ Botts, Sterman '89
\Rightarrow regularization of end-point singularities for $\pi \rightarrow \pi \gamma^{*}$ and $\gamma \gamma^{*} \pi^{0}$ form factors, based on the factorization approach Li, Sterman '92
- it has been proposed to combine this perturbative resummation tail effect with an ad-hoc non-perturbative gaussian ansatz for the DAs

$$
\exp \left[-a^{2}\left|k_{\perp}^{2}\right| /(u \bar{u})\right]
$$

which gives back the usual asymptotic DA $6 u \bar{u}$ when integrating over k_{\perp} \Rightarrow practical tools for meson electroproduction phenomenology Goloskokov, Kroll '05

Phenomenological applications: exclusive test of Pomeron
An example of realistic exclusive test of Pomeron: $\gamma^{(*)} \gamma^{(*)} \rightarrow \rho \rho$ as a subprocess of $e^{-} e^{+} \rightarrow e^{-} e^{+} \rho_{L}^{0} \rho_{L}^{0}$

- ILC should provide $\left\{\begin{array}{l}\text { very large } \sqrt{s}(=500 \mathrm{GeV}) \\ \text { very large luminosity }\left(\simeq 125 \mathrm{fb}^{-1} / \text { year }\right)\end{array}\right.$
- detectors are planned to cover the very forward region, close from the beampipe (directions of out-going e^{+}and e^{-}at large s)

good efficiency of tagging for outgoing $e^{ \pm}$for $E_{e}>100 \mathrm{GeV}$ and $\theta>4$ mrad (illustration for LDC concept)
- could be equivalently done at LHC based on the AFP project

QCD effects in the Regge limit on $\gamma^{(*)} \gamma^{(*)} \rightarrow \rho \rho$

proof of feasibility:
B. Pire, L. Szymanowski and S. W. Eur.Phys.J.C44 (2005) 545
proof of visible BFKL enhancement:
R. Enberg, B. Pire, L. Szymanowski and S. W.

Eur.Phys.J.C45 (2006) 759
comprensive study of γ^{*} polarization effects
and event rates:
M. Segond, L. Szymanowski and S. W. Eur. Phys. J. C 52 (2007) 93

NLO BFKL study:
Ivanov, Papa '06 '07; Caporale, Papa, Vera '08

$$
\sqrt{\mathrm{s}_{e^{+}} e^{-}}[\mathrm{GeV}]
$$

Finding the hard Odderon

- colorless gluonic exchange
- $C=+1$: Pomeron, in PQCD described by BFKL equation
- $C=-1$: Odderon, in pQCD described by BJKP equation
- best but still weak evidence for $\mathbb{O}: p p$ and $p \bar{p}$ data at ISR
- no evidence for perturbative \mathbb{O}

Finding the hard Odderon

(1) exchange much weaker than $\mathbb{P} \Rightarrow$ two strategies in QCD

- consider processes, where \mathbb{P} vanishes due to C-parity conservation: exclusive $\eta, \eta_{c}, f_{2}, a_{2}, \ldots$ in $e p ; \gamma \gamma \rightarrow \eta_{c} \eta_{c} \sim\left|\mathcal{M}_{\mathbb{O}}\right|^{2}$ Braunewell, Ewerz '04 exclusive $J / \Psi, \Upsilon$ in $p p(\mathbb{P O}$ fusion, not $\mathbb{P P}))$ Bzdak, Motyka, Szymanowski, Cudell '07
- consider observables sensitive to the interference between \mathbb{P} and \mathbb{O} (open charm in $e p ; \pi^{+} \pi^{-}$in $e p$) $\sim \operatorname{Re} \mathcal{M}_{\mathbb{P}} \mathcal{M}_{\mathbb{O}}^{*} \Rightarrow$ observable linear in $\mathcal{M}_{\mathbb{O}}$

Brodsky, Rathsman, Merino '99

Ivanov, Nikolaev, Ginzburg '01 in photo-production Hägler, Pire, Szymanowski, Teryaev '02 in electro-production

Finding the hard Odderon

$$
\mathbb{P}-\mathbb{O} \text { interference in double UPC }
$$

$\mathbb{P}-\mathbb{O}$ interference in $\gamma \gamma \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}$

$\pi^{+} \pi^{-}$-pair, C - even

Hard scale $=t$
B. Pire, F. Schwennsen, L. Szymanowski, S. W.

Phys.Rev.D78:094009 (2008)
pb at LHC: pile-up!

