The search for permanent electric dipole moments

Klaus Kirch Paul Scherrer Institut and ETH Zürich

The search for permanent electric dipole moments

Klaus Kirch Paul Scherrer Institut and ETH Zürich

The search for permanent electric dipole moments

Klaus Kirch Paul Scherrer Institut and ETH Zürich

Nature has probably violated CP when generating the Baryon asymmetry !?

Observed*: $(n_{B}-n_{\overline{B}}) / n_{\gamma} = 6 \times 10^{-10}$ SM expectation: $(n_{B}-n_{\overline{B}}) / n_{\gamma} \sim 10^{-18}$

Sakharov 1967: B-violation C & CP-violation non-equilibrium [JETP Lett. 5 (1967) 24]

* WMAP + COBE, 2003 $n_B / n_\gamma = (6.1 \pm \frac{0.3}{0.2}) \times 10^{-10}$

> (6.19 ± 0.15) x 10⁻¹⁰ [E. Komatsu et al. 2011 ApJS 192]

EDM and symmetries

A nonzero particle EDM violates P, T and, assuming CPT conservation, also CP

Purcell and Ramsey, PR78(1950)807; Lee and Yang; Landau

6

Today's most spectacular (Standard) Particle Physics:

Direct production of new particles ...

and detection of decay products

... at the energy frontier: LHC \rightarrow 14 TeV

A complementary approach:

Effects of new particles in loops ...

... can be measured best when the expected contribution is small.

A complementary approach:

Effects of new particles in loops ...

... can be measured best when the expected contribution is small.

Precision frontier \rightarrow high mass scales

Standard Model EDM-expectations?

Leptons: electroweak negligible

Neutron, proton, nuclei: electroweak negligible, strong?

Standard model lepton EDMs

Fourth order electroweak,

F. Hoogeveen:

The Standard Model Prediction for the Electric Dipole Moment of the Electron, Nucl. Phys. B 241 (1990) 322

Fig. 4. The ten diagrams which contribute to the edm of the electron. The internal wavy lines are W-propagators.

... + new physics?

Standard model lepton EDMs

Standard model lepton EDMs

Neutron: Standard Model prediction - electroweak -

 $d_n \sim 10^{-32} - 10^{-34} e \ cm$

[Khriplovich & Zhitnitsky '86]

See also: Mannel&Uraltsev hep-ph/1202.6270 : ~10⁻³¹ e cm Shabalin 1983, McKellar et al. 1987

Neutron: Standard Model prediction Expect from electro-weak SM, S approximately: $d_n \le 10^{-31} \text{ e-cm}$ Σ Completely negligible at any n experimental sensitivity we Experimentally so far: can imagine today! $d_n < 3 \times 10^{-26} e \cdot cm$ $d_n \sim 10^{-32} - 10^{-34} e \, cm$ [Khriplovich & Zhitnitsky '86]

ETH

EDMs have for many years required (tuned) O(10⁻³) CP-odd phases for generic weak-scale SUSY. The LHC appears to have "resolved" this by pushing mass limits on 1st generation sfermions above a TeV

--------19

ETH

Klaus Kirch

Saclay, Sep 30, 2013

Pospelov, Ritz, Ann. Phys. 318 (2005) 119 M. Raidal et al., Eur. Phys. J. C 57 (2008) 13

Adapted from:

ETH

Pospelov, Ritz, Ann. Phys. 318 (2005) 119 M. Raidal et al., Eur. Phys. J. C 57 (2008) 13

Adapted from:

Adapted from:

Saclay, Sep 30, 2013

Pospelov, Ritz, Ann. Phys. 318 (2005) 119 M. Raidal et al., Eur. Phys. J. C 57 (2008) 13

jin of EDMs

How to measure the neutron (or other) electric dipole moment ?

The Neutron

[Chadwick 1932]

Ultra-cold neutrons

similar to ideal gas with temperatures of milli-Kelvin move with velocities of few m/s

have kinetic energies of order 100 neV

Use UCN for nEDM search

Statistics:

$$\sigma(d_n) = \frac{\hbar}{2\alpha ET\sqrt{N}}$$

Systematics:
e.g. v x E effects

The high intensity&precision frontier at PSI

30

—[**—**]**—** 31

ETH

--------32

The intensity frontier at PSI: π , μ , UCN

Swiss national laboratory with strong international collaborations

High Intensity Proton accelerator & UCN Source

The PSI UCN source

UCN-Start Dec.16/17/22, 2010

37

Continuous improvement under way

38

Routine operation since 2012

—[**–**]**–**] 39

Installing nEDM at PSI in 2009

.

Coming from ILL Sussex-RAL-ILL collaboration PRL 97 (2006) 131801

42

How to measure the neutron (or other) electric dipole moment ?

The Ramsey method

The $\pi/2$ -pulses seen by CsM

48

Optimizing the magnetic field homogeneity

____50

nedm.web.psi.ch

Present best limit: d_n < 2.9 x 10⁻²⁶ ecm Sussex-RAL-ILL collaboration C. A. Baker et al., PRL 97 (2006) 131801

nEDM collaboration nedm.web.psi.ch 14 groups, ~ 50 people

Moved from ILL to PSI March 2009

Data taking at PSI 2011 – 2014 .. (Phase II) Sensitivity goal: 5x10⁻²⁷ecm (95% C.L.)

Operation of new n2EDM apparatus 2012 – 2018 .. (Phase III) Sensitivity goal: 5x10⁻²⁸ecm (95% C.L.)

C ILL

International context (nEDMs)

Project	Goal (en <i>e</i> .cm)	Result expected
nEDM@PSI	~ 5 x 10 ⁻²⁷	2014
n2EDM@PSI	~ 5 x 10 ⁻²⁶	2020
PNPI@ILL	~ 5 x 10 ⁻²⁶	2013
CryoEDM@ILL	~ 3 x 10 ⁻²⁷	2016
nEDM@SNS	~ 3 x 10 ⁻²⁸	2020
nEDM@TRIUMF	~ 3 x 10 ⁻²⁷	2017
	~ 1 x 10 ⁻²⁸	2020
nEDM@TUM	~ 5 x 10 ⁻²⁸	2018

EDM **Molecules** worldwide YbF@Imperial 50 Neutrons 200 PbO@Yale **@ILL** ThO@Harvard @ILL,@PNPI HfF+@JILA @PSI WC@UMich @FRM-2 PbF@Oklahoma @RCNP,@TRIUMF @SNS **@J-PARC Ions-Muons @BNL** -200 **@FZJ** Solids @FNAL GGG@Indiana 10 **@JPARC**

ferroelectrics@Yale

Rough estimate of numbers of researchers, in total ~500 (with some overlap)

,100

- Xe@Princeton
- Xe@TokyoTech
- Xe@TUM
- Xe@Mainz
- Cs@Penn
- Cs@Texas
- Fr@RCNP/CYRIC
- Rn@TRIUMF
- Ra@ANL
- Ra@KVI
- Yb@Kyoto

