Proton form factors: Interesting at all scales

Jan C. Bernauer

SPhN Seminar Saclay, October 2013

Massachusetts Institute of Technology

- Motivation
- High Q²: Two-Photon-Exchange
- Middle Q²: Pushing the precision boundary
- Low Q^2 : The size of the proton
- New data

What is a proton?

Cross section and form factors for elastic e-p scattering

The cross section:

$$\frac{\left(\frac{d\sigma}{d\Omega}\right)}{\left(\frac{d\sigma}{d\Omega}\right)_{Mott}} = \frac{1}{\varepsilon \left(1+\tau\right)} \left[\varepsilon G_{E}^{2}\left(Q^{2}\right) + \tau G_{M}^{2}\left(Q^{2}\right)\right]$$

with:
$$au = \frac{Q^2}{4m_p^2}, \quad \varepsilon = \left(1 + 2\left(1 + \tau\right)\tan^2\frac{\theta_e}{2}\right)^{-1}$$

Fourier-transform of G_E , $G_M \longrightarrow$ spatial distribution (Breit frame)

$$\left\langle r_{E}^{2} \right\rangle = -6\hbar^{2} \left. \frac{\mathrm{d}G_{E}}{\mathrm{d}Q^{2}} \right|_{Q^{2}=0} \quad \left\langle r_{M}^{2} \right\rangle = -6\hbar^{2} \left. \frac{\mathrm{d}(G_{M}/\mu_{p})}{\mathrm{d}Q^{2}} \right|_{Q^{2}=0}$$

Unpolarized: Rosenbluth

Polarized: Ratio

Ratio: Difference!

Most likely solution: Two Photon Exchange

Most likely solution: Two Photon Exchange

Two-Photon-Exchange

- Not in standard radiative corrections
- Off-shell proton!
- How to handle high momenta in loop?

Most likely solution: Two Photon Exchange

Two-Photon-Exchange

- Not in standard radiative corrections
- Off-shell proton!
- How to handle high momenta in loop?

Measurement

- Rosenbluth/polarized reconciled?
- How to treat the hadron line?

- Interference term changes sign with lepton sign!
- Measured in the 1960s
- Not much data
- A lot of predictions!

Novosibirsk/VEPP-3

CLAS/Jlab

- Analysis in progress
- 1.6/1 GeV beam

 No magnetic field Analysis in progress

•
$$e^-$$
 to γ to $e^{+/-}$
-beam

- Doris/DESY
- 2 GeV beam
- data taking finished 01/2013

The OLYMPUS collaboration

- Arizona State University, USA
- DESY, Hamburg, Germany
- Hampton University, USA
- INFN, Bari, Italy
- INFN, Ferrara, Italy
- INFN, Rome, Italy
- MIT Laboratory for Nuclear Science, Cambridge, USA
- St. Petersburg Nuclear Physics Institute, St. Petersburg, Russia
- University of Bonn, Bonn, Germany
- University of Glasgow, United Kingdom
- University of Mainz, Mainz, Germany
- University of New Hampshire, USA
- Yerevan Physics Institute, Armenia

At DESY: DORIS

Projected performance

2 GeV beam, Q²-range: 0.6 to 2.2 GeV²

Target / Vacuum

- Open cell design
- Cryogenic
- Target density: $3 \cdot 10^{15} \text{ cm}^{-2}$
- Multi-stage pump system

Toroid

- From BLAST
- ±5000 A = 75% of BLAST
- \Rightarrow Peak field: 2.8 kG
- 8 coils

- From BLAST
- ±5000 A = 75% of BLAST
- \Rightarrow Peak field: 2.8 kG
- 8 coils
- 4 shown

Wire chamber

- From BLAST
- HDC design, 3 signal wires
- completely rewired
- 2 · 3 planes / chamber, 3 chambers / side
- 10° stereo angle

Time Of Flight

- From BLAST
- Rewrapped, tested
- Trigger
 - Top/bottom coinc.
 - kinematically constrained

Time Of Flight

- From BLAST
- Rewrapped, tested
- Trigger
 - Top/bottom coinc.
 - kinematically constrained
 - + 2nd level WC

Tight control crucial! Redundant systems:

- 12°-detector (Hampton, PNPI)
- Symmetric Møller/Bhabha (Mainz)

- 3 GEM (Hampton) + 3 MWPC (PNPI) each
- highly redundant
- SiPM trigger scintillators

Symmetric Møller/Bhabha

2×9 crystals (Mainz)
1.3° symmetric angle
high rate, no deadtime

OLYMPUS full proposal Experiment funded by DOE **BLAST** moved to Germany Target test experiment Drift chambers installed Luminosity monitors installed Olympus roll-in First full Olympus test Sym. Møller/Bhabha installed First data run Second data run DORIS shut down

September 2008 January 2010 Spring 2010 February 2011 Spring 2011 Summer 2011 July 2011 August 2011 Fall 2011 January 2012 October-December 2012

January 2013

Luminosity

Exceeded goal for integrated luminosity: > 4 fb⁻¹

CAVEAT: The analysis has just started. All plots are preliminary.

Analysis software stack: Cooker

Symmetric Møller - Coincidence

Symmetric Møller - Coincidence

32

Symmetric Møller - Left Master

Symmetric Møller - Left Master

Symmetric Møller - Left Master

Wire chamber / Event-Display

Reconstructed proton momentum

Motivation: Structure

(see J. Friedrich and Th. Walcher, Eur. Phys. J. A 17 (2003) 607)

High-precision p(e,e')p measurement at MAMI

Three spectrometer facility of the A1 collaboration:

Design goal: High precision

• Statistical precision: 20 min beam time for <0.1%

Design goal: High precision through redundancy

- Statistical precision: 20 min beam time for <0.1%
- Control of luminosity and systematic errors:

Design goal: High precision through redundancy

- Statistical precision: 20 min beam time for <0.1%
- Control of luminosity and systematic errors:

Redundancy!

Design goal: High precision through redundancy

- Statistical precision: 20 min beam time for <0.1%
- Control of luminosity and systematic errors:

Redundancy!

 Redundant beam current measurement Foerster probe ⇐⇒ pA-meter

- Redundant luminosity: current × density × target length ⇔ spectrometer as monitor
- Overlapping acceptance

 Where possible: Measure at the same scattering angle with two spectrometers

Measured settings

1400 settings

How to extract the form factors?

Two methods:

- Classical Rosenbluth separation
- ② "Super-Rosenbluth separation": Fit of form factor models directly to the measured cross sections
 - Feasible due to fast computers.
 - All data at all Q^2 and ε values contribute to the fit, i.e. full kinematical region used, no projection (to specific Q^2) needed.
 - Easy fixing of normalization.

Two methods:

- Classical Rosenbluth separation
- ② "Super-Rosenbluth separation": Fit of form factor models directly to the measured cross sections
 - Feasible due to fast computers.
 - All data at all Q^2 and ε values contribute to the fit, i.e. full kinematical region used, no projection (to specific Q^2) needed.
 - Easy fixing of normalization.
 - Model dependence?

Two methods:

Classical Rosenbluth separation

- ② "Super-Rosenbluth separation": Fit of form factor models directly to the measured cross sections
 - Feasible due to fast computers.
 - All data at all Q^2 and ε values contribute to the fit, i.e. full kinematical region used, no projection (to specific Q^2) needed.
 - Easy fixing of normalization.
 - Model dependence?

For radii extraction: Needs a fit anyway! Classical Rosenbluth: Extracted G_E and G_M highly correlated! \Longrightarrow Error propagation very involved.

- Dipole, double Dipole
- Friedrich / Walcher phenomenological ansatz
- extended Gari-Krümpelmann (VMD), Lomon et al.
- Polynomials (+/× dipole)
- Splines

Cross sections: 180 MeV

Cross sections: 315 MeV

Cross sections: 450 MeV

Cross sections: 585 MeV

Cross sections: 720 MeV

Cross sections: 855 MeV

 G_E - low Q^2

58

• Extend data base with world data \implies Cross check, extend Q^2 reach

Inclusion of world data

- Extend data base with world data \implies Cross check, extend Q² reach
- Take cross sections from Rosenbluth exp's
- Sidestep unknown error correlation
 - Update / standardize radiative corrections
 - One normalization parameter per source (Andivahis: 2)

L. Andivahis et al., Phys. Rev. D50, 5491 (1994). F. Borkowski et al. Nucl. Phys. B93, 461 (1975). E Borkowski et al Nucl.Phys. A222, 269 (1974). P.E. Bosted et al.. Phys. Rev. C 42, 38 (1990). M. E. Christy et al., Phys. Rev. C70, 015206 (2004) M. Goitein et al.. Phys. Rev. D 1, 2449 (1970). T. Janssens et al. Phys. Rev. 142, 922 (1966). J. Litt et al., Phys. Lett. B31, 40 (1970). L. F. Price et al. Phys. Rev. D4, 45 (1971). I. A. Qattan et al., Phys. Rev. Lett. 94, 142301 (2005). S. Rock et al., Phys. Rev. D 46, 24 (1992). A. F. Sill et al., Phys. Rev. D 48, 29 (1993). G. G. Simon et al., Nucl. Phys. A 333, 381 (1980). S. Stein et al. Phys. Rev. D 12, 1884 (1975). R. C. Walker et al., Phys. Rev. D 49, 5671 (1994).

- Extend data base with world data \implies Cross check, extend Q² reach
- Take cross sections from Rosenbluth exp's
- Sidestep unknown error correlation
 - Update / standardize radiative corrections
 - One normalization parameter per source (Andivahis: 2)
- Two models:
 - Splines with variable knot spacing ⇒ Adapt knot density to data density
 - Padé-Expansion

 \implies Low(er) flexibility, for comparison

L. Andivahis et al. Phys. Rev. D50, 5491 (1994). F. Borkowski et al. Nucl. Phys. B93, 461 (1975). E Borkowski et al Nucl.Phys. A222, 269 (1974). P.E. Bosted et al.. Phys. Rev. C 42, 38 (1990). M. E. Christy et al., Phys. Rev. C70, 015206 (2004) M. Goitein et al.. Phys. Rev. D 1, 2449 (1970). T. Janssens et al. Phys. Rev. 142, 922 (1966). J. Litt et al., Phys. Lett. B31, 40 (1970). L. F. Price et al. Phys. Rev. D4, 45 (1971). I. A. Qattan et al., Phys. Rev. Lett. 94, 142301 (2005). S. Rock et al., Phys. Rev. D 46, 24 (1992). A. F. Sill et al. Phys. Rev. D 48, 29 (1993). G. G. Simon et al., Nucl. Phys. A 333, 381 (1980). S. Stein et al. Phys. Rev. D 12, 1884 (1975). R. C. Walker et al., Phys. Rev. D 49, 5671 (1994).

Model dependence

- Vary spline model knots
- Select the 68% best tries.
- Construct envelope of models.

Band will cover at least 68% of all model variations!

Form factor ratio G_E/G_M

Form factor ratio G_E/G_M

Form factor ratio G_E/G_M

- Available data is sparse
- Mostly Q² dependence
- Few data on ε dependence

- Available data is sparse
- Mostly Q² dependence
- Few data on ε dependence
- Only possible to fit simple model
- In addition to Feshbach Coulomb-correction!

$$\delta = a \cdot (1 - \varepsilon) \cdot \log \left(1 + b \cdot Q^2 \right)$$

G_E fit incl. polarized data

G_E fit incl. polarized data

G_M fit incl. polarized data

G_M fit incl. polarized data

G_E/G_M fit incl. polarized data

G_E/G_M fit incl. polarized data

Radius

Electric and magnetic radius

Final result from flexible models

$$\left\langle r_{E}^{2} \right\rangle^{\frac{1}{2}} = 0.879 \pm 0.005_{\text{stat.}} \pm 0.004_{\text{syst.}} \pm 0.002_{\text{model}} \pm 0.004_{\text{group}} \text{ fm}, \\ \left\langle r_{M}^{2} \right\rangle^{\frac{1}{2}} = 0.777 \pm 0.013_{\text{stat.}} \pm 0.009_{\text{syst.}} \pm 0.005_{\text{model}} \pm 0.002_{\text{group}} \text{ fm}.$$

Results with world data $\langle r_E^2 \rangle^{\frac{1}{2}} \quad \langle r_M^2 \rangle^{\frac{1}{2}}$ + Rosenbluth data0.8780.772

+Rosenbluth and Polarization data 0.878 0.769

Electric and magnetic radius

Final result from flexible models

$$\left\langle r_E^2 \right\rangle^{\frac{1}{2}} = 0.879 \pm 0.005_{\text{stat.}} \pm 0.004_{\text{syst.}} \pm 0.002_{\text{model}} \pm 0.004_{\text{group}} \text{ fm}, \\ \left\langle r_M^2 \right\rangle^{\frac{1}{2}} = 0.777 \pm 0.013_{\text{stat.}} \pm 0.009_{\text{syst.}} \pm 0.005_{\text{model}} \pm 0.002_{\text{group}} \text{ fm}.$$

(Eur.Phys.J. D33 (2005) 23-27: Zemach and magnetic radius of the proton from the hyperfine splitting in hydrogen: 0.778(29) fm)

Lamb Shift: muonic Hydrogen

Timeline of proton radius results (current)

- Many ideas
- Some disproved
- None accepted
- Need more data

New Data!

- Hyperfine measurements:
 - Heavier Nuclei
 - electronic Hydrogen
- Radius from scattering
 - Deuterium (Mainz)
 - Proton: ISR (Mainz), Small angle scattering (JLab)

- Form factors
 - Low Q^2 polarized (JLab)
 - MAMI-C (1.6 GeV)
 - High precision cross section at high Q² (JLab)
- Two photon exchange
 - VEPP-3
 - JLab
 - Olympus

Interesting at all scales

- Precision measurements drive precise understanding (through puzzles!)
 - Radius
 - Two photon exchange
- More data will come