

Séminaire

le vendredi 13 décembre 2013 à 11h00 $\,$

CEA Saclay, Orme des Merisiers, Bât. 703, Salle 135

It's all gone pear-shaped : octupole-deformed nuclei studied via Coulomb excitation

Liam Gaffney

Catholic University, Leuven, Belgium

Deformation in nuclei is common, and axial- and reflection-symmetric quadrupole shapes are prevalent across the chart of nuclides. There exists strong circumstantial evidence, however, that some (Z,N) combinations will give rise to octupole deformation, or a reflection-asymmetric pear-like shape. The actinides are expected to possess the strongest octupole collectivity however, only 226 Ra with its relatively long lifetime of 1600 years has had its octupole collectivity quantified.

With the advent of radioactive ion beams and in particular, the ability to post-accelerate the heavy elements radon and radium at REX-ISOLDE, we recently overcame challenges limiting our knowledge in this region[1]. Coulomb excitation was successfully performed on ²²⁰Rn and ²²⁴Ra and E1, E2 and E3 matrix elements have been determined. The results are not only significant for nuclear structure, but also on the search for atomic electric-dipole moments (EDMs), which are predicted to be enhanced by octupole deformation.

In this seminar I discuss octupole deformation in nuclei and present the results of recent experiments as well as outlining plans for the future. The consequence of our results on on-going experiments looking for EDMs to test the Standard Model will also be discussed.

 $[1] \ http://www.nature.com/nature/journal/v497/n7448/full/nature12073.html$

Le café sera servi $10\ {\rm minutes}\ {\rm avant}$