Bicep-II detection of CMB B-modes

Ade et al. arXiv :1403.3985 (63 citations after 8 days)

New York Times : "Space Ripples Reveal Big Bang's Smoking Gun"

Bicep telescope at South Pole

WMAP all sky temperature map

 $T_0(1+10^{-5})$ $T_0(1-10^{-5})$

Thermal spectrum : $T_0 = 2.728K$, $kT = 2.348 \times 10^{-4} eV$ Photons last scattered (on electrons) when

redshift= $z \sim 1080$ $t \sim 4 \times 10^5$ yr, $kT \sim 0.2$ eV Present distance to Last Scattering Surface (LSS) :

$$D(z = 1080) = 14.3Gpc \ (\Omega_{\Lambda} = 0.73, \Omega_{M} = 0.27)$$

Last scattering surface

Origin of temperature anisotropies

Large (>1deg) cold regions :

potential wells on LSS (concentrations of DM+baryons) Small (<1deg) cold regions :

regions where the plasma is colder than average OR falling toward mass concentration behind the LSS.

Origin of temperature anisotropies

Large (>1deg) hot regions :

potential hills on LSS (deficits of DM+baryons) Small (<1deg) hot regions :

regions where the plasma is hotter than average OR falling toward mass concentration in front of the LSS.

Thomson scattering polarizes photons

Compton scattering just before recombination; LSS=xy-plane; Observer on z axis

photon flux($\pm y$ directions) \Rightarrow photon polarization observed in x direction

Thomson scattering polarizes photons

Compton scattering just before recombination; LSS=xy-plane; Observer on z axis

photon flux($\pm x$ directions) \Rightarrow photon polarization observed in y direction

Inhomogeneities \Rightarrow **linear polarization**

Compton scattering just before recombination; LSS=xy-plane; Observer on z axis

photon flux($\pm y$ directions) > photon flux($\pm x$ directions) \Rightarrow photon polarization observed in x direction

Telescope focal plane pixels

Compare signals in orthogonal bolometers

Systematics : relative sensitivity, orientation, and pointing of bolometer pairs.

Temperature and polarization maps

Simulated Temperature and polarization map. Line length \propto polarization

Sum of E modes

E (0, 90deg) and **B** (± 45 deg) modes for \vec{k}

superimpose E- or B-modes

Wave packets

Polarization from (ρ , v**) inhomogeneities**

Things that make the pre-recombination plasma move :

Movement parallel to \vec{k}

- gravitational potential gradiant
- pressure gradiant

Movement perpendicular to \vec{k}

gravitational waves

Response of particles to periodic potential

Response of free particles to G-wave

Two modes ; Movement perpendicular to \vec{k}

G-wave on LastSS

perturbation — polarization mode

To find what polarization modes are produced by a perturbation mode, project \vec{k} and induced plasma movement onto LastSS.

Potential perturbation

plasma movement parallel to \vec{k}

- \Rightarrow E mode
- Gravitational wave

plasma movement perpendicular to \vec{k}

 \Rightarrow E and/or B mode

(depending on relative orientation)

B modes from inflation

Biceps2 E and B maps

Bicep2 power spectra

 $\Rightarrow E_{inflation} \sim 10^{16} GeV$ (~grand unification energy)