

Deeply Virtual Compton Scattering on Longitudinally Polarized Protons at CLAS

Erin Seder

April 25, 2014

Nucleon Structure

Through Deep Exclusive Reactions

Measurements of cross sections and asymmetries in Deep Exclusive Reactions:

Deeply Virtual Compton Scattering

Deeply Virtual Meson Production

Access Generalized Parton Distributions (GPDs)

Relate transverse position of partons to their longitudinal momentum

Deeply Virtual Compton Scattering

and Generalized Parton Distributions

Generalized Parton Distributions (GPDs)

 $H(x,\xi,t), E(x,\xi,t)$ $\tilde{H}(x,\xi,t), \tilde{E}(x,\xi,t)$

- : longitudinal quark momentum fraction (not experimentally accessible)
- : longitudinal momentum transfer. In the Bjorken limit:

$$\boldsymbol{\xi} \simeq \frac{\boldsymbol{x}_B}{2 - \boldsymbol{x}_B}$$

X

2**ξ**

t

: total squared momentum transfer to the nucleon

$$t = (\boldsymbol{p}_p - \boldsymbol{p}_{p'})^2$$

Generalized Parton Distributions

X. Ji, Phy.Rev.Lett.78,610(1997)

3

Accessing GPDs through DVCS

4

Accessing GPDs through DVCS

I can isolated via spin observables such as asymmetries:

$$\tau_{BH} \implies \text{nucleon form factors } F_1 \text{ and } F_2$$

$$A = \frac{\sigma^{1-1}}{\sigma^{1+1}}$$

$$\tau_{DVCS} \implies \int_{-1}^{+1} \frac{H(x,\xi,t)}{x \pm \xi \mp i \epsilon} dx + \dots$$

$$I = \left[\tau_{DVCS} \tau_{BH}^* + \tau_{DVCS}^* \tau_{BH}\right] \implies \text{linear combinations of GPDs}$$

$$A = \frac{\sigma \vdash \sigma^{\downarrow}}{\sigma \vdash \sigma^{\downarrow}} \propto \frac{I}{|\tau_{BH}|^2 + |\tau_{DVCS}|^2 + I}$$

Accessing GPDs through DVCS

$$A = \frac{\Delta \sigma}{\sigma}$$

Polarized electron beam, unpolarized proton target (BSA): $\Delta \sigma_{LU} \sim \sin(\phi) \Im m \{ F_1 \underbrace{\mathscr{H}}_{2-x_B} + \frac{x_B}{2-x_B} (F_1 + F_2) \underbrace{\widetilde{\mathscr{H}}}_{2-x_B} + \frac{t}{4M^2} F_2 \underbrace{\mathscr{E}}_{1-x_B} + \dots \} d\phi$

Unpolarized electron beam, longitudinally polarized proton target (TSA)
$$\Delta \sigma_{\rm UL} \sim \sin(\phi) \Im m \{ F_1 \underbrace{\tilde{\mathcal{H}}}_{2-x_B} + \frac{x_B}{2-x_B} (F_1 + F_2) (\underline{\mathcal{H}} + \frac{x_B}{2} \underline{\mathcal{E}}) + \dots \} d\phi$$

$$\Im m \{ \mathcal{H}_p, \tilde{\mathcal{H}}_p \}$$

 $\mathfrak{Im} \{ \mathcal{H}_{p}, \tilde{\mathcal{H}}_{p}, \mathcal{E}_{p} \}$

Jefferson Lab & CLAS @ 6GeV

CEBAF Large Acceptance **Spectrometer Toroidal Magnet (yellow)** -> bends charged particles towards(away) from the beamline ->splits the detector into 6 sectors in φ Each sector: **3 segments of Drift Chambers (blue) Cerenkov Detectors (pink) Scintillation Counters (red) Electromagnetic Calorimeters (green)**

Previous CLAS DVCS Measurements

EG1-DVCS Experiment

IC: Inner Calorimeter increased coverage of low angle photons: Photon coverage CLAS + IC θ 35 30 25 20 15 10 -150 150

Polarized Target Solid beads of ¹⁴NH₃ Continuously polarized via DNP Average proton polarization ~79%

Event Selection (particle ID)

Proton:

Electron:

Negative Charge
Momentum > 0.8 GeV
| Vertex - Nominal | <= 3 cm
| timing difference CC - SC | <= 2ns
Energy deposited inner EC > 0.06 GeVPositive Charge
| Vertex - Nominal | <= 4 cm
Momentum dependent β Cut
IC Shadow Cut1IC Shadow Cut0.8

electrons: 90000 20 80000 70000 10 60000 50000 40000 -10 30000 20000 -20 10000 -30 -30 10 -20 20 -10 30 x (cm)

IC Photon:

EC Photon:

Neutral Charge Energy > 0.25 GeV β > 0.92 EC Fiducial cut IC Shadow Cut

Event Selection ($e p \rightarrow e p \gamma$)

"Deep Inelastic Scattering" regime:

- $Q^2 > 1 (GeV/c)^2$ Momentum transfer squared of the electron
- $W > 2 GeV/c^2$ Mass of the system recoiling against the scattered electron

 $E_{\gamma} > 1 \ GeV \ (Q^2 \gg -t)$ detected photon energy

Event Selection ($e p \rightarrow e p \gamma$)

 $\theta(\textbf{y-X})$ – angle between detected and expected photon

 $\Delta \Phi$ – difference in calculated Φ angle 1) using e, e', p 2) using e, e', y

pPerp – missing (x,y) momentum of ep->epy

Jefferson Lab

Nuclear background (D_f)

π^0 Contamination

 $>\pi^0$ electroproduction events where 1 of the π^0 decay photons has sufficiently high energy can reconstruct to appear as a single-photon electroproduction event

Event selection cuts reduce but not eliminate this contamination to single-photon events

>The fraction of the epy data which are actually $ep\pi^0$ events for each polarization configuration in each kinematic bin is estimated by the correction factor:

$$Bkgr_{\pi^{0}} = \left(\frac{N_{MC}^{ep\pi^{0}(\gamma)}}{N_{MC}^{ep\pi^{0}(\gamma\gamma)}}\right) * \left(\frac{N_{data}^{ep\pi^{0}}}{N_{data}^{ep\gamma}}\right) * \left(\frac{D_{f}^{ep\pi^{0}}}{D_{f}^{ep\gamma}}\right)$$

Acceptance ratio of single $^/$ detected photon $\pi^{\rm 0}$ events in MC simulation

Ratio of epπ⁰ to epγ events in data (scaled by respective nuclear background dilution factors)

➤The correction factor is applied on data as:

$$N^{\texttt{I}} = (1 - Bkgr_{\pi^{\circ}}^{\texttt{I}}) \frac{N_{epy}^{\texttt{I}}}{FC}$$

Proton Polarization

Through Elastic Scattering

e

$$A_{\text{meas}} = \frac{1}{D_f} \frac{(N^{\uparrow\uparrow} - N^{\downarrow\uparrow})}{(N^{\downarrow\uparrow} + N^{\uparrow\uparrow})}$$

 $A_{meas} = (P_b P_t) A_{theory}$

- ↑/↓ Electron Helicity State
- **[↑]/**[↓] Proton Polarization State

е

Proton Polarization

Through Elastic Scattering

$$A_{\text{meas}} = \frac{1}{D_f} \frac{(N^{\uparrow \uparrow} - N^{\downarrow \uparrow})}{(N^{\downarrow \uparrow} + N^{\uparrow \uparrow})}$$

 $A_{meas} = (P_b P_t) A_{theory}$

- **Electron Helicity** ^/↓ State
- **☆/**↓ **Proton Polarization** State

Analysis:	elastic	NMR
Pî t	80 (4) %	78 %
P [↓] _t	-74 (4) %	-77 %

e

Transverse Corrections

What we measure and call longitudinal asymmetry is actually, when considered from the virtual- photon perspective, a combination of longitudinal and transverse asymmetries

Applied a model-dependent correction to obtain the TSA and DSA with respect to the virtual photon direction using the relationship^[1]:

Systematics

Beam-Spin Asymmetry

20

Beam-Spin Asymmetry

Comparison with Existing Data Fit Function:

21

[2]sin ϕ

Double-Spin Asymmetry

22

Jefferson Lab

Double-Spin Asymmetry

Double-Spin Asymmetry

Target-Spin Asymmetry

25

Jefferson Lab

Target-Spin Asymmetry

Target-Spin Asymmetry

Comparison with Existing Data

Multi-Fit for Higher Order Extraction

 $A_{\rm UL}: \frac{[2]\sin\phi + [3]\sin 2\phi}{1 + [1]\cos\phi}$

Limited statistical precision and small number of bins in => ambiguous conclusions about higher order functional dependence

Multi-Fit for Higher Order Extraction

Multi-Fit for Higher Order Extraction

30

CFF Extraction

31

Jefferson Lab

CFF Extraction

32

Jefferson Lab

Summary

- \succ GPDs provide a unique tool to study the internal dynamics of the nucleon.
- Their unambiguous extraction from experimental data requires many measurements including DVCS spin observables across large regions of phase space.
- The eg1-dvcs experiment was the first DVCS-dedicated longitudinally polarized target experiment performed with the CLAS detector.
- The simultaneous presence of a polarized beam and longitudinally polarized target allowed extraction of 3 polarization observables: beam-spin, target-spin and double-spin asymmetries, over a wide Q², x_p, and t phase space.
- The measurement of the 3 DVCS observables in the same kinematic regions provides more constraints than previously available for GPD extraction.
- The Future: JLab12 GeV and CLAS upgrades will increase the available kinematic regions essential for the continuation of the DVCS program for high precision studies of nucleon structure in the valence region.

