Calibration de l'échelle d'énergie des jets et mesure de la masse du quark top dans le canal semi-leptonique avec le détecteur ATLAS au LHC

> Fabrice Balli – Service de Physique des Particules Directeur de thèse: Bruno Mansoulié Encadrant de thèse: Jérôme Schwindling

> > 2013/07/03

158975, Event Number: 2143735 : 2010-07-12 0**7**:04:37 CEST

2 Le quark top

- Introduction
- La masse du quark top
- Production et détection d'événements tt dans ATLAS
- 3 Calibration de l'échelle d'énergie des jets dans l'expérience ATLAS
- 4 Mesure de la masse dans le canal ℓ+jets à l'aide de la méthode des templates 3D
 - Sélection et reconstruction des événements $t\bar{t}$
 - Principe de la méthode
 - Résultat obtenu dans les données à 7 TeV
 - Perspectives à 8 TeV

1 Le LHC et ATLAS

2 Le quark top

- Introduction
- La masse du quark top
- Production et détection d'événements *tī* dans ATLAS

3 Calibration de l'échelle d'énergie des jets dans l'expérience ATLAS

- 4 Mesure de la masse dans le canal ℓ+jets à l'aide de la méthode des templates 3D
 - Sélection et reconstruction des événements $t\bar{t}$
 - Principe de la méthode
 - Résultat obtenu dans les données à 7 TeV
 - Perspectives à 8 TeV

L'accélérateur de particules

Le LHC (collisionneur proton-proton) :

27 km de circonférence

- 9593 aimants supraconducteurs
- Premières collisions en Décembre 2009
- Le plus énergétique en fonctionnement : 7(8) TeV dans le centre de masse en 2011(2012) (14 TeV à énergie nominale)

Schéma d'injection du LHC

- Collisions de 1380×1380 paquets de protons x protons, temps entre 2 croisements : 50ns
- 4 points de collision avec leurs détecteurs associés : LHCb, ALICE, CMS et ATLAS.

Le détecteur ATLAS : A Toroïdal LHC ApparatuS

Schéma du détecteur But : identification des particules, mesure de leur énergie, de leur direction (ϕ , $\eta = -\ln(\tan\frac{\theta}{2})$), de leur impulsion ($p_{\rm T}$) dans le plan transverse

sous-

- le détecteur de traces interne
- calorimètre électromagnétique
- l e calorimètre hadronique
- Le spectromètre à muons
 - L'aimant toroïdal

La prise de données

• Luminosité intégrée ($\mathcal{L} = N^{evts} / \sigma_{pp}$) enregistrée:

~5 fb⁻¹ (2011)
 ~20 fb⁻¹ (2012)

■ Plusieurs Po de données par an ⇒ Répartition sur une grille informatique d'envergure mondiale

2 Le quark top

- Introduction
- La masse du quark top
- Production et détection d'événements tt dans ATLAS
- 3 Calibration de l'échelle d'énergie des jets dans l'expérience ATLAS
- 4 Mesure de la masse dans le canal ℓ +jets à l'aide de la méthode des templates 3D
 - Sélection et reconstruction des événements $t\bar{t}$
 - Principe de la méthode
 - Résultat obtenu dans les données à 7 TeV
 - Perspectives à 8 TeV

Le quark top

└─ Introduction

Partenaire $SU(2)_L$ du quark *b*: Q= $+\frac{2}{3}e$, $T_3 = 1/2$

- Après le 4 Juillet 2012, le top est toujours la particule élémentaire connue la plus lourde (≈173 GeV).
 - Mystère inexpliqué du Modèle Standard
 - Intérêts à la mesure précise de la masse détaillés dans la suite
- couplage de Yukawapprox 1
 - Rôle particulier dans la brisure de symétrie électrofaible?
- Largeur au NLO:

$$\Gamma_{top} = \frac{G_{\mu} m_{top}^3}{8\pi\sqrt{2}} |V_{tb}|^2 (1 - \frac{m_W^2}{m_{top}^2})^2 (1 + 2\frac{m_W^2}{m_{top}^2}) [1 - \frac{2\alpha_s}{3\pi} (\frac{2\pi^2}{3} - 5/2)] \approx 1.5 \text{ GeV}$$

• \Rightarrow temps de vie $\approx 5.10^{-25} s <<$ temps d'hadronisation

 Physique au-delà du Modèle Standard: de nombreuses nouvelles particules se coupleraient au top

► ⇒ Études des propriétés peuvent mener à des découvertes de nouvelle physique!

EPTON

Down

La masse du quark top

1 Le LHC et ATLAS

2 Le quark top

- Introduction
- La masse du quark top
- Production et détection d'événements *tī* dans ATLAS
- 3 Calibration de l'échelle d'énergie des jets dans l'expérience ATLAS
- 4 Mesure de la masse dans le canal ℓ +jets à l'aide de la méthode des templates 3D
 - Sélection et reconstruction des événements $t\bar{t}$
 - Principe de la méthode
 - Résultat obtenu dans les données à 7 TeV
 - Perspectives à 8 TeV

Le quark top

└─La masse du quark top

L'ajustement électrofaible

- Dans le Modèle Standard, il existe une relation entre la masse du quark top, la masse du boson W et la masse du boson de Higgs
 - \rightarrow Permet de vérifier la compatibilité du MS avec les observations en utilisant la masse du nouveau boson (ajustement électrofaible)
- Intérêt à mesurer avec une précision inférieure au %
- Il existe aussi des ajustements pour la physique au-delà du modèle standard (e.g sensibilité des paramètres S,T,U)

Le quark top

└─La masse du quark top

Information sur la stabilité du vide (plan m_{top}-m_h)

- Potentiel de Higgs de la forme: $V = -m^2 |\Phi|^2 + \lambda(\mu) |\Phi|^4$
- Stabilité dépend du signe de $\lambda(\mu)$
- Si MS est toujours valide à l'échelle de Planck, quel est le signe de $\lambda(\mu)$ à cette échelle ?
 - NB: Potentiel éventuellement non borné mais il faut: temps de transit<âge de l'Univers (métastable)

- λ(μ) > 0: vide
 électrofaible est un
 minimum global

Le quark top

La masse du quark top

Quelle masse mesure-t-on?

Il y a plusieurs définitions de la masse du quark top

- dépend du schéma de renormalisation dans lequel on se place!
- Usuellement : masse au pôle m^{pole}_{top}
 - Partie réelle du pôle du propagateur du quark top (schéma OS)

$$S_{ij}(p) = rac{i\delta_{ij}}{p - m_0 - \Sigma(p) - i\epsilon}$$

 Problème intrinsèque à la QCD: pas de quark libre

\Rightarrow ambiguité intrinsèque $\mathcal{O}(\Lambda_{QCD})$

- Autres schémas plus appropriés pour m_{top} (e.g \overline{MS} , PS)
 - Particulièrement avantageux pour les futurs collisionneurs (ILC...)
- Motivations théoriques utilisent principalement m^{pole}_{top}.
- Ici: mesure de la masse injectée dans la simulation MC, *i.e*: les produits de désintégration ont une cinématique au NLO+LL en QCD
 - $m_{top}^{MC} \neq m_{top}^{pole}$, mais proche

Le quark top

 \Box Production et détection d'événements $t\overline{t}$ dans ATLAS

1 Le LHC et ATLAS

2 Le quark top

- Introduction
- La masse du quark top
- Production et détection d'événements *t*t dans ATLAS
- 3 Calibration de l'échelle d'énergie des jets dans l'expérience ATLAS
- 4 Mesure de la masse dans le canal ℓ +jets à l'aide de la méthode des templates 3D
 - Sélection et reconstruction des événements $t\bar{t}$
 - Principe de la méthode
 - Résultat obtenu dans les données à 7 TeV
 - Perspectives à 8 TeV

- Le quark top
 - Production et détection d'événements *tī* dans ATLAS

Production d'événements $t\bar{t}$

Le quark top

Production et détection d'événements *tī* dans ATLAS

Modes de désintégration des paires $t\bar{t}$

- Le quark top
 - Production et détection d'événements $t\bar{t}$ dans ATLAS

Bruits de fond

bruit de fond Z + jets

bruit de fond QCD multijets $_{16/54}$

Le quark top

 \square Production et détection d'événements $t\overline{t}$ dans ATLAS

candidat $t\bar{t}$, canal dilepton

17/54

Le quark top

Production et détection d'événements *tī* dans ATLAS

candidat $t\bar{t}$, canal ℓ +jets

Le quark top

Production et détection d'événements $t\overline{t}$ dans ATLAS

$\ell+ ext{jets}$ channel: $tar{t} ightarrow bWbW ightarrow bqar{q}b\ell u$

- ► Utilisation de l'observable m^{reco}_{top} hadronique g pour mesurer la masse m_{top}
- Observable très sensible à l'échelle d'énergie des jets (JES)
 ⇒ incertitude systématique potentiellement

⇒ incertitude systematique potentienemer élevée

 2^{eme} incertitude la plus grande (potentiellement): incertitude d'échelle d'énergie des jets de quark b relativement à celle des jets légers (bJES)

Calibration de l'échelle d'énergie des jets dans l'expérience ATLAS

1 Le LHC et ATLAS

2 Le quark top

- Introduction
- La masse du quark top
- Production et détection d'événements *tī* dans ATLAS

3 Calibration de l'échelle d'énergie des jets dans l'expérience ATLAS

- 4 Mesure de la masse dans le canal ℓ+jets à l'aide de la méthode des templates 3D
 - Sélection et reconstruction des événements $t\overline{t}$
 - Principe de la méthode
 - Résultat obtenu dans les données à 7 TeV
 - Perspectives à 8 TeV

Calibration de l'échelle d'énergie des jets dans l'expérience ATLAS

Calibration de l'échelle d'énergie des jets dans l'expérience ATLAS

Résolution fractionnelle:

- réduction du nombre moyen de faux jets par événement
- meilleure performance $E_{\rm T}^{\rm miss}$
- pas d'impact sur la résolution

Calibration de l'échelle d'énergie des jets dans l'expérience ATLAS

Études à haute luminosité à 14 TeV – "muscan III"

Défi en termes de calibration de JES à très haut $\langle \mu \rangle$ et bas $p_{\rm T}$ de jet

- Importante dégradation de la résolution avec $\langle \mu \rangle (\geq 50\%$ pour un jet de $p_{\rm T}$ =50 GeV de $\langle \mu \rangle$ = 40 à $\langle \mu \rangle$ =200)
- Doit être aussi bas que possible pour les analyses de physique

Mesure de la masse dans le canal $\ell+$ jets à l'aide de la méthode des templates 3D

Sélection et reconstruction des événements $t\bar{t}$

1 Le LHC et ATLAS

2 Le quark top

- Introduction
- La masse du quark top
- Production et détection d'événements *tī* dans ATLAS

3 Calibration de l'échelle d'énergie des jets dans l'expérience ATLAS

4 Mesure de la masse dans le canal ℓ +jets à l'aide de la méthode des templates 3D

Sélection et reconstruction des événements $t\bar{t}$

- Principe de la méthode
- Résultat obtenu dans les données à 7 TeV
- Perspectives à 8 TeV

-Mesure de la masse dans le canal ℓ +jets à l'aide de la méthode des templates 3D

 \Box Sélection et reconstruction des événements $t\overline{t}$

- 1 vertex primaire (d'interaction) avec au moins 5 traces
- Sélection du lepton (ayant déclenché le système de détection)
 - Exactement 1 lepton avec p_t > 20(25) GeV dans le canal muon (électron), |η| dans l'acceptance du détecteur
 - Plusieurs coupures de qualité
 - Isolé (pas de jet près du lepton)
 - Coupure sur le paramètre d'impact longitudinal (z₀ <2 mm)
- Sélection des jets
 - ▶ ≥ 4 bons jets avec au moins 1 jet étiqueté b et 2 jets non étiquetés b, avec $|\eta| < 2.5, p_T > 25 \text{ GeV}$

• Coupures sur $E_{\rm T}^{\rm miss}$ et $M_{\rm T}^{lepton,neutrino}$ $(m_{\rm W}^{\rm T})$:

- e+jets: $E_{\rm T}^{\rm miss} > 30 {\rm ~GeV}$, $m_{\rm W}^{\rm T} > 30 {\rm ~GeV}$
- μ +jets: $E_{\mathrm{T}}^{\mathrm{miss}}$ > 30 GeV, $m_{\mathrm{W}}^{\mathrm{T}}$ + $E_{\mathrm{T}}^{\mathrm{miss}}$ > 60 GeV
- Reconstruction de l'événement à l'aide d'un maximum de vraisemblance cinématique (KLFitter): assignement des jets reconstruits aux partons b, b, q, q

 \square Mesure de la masse dans le canal $\ell+$ jets à l'aide de la méthode des templates 3D

Sélection et reconstruction des événements $t\bar{t}$

Coupures additionnelles:

- exactement 2 jets de b
- $\blacksquare~55~{\rm GeV} < m_{\rm W}^{\rm reco} < 110~{\rm GeV}$
- 130 GeV $< m_{top}^{reco} < 220$ GeV
- $\blacksquare~0.3 < R_{\rm lb}^{\rm reco} < 3$

$$R_{ ext{lb}}^{ ext{reco}} = rac{p_T^{blep} + p_T^{bhad}}{rac{W_{jet_1}}{P_T} + P_T}$$

Canal	e+iets	µ+iets	Canal	e+jets	$\mu + \text{jets}$
Processus	Sélectio	n finale	Processus	Sélection finale	Sélection finale
Signal t ī	2540.2 ± 242.5	4356.7 ± 416.1	Signal $t\bar{t}$	16252.0 ± 1046.0	25197.1 ± 1617.4
Signal top célibataire	97.9 ± 6.9	161.2 ± 11.0	Signal top célibataire	576.3 ± 43.9	913.8 ± 65.7
W+iets	27.2 ± 8.9	63.1 ± 20.2	W+jets	132.5 ± 11.5	333.6 ± 18.3
Z+iets	8.0 ± 1.1	6.7 ± 1.0	Z+jets	37.3 ± 6.6	55.2 ± 8.2
Multijets	33.8 ± 43.9	37.0 ± 32.8	Multijets	-	-
Dibosons	0.9 ± 0.2	1.8 ± 0.3	Dibosons	2.5 ± 1.6	16.5 ± 4.2
Total bruits de fond	69.8 ± 44.8	108.7 ± 38.6	Total bruits de fond	172.2 ± 13.3	405.3 ± 20.5
Signal / Bruit	37.8	41.6	Signal / Bruit	97.7	64.4
Total attendu	2708 ± 247	4627 ± 418	Total attendu	17000.5 ± 1047.0	26516.2 ± 1618.9
Total observé (4.7 fb^{-1})	2100 ± 241 2052 ± 54	5185 ± 72	Total observé (20.34 fb^{-1})	17535 ± 132	26684 ± 163
Total observe (4.1 m)		111111 12	u		

Mesure de la masse dans le canal ℓ +jets à l'aide de la méthode des templates 3D

└─ Principe de la méthode

1 Le LHC et ATLAS

2 Le quark top

- Introduction
- La masse du quark top
- Production et détection d'événements *tī* dans ATLAS

3 Calibration de l'échelle d'énergie des jets dans l'expérience ATLAS

4 Mesure de la masse dans le canal ℓ +jets à l'aide de la méthode des templates 3D

- Sélection et reconstruction des événements $t\bar{t}$
- Principe de la méthode
- Résultat obtenu dans les données à 7 TeV
- Perspectives à 8 TeV

 \Box Mesure de la masse dans le canal $\ell+$ jets à l'aide de la méthode des templates 3D

Principe de la méthode

Principe de la méthode

 Utilise la distribution de masse reconstruite m^{reco}_{top} pour mesurer la masse du quark top (sélection des trois jets du côté hadronique).

Mesure de la masse dans le canal ℓ +jets à l'aide de la méthode des templates 3D

└─ Principe de la méthode

Principe de la méthode

- Utilise la distribution de masse reconstruite m^{reco}_{top} pour mesurer la masse du quark top (sélection des trois jets du côté hadronique).
- Construction de templates de cette observable à différentes masses de top en entrée.
- Comparaison entre données et simulation.

 \Box Mesure de la masse dans le canal ℓ +jets à l'aide de la méthode des templates 3D

Principe de la méthode

■ Observable très sensible à l'échelle d'énergie des jets (JES)
 ⇒ Potentielle incertitude systématique importante

 \Box Mesure de la masse dans le canal $\ell+$ jets à l'aide de la méthode des templates 3D

└─ Principe de la méthode

Observable très sensible à l'échelle d'énergie des jets (JES)

 \Rightarrow Potentielle incertitude systématique importante

 Échelle d'énergie des jets actuellement connue à une précision de l'ordre du %

 \Box Mesure de la masse dans le canal ℓ +jets à l'aide de la méthode des templates 3D

└─ Principe de la méthode

- Observable très sensible à l'échelle d'énergie des jets (JES) ⇒ Potentielle incertitude systématique importante
- Échelle d'énergie des jets actuellement connue à une précision de l'ordre
- Echelle d'énergie des jets actuellement connue à une précision de l'ordre du %
- 2^{nde} plus importante incertitude potentielle: échelle d'énergie relative des jets de quarks b (bJES)

 \Box Mesure de la masse dans le canal ℓ +jets à l'aide de la méthode des templates 3D

└─ Principe de la méthode

- L'analyse 3D réduit drastiquement les incertitudes dues à la JES et à la bJES, utilisant des contraintes in-situ de l'échelle d'énergie des jets (JSF) de l'échelle d'énergie relative des jets de b (bJSF) à partir de la masse du W hadronique reconstruit m_W^{reco} et de l'observable R_{lb}^{reco} de chaque événement.
- R^{reco}_{lb} sensible aux changements de l'échelle d'énergie relative des jets de b (bJSF):

 \Box Mesure de la masse dans le canal $\ell+$ jets à l'aide de la méthode des templates 3D

└─ Principe de la méthode

Ajustement de R^{reco}_{lb} par Landaus+Gaus
 m.p.v de la distribution de Landau vs bJSF et m_{top} (plages de variations équivalentes pour m^{reco}_{top})

- Contraintes sur bJES
- dépendence en m_{top} résiduelle prise en compte dans la PDF

 \Box Mesure de la masse dans le canal $\ell+$ jets à l'aide de la méthode des templates 3D

Principe de la méthode

- Ajustements de templates réalisés à 5 points de masse × 5 JSFⁱⁿ × 5 bJSFⁱⁿ
- PDFs construites à partir des prédictions (signal et bruits de fond)

$$\begin{array}{ll} & \text{Vraisemblance finale:} \\ \mathcal{L}_{\mathrm{shape}}(m_{\mathrm{top}}^{\mathrm{reco}}m_{\mathrm{W}}^{\mathrm{reco}}, \mathcal{R}_{\mathrm{lb}}^{\mathrm{reco}}|m_{\mathrm{top}}, \mathsf{JSF}, \mathsf{bJSF}) &= \\ & \prod_{i=1}^{N} P_{\mathrm{top}}(m_{\mathrm{top}}^{\mathrm{reco}}|m_{\mathrm{top}}, \mathsf{JSF}, \mathsf{bJSF})_{i} & \times \\ & P_{\mathrm{W}}(m_{\mathrm{W}}^{\mathrm{reco}}|\mathsf{JSF})_{i} & \times \\ & P_{\mathcal{R}_{\mathrm{lb}}}(\mathcal{R}_{\mathrm{lb}}^{\mathrm{reco}}|m_{\mathrm{top}}, \mathsf{bJSF})_{i} \end{array}$$

- Méthode validée avec des pseudo-expériences dans la simulation
- Extraction de m_{top}: maximisation de la vraisemblance dans les données (unbinned likelihood fit)
 - Ajustement simultané des 3 observables, contrainte in-situ du JSF et du bJSF

 \Box Mesure de la masse dans le canal ℓ +jets à l'aide de la méthode des templates 3D

Résultat obtenu dans les données à 7 TeV

1 Le LHC et ATLAS

2 Le quark top

- Introduction
- La masse du quark top
- Production et détection d'événements *tī* dans ATLAS

3 Calibration de l'échelle d'énergie des jets dans l'expérience ATLAS

4 Mesure de la masse dans le canal ℓ+jets à l'aide de la méthode des templates 3D

- Sélection et reconstruction des événements $t\bar{t}$
- Principe de la méthode
- Résultat obtenu dans les données à 7 TeV
- Perspectives à 8 TeV

tMesure de la masse dans le canal $\ell+$ jets à l'aide de la méthode des templates 3D

Résultat obtenu dans les données à 7 TeV

Résultats de l'ajustement tridimensionnel

34/54

 \square Mesure de la masse dans le canal $\ell+$ jets à l'aide de la méthode des templates 3D

Résultat obtenu dans les données à 7 TeV

Incertitudes

L'analyse 2D réfère à une analyse avec une constrainte sur la JSF mais sans contrainte sur la bJSF (mesure précédente d'ATLAS)

	analyse 2D	analyse 3D
Valeur mesurée	172.88	172.01
Incertitude statistique	0.28	0.28
JSF (statistique)	0.30	0.29
bJSF (statistique)	0.00	0.82
Calibration de la méthode	0.16 ± 0.04	0.09 ± 0.10
Générateur Monte-Carlo du signal	0.25 ± 0.11	0.05 ± 0.29
Modèle d'hadronisation	1.24 ± 0.12	0.27 ± 0.22
Événement sous-jacent	0.12 ± 0.15	0.09 ± 0.22
Reconnection de couleur	0.03 ± 0.12	0.16 ± 0.23
ISR/FSR	0.94 ± 0.06	0.49 ± 0.11
PDF du proton	0.05 ± 0.01	0.16 ± 0.02
Bruit de fond W +jets	0.01	0.07
Bruit de fond multijets	0.03	0.11
JES	0.38 ± 0.08	0.56 ± 0.19
bJES	0.81 ± 0.01	0.04 ± 0.03
Résolution en énergie des jets	0.28 ± 0.08	0.27 ± 0.11
Efficacité de reconstruction des jets	0.00 ± 0.01	0.01 ± 0.01
Étiquetage des jets de b	0.13 ± 0.01	0.75 ± 0.02
E_{T}^{miss}	0.05 ± 0.01	0.09 ± 0.03
Empilement	0.01 ± 0.00	0.01 ± 0.00
Incertitude systématique totale	1.85 ± 0.08	1.17 ± 0.31
Incertitude totale	1.90 ± 0.08	1.48 ± 0.31

- 2→3D: Large amélioration:
 - Hadronisation
 - ISR/FSR
 - incertitude sur la bJES
- Augmentation de l'incertitude sur le *b*-tagging
- Incertitude systématique totale chute de 1.85 à 1.17 GeV
- Incertitude totale chute de 1.90 à 1.48 GeV
- Incertitude dominante : JES (dépendence de l'incertitude dans l'espace des phases)

Mesure de la masse dans le canal ℓ +jets à l'aide de la méthode des templates 3D

└─ Perspectives à 8 TeV

1 Le LHC et ATLAS

2 Le quark top

- Introduction
- La masse du quark top
- Production et détection d'événements *tī* dans ATLAS

3 Calibration de l'échelle d'énergie des jets dans l'expérience ATLAS

4 Mesure de la masse dans le canal ℓ +jets à l'aide de la méthode des templates 3D

- Sélection et reconstruction des événements $t\bar{t}$
- Principe de la méthode
- Résultat obtenu dans les données à 7 TeV
- Perspectives à 8 TeV

- Mesure de la masse dans le canal $\ell+$ jets à l'aide de la méthode des templates 3D

Perspectives à 8 TeV

- Utilisation de la même méthode que pour l'analyse des données à 7 TeV
 Étiquetage des jets de b avec deux étalonnages différents
 - Étalonnage standard (groupe Top ATLAS): basé sur des événements dijet (noir)
 - Étalonnage préliminaire, basé sur une combinaison $t\bar{t}$ +dijet (red)

Systematics	7 TeV (CONF Note)	8 TeV		
Method Calibration	0.13	0.16		
Signal MC generator	0.19 ± 0.29	0.27		
Herwig/Pythia	0.27 ± 0.22	0.22		
ISR/FSR	0.45 ± 0.11	0.42		
Jet energy scale	0.79	0.48		
B-Jet energy scale	0.08 ± 0.03	0.14		
B-tagging efficiency	0.81	1.82		
		0.49		
Jet energy resolution	0.22 ± 0.11	0.61		
Jet efficiency	0.05 ± 0.01	0.05		
Met resolution	0.03	0.02		
Total Syst.	1.29	2.06 1.09		
Data statistics	0.76	0.39		
Total	1.50	2.10 1.16		

 Importante amélioration prévue avec la nouvelle calibration d'étiquetage des b

■ Augmentation d'un facteur 2–3 de l'incertitude sur la résolution (7 → 8 TeV).

Incertitude sur la masse du quark top (in GeV)

Réduction possible de l'incertitude sur la JES (nouvel étalonnage)

 \square Mesure de la masse dans le canal $\ell+$ jets à l'aide de la méthode des templates 3D

└─ Perspectives à 8 TeV

Incertitude sur la JER Vs p_T pour chaque jet utilisé dans les observables (après sélection finale) dans le MC tτ̄
 Bins en |η|:0 < 0.8 < 1.2 < 2.1 < 2.8

- ⇒ Plus grande dépendence en p_T et η de l'incertitude sur la JER @8 TeV
 Impact non négligeable sur la forme de R^{reco}_{lb} (4 p_T de jets dans sa définition) → problème spécifique à l'analyse 3D
- Pas de changement notable avec des coupures en p_T sur les jets
- Amélioration possible grâce à une nouvelle incertitude sur la JER

 \square Mesure de la masse dans le canal $\ell+$ jets à l'aide de la méthode des templates 3D

Perspectives à 8 TeV

Incertitude prévisionnelle à $\sqrt{s} = 8$ TeV

	$m_{_{top}}$ uncertainty in GeV					
dim	3D					
Problem. Syst.	Current eval.	Poss. improvement				
B-tagging	1.82	0.49				
JĒS	0.48	0.29				
bJES	0.14	-				
Hadronisation	0.22	-				
JER	0.61	0.3 ??? new JER				
ISR/FSR	0.42	Room for improvement				
Total above	1.98	0.81				
Estimated total	2.1	0.96				

- Espoir d'améliorations grâce aux prochaines contributions du groupe de performance Jet/E_T^{miss}
- La contrainte sur ISR/FSR n'est pas optimale
 - \Rightarrow Amélioration possible mais aucune étude prévue

2 Le quark top

- Introduction
- La masse du quark top
- Production et détection d'événements *tī* dans ATLAS
- 3 Calibration de l'échelle d'énergie des jets dans l'expérience ATLAS
- 4 Mesure de la masse dans le canal ℓ+jets à l'aide de la méthode des templates 3D
 - Sélection et reconstruction des événements $t\bar{t}$
 - Principe de la méthode
 - Résultat obtenu dans les données à 7 TeV
 - Perspectives à 8 TeV

- *m*_{top} mesurées dans cette thèse:
 - ▶ 7 TeV: $m_{\rm top} = 172.01 \pm 1.48 \ (0.92 \ (stat) \ 1.17 \ (syst))$ GeV
 - ▶ 8 TeV: $m_{top} = ??? \pm 1.19 (0.39 (stat) 1.12 (syst))$ GeV
 - Combinaison: $m_{top} = ??? \pm 1.16 (0.37 (stat) 1.10 (syst))$ GeV
- Autres mesures individuelles les plus précises:
 - CMS à $\sqrt{s} = 7$ TeV, canal ℓ +jets: $m_{top} = 173.49 \pm 1.06$ GeV.
 - ► CMS à $\sqrt{s} = 8$ TeV, canal ℓ +jets: $m_{top} = 172.04 \pm 0.75$ GeV (résultat préliminaire)
 - DØ, canal ℓ +jets: $m_{\rm top} = 174.98 \pm 0.76$ GeV
 - CDF, canal ℓ +jets: $m_{top} = 172.85 \pm 1.12$ GeV.
- Combinaison mondiale: $m_{\rm top} = 173.34 \pm 0.76~{
 m GeV}~(11~{
 m mesures})$
- NB1: CMS n'évalue pas l'hadronisation (Herwig/Pythia) sur les événements $t\bar{t}$ (+0.58(0.33) GeV incertitude systématique dans le résultat de 2011(2012))
- NB2: CMS n'évalue pas l'incertitude sur la bJES de la même façon que les autres expériences.
- NB3: Résultats les plus précis (CMS-DØ) à 2.75σ l'un de l'autre (proba<1%)

- Travail dans le groupe Jet/E_T^{miss}
 - optimisation des seuils de bruit de fond
 - Validations de calibrations
 - Performance à très haute luminosité
- Première (et seule) mesure de $m_{\rm top}$ (à $\sqrt{s}=7~{
 m TeV}$) avec une méthode 3D qui contraint le bJSF
 - Incertitudes réduites dans un papier en finalisation (+ combinaison avec canal dilepton)
- Efforts sur la mesure à 8 TeV en cours (incertitude totale prévisionnelle 0.9-1.2 GeV)
- Extrapolations à très haute luminosité intégrée CMS-PAS-FTR-13-017
 - Précision atteignable: 0.44 GeV à 300 fb⁻¹
 - ► Un des point-clefs: méthode 3D de cette thèse
- Soutenance de thèse le 19 Juin à 14h, Amphi Bloch (Ipht)

BACKUP

Event reconstruction

- *l*+jets cut-based selection
- Kinematic likelihood fit
 - Choose the event topology that best fits the decay hypothesis
 - handles non-Gaussian behaviour
- Product of:
 - Breit-Wigner constraints
 - Transfer functions
 - Based on reconstructed objects matched to ⁸/₆₀₀₀ their parton level quarks and leptons
 ₅₀₀₀
 - b-tagging weight (b-tagging information reduces combinatoric background)
- 70% reconstruction purity
- 58% reconstruction efficiency

Kinematic likelihood fit

$$\begin{split} \mathcal{L} &= \mathcal{T}\left(\mathcal{E}_{\mathrm{jet}_{1}}|\hat{\mathcal{E}}_{b_{\mathrm{had}}}\right) \cdot \mathcal{T}\left(\mathcal{E}_{\mathrm{jet}_{2}}|\hat{\mathcal{E}}_{b_{\ell}}\right) \cdot \mathcal{T}\left(\mathcal{E}_{\mathrm{jet}_{3}}|\hat{\mathcal{E}}_{q_{1}}\right) \cdot \\ & \mathcal{T}\left(\mathcal{E}_{\mathrm{jet}_{4}}|\hat{\mathcal{E}}_{q_{2}}\right) \cdot \mathcal{T}\left(\mathcal{E}_{x}^{\mathrm{miss}}|\hat{p}_{x,\nu}\right) \cdot \mathcal{T}\left(\mathcal{E}_{y}^{\mathrm{miss}}|\hat{p}_{y,\nu}\right) \cdot \\ & \left\{\begin{array}{c} \mathcal{T}\left(\mathcal{E}_{e}|\hat{\mathcal{E}}_{e}\right) & \mathrm{e+jets} \\ \mathcal{T}\left(p_{\mathrm{T},\mu}|\hat{p}_{\mathrm{T},\mu}\right) & \mu+\mathrm{jets} \end{array}\right\} \cdot \\ & \mathcal{B}\left[m(q_{1} q_{2})|m_{W}, \Gamma_{W}\right] \cdot \mathcal{B}\left[m(\ell \nu)|m_{W}, \Gamma_{W}\right] \cdot \\ & \mathcal{B}\left[m(q_{1} q_{2} b_{\mathrm{had}})|m_{\mathrm{top}}^{\mathrm{reco}}, \Gamma_{\mathrm{top}}\right] \cdot \\ & \mathcal{B}\left[m(\ell \nu b_{\ell})|m_{\mathrm{top}}^{\mathrm{reco}}, \Gamma_{\mathrm{top}}\right] \cdot W_{\mathrm{btag}} \,. \end{split}$$

Top mass: MC samples and systematic uncertainties

- Some systematics are evaluated with the difference between the fitted masses in two samples:
 - default MC sample: Powheg+Pythia Perugia2011C
 - ► Hadronisation: Powheg+Pythia P2011C Vs Powheg+Herwig
 - Generator: Powheg+Herwig Vs MCAtNLO+Herwig
 - ISR/FSR: AcerMC+Pythia P2011C Less Vs More Parton Shower
 - Constraint on gap fraction from data
 - Underlying Event: Powheg+Pythia P2011 Vs Powheg+Pythia P2011 with different multiple parton interactions (MPI) tune
 - Color Reconnection: Powheg+Pythia P2011 Vs Powheg+Pythia P2011 with different color reconnection tune (NOCR tune)
- PDF systematic uncertainty using PDF4LHC recommentdations
- \blacksquare Other systematics: fitting $m_{
 m top}$ after varying parameter by 1σ

Top mass: JES uncertainty (3d-analysis)

Dimension		2D	3D			
Composante		Incertitude [GeV]				
Statistique		0.10 ± 0.02	0.18 ± 0.04			
PN Effectif Statistique1		0.10 ± 0.01	0.16 ± 0.02			
PN Effectif Statistique2		0.00 ± 0.01	0.02 ± 0.01			
PN Effectif Statistique3		0.01 ± 0.01	0.04 ± 0.02			
EtaIntercalibration TotalStat		0.02 ± 0.01	0.05 ± 0.02			
Modélisation		0.20 ± 0.04	0.38 ± 0.10			
PN Effectif Modélisation1		0.16 ± 0.01	0.30 ± 0.03			
PN Effectif Modélisation2		0.02 ± 0.01	0.01 ± 0.02			
PN Effectif Modélisation3		0.09 ± 0.03	0.14 ± 0.09			
PN Effectif Modélisation4		0.01 ± 0.01	0.00 ± 0.01			
EtaIntercalibration Modélisation		0.07 ± 0.01	0.18 ± 0.03			
Détecteur		0.01 ± 0.02	0.06 ± 0.04			
PN Effectif Détecteur1		0.01 ± 0.02	0.06 ± 0.04			
PN Effectif Détecteur2		0.01 ± 0.01	0.01 ± 0.02			
Mixe		$\textbf{0.03}\pm\textbf{0.01}$	0.04 ± 0.02			
PN Effectif Mixe1		0.02 ± 0.01	0.00 ± 0.01			
PN Effectif Mixe2		0.02 ± 0.01	0.04 ± 0.02			
Simple Particule Haut p _T		0.00 ± 0.00	0.00 ± 0.00			
Non-fermeture relative MC11b		0.07 ± 0.03	0.20 ± 0.07			
Correction d'empilement		0.01 ± 0.02	0.06 ± 0.05			
Correction d'empilement ($\langle \mu \rangle$)		0.00 ± 0.02	0.05 ± 0.04			
Correction d'empilement (N_{PV})		0.01 ± 0.01	0.02 ± 0.03			
Jets environmants		0.09 ± 0.01	0.15 ± 0.03			
Saveur		0.28 ± 0.05	0.26 ± 0.11			
Composition de saveur		0.13 ± 0.04	0.02 ± 0.11			
Réponse de saveur		0.25 ± 0.01	0.26 ± 0.02			
bJES		0.81 ± 0.01	0.04 ± 0.03			
Total (sans inc. la bJES)		0.38 ± 0.08	0.56 ± 0.19			

 Splitting the uncertainty into various nuisance parameters

- In view of combinations
- Better treatment of correlations

 bJES uncertainty is lowered to < 100 MeV (was 1.5 GeV in latest ATLAS measurement)

Backup

Backup

Converged after many many discussions on the evaluation of systematic uncertainties...

ATLAS vs CMS uncertainties

	ATI	LAS	CMS			World
Uncertainty	l+jets	di-l	l+jets	di-l	all jets	Combination
m _{top}	172.31	173.09	173.49	172.50	173.49	173.34
Stat	0.23	0.64	0.27	0.43	0.69	0.27
iJES	0.72	n.a.	0.33	n.a.	n.a.	0.24
stdJES	0.70	0.89	0.24	0.78	0.78	0.20
flavourJES	0.36	0.02	0.11	0.58	0.58	0.12
bJES	0.08	0.71	0.61	0.76	0.49	0.25
MC	0.35	0.64	0.15	0.06	0.28	0.38
Rad	0.45	0.37	0.30	0.58	0.33	0.21
CR	0.32	0.29	0.54	0.13	0.15	0.31
PDF	0.17	0.12	0.07	0.09	0.06	0.09
DetMod	0.23	0.22	0.24	0.18	0.28	0.10
b-tag	0.81	0.46	0.12	0.09	0.06	0.11
LepPt	0.04	0.12	0.02	0.14	n.a.	0.02
BGMC	n.a.	0.14	0.13	0.05	n.a.	0.10
BGData	0.10	n.a.	n.a.	n.a.	0.13	0.07
Meth	0.13	0.07	0.06	0.40	0.13	0.05
MHI	0.03	0.01	0.07	0.11	0.06	0.04
Total Syst	1.53	1.50	1.03	1.46	1.23	0.71
Total	1.55	1.63	1.06	1.52	1.41	0.76

- iJES: statistical uncertainty due to in-situ JSF/bJSF determination (ℓ+jets: 3D ATLAS vs 2D CMS)
- std JES *l*+jets: using (now) old uncertainty, improved for paper
- bJES: in-situ constrained in AT-LAS ℓ+jets analysis
- MC ATLAS including hadronisation variation Herwig/Pythia (not CMS) (evaluated at 0.76 GeV dilepton)
- b-tagging ATLAS: high impact on analysis (will be developed in the following)
- All-hadronic channel treated in more detail in the following

Backup

CMS latest result – ℓ +jets 8 TeV CMS PAS TOP-14-001

- Preliminary result presented in Moriond
- New CMS combination: 0.73 GeV uncertainty = 0.42% precision
- No direct evaluation of hadronisation uncertainty in $t\bar{t}$ selection (evaluated at 0.33 GeV)

 $| \delta m^{2D}$ (GeV)

δISE

Color reconnection down by a factor 8

			Experimental uncertainties		
	(+iot	c	Fit calibration	0.10	0.001
	St (CAD)	sl	p_{T} - and η -dependent JES	0.18	0.007
	v_{m_t} (GeV)	JES	Lepton energy scale	0.03	< 0.001
Fit calibration	0.06	0.001	MET 8 TeV	0.09	0.001
b-JES	0.61	0.000	Jet energy resolution	0.26	0.004
p_{T} - and η -dependent JES	0.28	0.001	b tagging	0.02	< 0.001
Lepton energy scale	0.02	0.000	Pileup	0.27	0.005
Missing transverse momentum	0.06	0.000	Non-tt background	0.11	0.001
Jet energy resolution	0.23	0.004	Modeling of hadronization		
b tagging	0.12	0.001	Flavor-dependent JSF	0.41	0.004
Pileup / lev	0.07	0.001	b fragmentation	0.06	0.001
Non-tt background	0.13	0.001	Semi-leptonic B hadron decays	0.16	< 0.001
Parton distribution functions	0.07	0.001	Modeling of the hard scattering process		
Renormalization and	0.24	0.004	PDF	0.09	0.001
factorization scales	0.24	0.004	Renormalization and	0.10 10.10	0.004 0.001
ME-PS matching threshold	0.18	0.001	factorization scales	0.12±0.13	0.004 ± 0.001
Underlying event	0.15	0.002	ME-PS matching threshold	0.15 ± 0.13	$0.003 {\pm} 0.001$
Color reconnection effects	0.54	0.004	ME generator	$0.23 {\pm} 0.14$	$0.003 {\pm} 0.001$
Total	0.98	0.008	Modeling of non-perturbative QCD		
			Underlying event	0.14 ± 0.17	0.002 ± 0.002
			Color reconnection modeling	$0.08 {\pm} 0.15$	$0.002 {\pm} 0.001$
			Total	0.75	0.012

Backup

D0 latest result – ℓ +jets FERMILAB-PUB-14-123-E

- Updating from 3.6 fb⁻¹ to 9.7 fb⁻¹ amount of data
- Matrix element method with in-situ JES calibration using $m_{\mathrm{W}}^{\mathrm{reco}}$
- Total uncertainty: 0.76 GeV=0.43% precision
- Increase of MC stat, Refine treatment of signal modelling unc., Use of new JES calibrations

Source	Uncertainty (GeV)	Source of uncertainty	Effect on m_t (GeV
Modeling of production:		Signal and background modeling:	
Modeling of production.		Higher order corrections	+0.15
Higher order affasts	+0.25	Initial/final state radiation	± 0.09
ISD/ESD	+0.25	Hadronization and UE	+0.26
Hadronization and LIF	+0.58	Color reconnection	+0.10
Color reconnection	+0.38	Multiple $p\bar{p}$ interactions	-0.06
Multiple an internetione	+0.07	Heavy flavor scale factor	± 0.06
Multiple pp Interactions	+0.07	b-jet modeling	+0.09
W + ists been flever seels fector	+0.07	PDF uncertainty	± 0.11
W + jets neavy-navor scale factor	+0.07	Detector modelina:	
Chains of DDE	±0.09	Residual iet energy scale	± 0.21
Madeline of detectory	±0.24	Flavor-dependent response to jets	± 0.16
Modeling of defector:	+0.21	h tagging	+0.10
Residual jet energy scale	±0.21	Trigger	+0.01
Data-MC jet-response difference	±0.28		10.01
b-tagging efficiency	±0.08	Lepton momentum scale	±0.01
Trigger efficiency	± 0.01	Jet energy resolution	±0.07
Lepton momentum scale	± 0.17	Jet ID efficiency	-0.01
Jet energy resolution	± 0.32	Method:	
Jet identification efficiency	±0.26	Modeling of multijet events	+0.04
Method:		Signal fraction Upda	ated r <u>esu</u> st
Multijet contamination	± 0.14	MC calibration	± 0.07
Riferarfielueur	± 0.10	Total systematic uncertainty	± 0.49
MC calibration	± 0.20	Total statistical uncertainty	± 0.58
Total	± 1.02	Total uncertainty	± 0.76

b-tagging syst uncertainty

