Polarisation des quarks et des gluons dans le nucléon à COMPASS

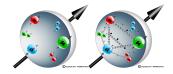
Vincent Andrieux

CEA-Saclay Irfu/SPhN

2 Juillet 2013

Sommaire

- Introduction
 - Motivations
 - Diffusion profondément inélastique
- Technique expérimentale
 - Spectromètre COMPASS
 - Double asymétrie de spin
 - Cible polarisée
- Résultats
 - Erreurs systématiques
 - Asymétrie & fonction de structure en spin
- Futur
 - Analyse
 - Travail expérimental
- Conclusions



Différentes contributions

$$\frac{1}{2} = \frac{1}{2} \underbrace{\left(\Delta u + \Delta d + \Delta s\right)}_{}$$

Spin des quarks $\Delta\Sigma\sim0.33$

Différentes contributions

$$\frac{1}{2} = \frac{1}{2} \underbrace{\left(\Delta u + \Delta d + \Delta s\right)}_{} + \underbrace{\Delta G}_{}$$

Spin des quarks

$$\Delta\Sigma\sim0.33$$

Spin des gluons $|\Delta G| < 0.3$

D'où vient le spin du nucléon?

Différentes contributions

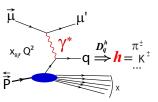
$$\frac{1}{2} = \frac{1}{2} \underbrace{(\Delta u + \Delta d + \Delta s)}_{} + \underbrace{\Delta G}_{} + \underbrace{L_g + L_q}_{}$$

Spin des quarks $\Delta\Sigma \sim 0.33$

Spin des gluons $|\Delta G| < 0.3$

Moments orbitaux $L_{q+g} = ??$

- ullet Sensibilité à la distribution de partons o processus DIS
- Sensibilité à la polarisation \rightarrow faisceau et cible polarisés


Diffusion profondément inélastique polarisée

Définitions

Q^2	virtualité du photon
XBj	fraction d'impulsion du quark

 D_q^h : Fonction de fragmentation du quark q en hadron h

$$q = u, d, s \Rightarrow D_q^h \Rightarrow h = \pi^{\pm}, K^{\pm}$$

Section efficace DIS

$$\frac{\frac{d^2 \, \sigma}{dx_{Bj} dQ^2}}{\underbrace{c_1 \, F_1(x_{Bj}, \, Q^2) + c_2 \, F_2(x_{Bj}, \, Q^2)}_{\text{fonctions de structure non-polarisées}} + \underbrace{c_3^{s, S} \, \underbrace{g_1(x_{Bj}, \, Q^2) + c_4^{s, S} \, g_2(x_{Bj}, \, Q^2)}_{\text{fonctions de structure polarisées}}$$

Modèle des partons QCD 1er ordre

$$F_1(x_{Bj}, Q^2) = \frac{1}{2} \sum_q e_q^2 q(x_{Bj})$$

$$F_2(x_{Bj}, Q^2) = x_{Bj} \sum_q e_q^2 q(x_{Bj})$$

$$g_1(x_{Bj}, Q^2) = \frac{1}{2} \sum_q e_q^2 \Delta q(x_{Bj})$$

$$g_2(x_{Bj}, Q^2) = 0$$

- 4 ロ ト 4 個 ト 4 種 ト 4 種 ト - 種 - 约 Q ()

Dipôle 1

RICH

• Faisceau polarisé de μ^+ du SPS

 $1\cdot 10^8/2\cdot 10^8~\mu$ par déversement de $\sim 10~\text{s}$ 200 GeV/160 GeV

 P_{μ} =80%

Dipôle 2

• Spectromètre :

• Deux étages sur 60 m

• Grande acceptance 180 mrad

• Cible, 1.2 m de long :

ProtonDeuton

Cible polarisée dans un champ de solénoïde à 2.5 T

Terrorde d 2.5 T

Extraction de g_1 à partir de la double asymétrie de spin

Faisceau et cible polarisés longitudinalement

Asymétrie photon virtuel-nucléon

$$A_1 \simeq rac{1}{D} rac{d\sigma^{
ightleftarrow} - d\sigma^{
ightleftarrow}}{d\sigma^{
ightleftarrow} + d\sigma^{
ightleftarrow}}$$

D : facteur de dépolarisation Transfert de polarisation du faisceau au photon virtuel

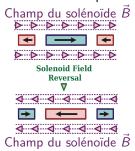
Fonction de structure du spin

$$A_1 \simeq \frac{g_1}{F_1}$$

F₁ : fonction de structure non-polarisée Très bien connue

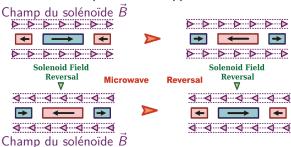
$$\Rightarrow g_1 \simeq F_1 \cdot A_1$$

$$\frac{d\sigma^{\rightleftharpoons} - d\sigma^{\Rightarrow}}{d\sigma^{\rightleftharpoons} + d\sigma^{\Rightarrow}} = \frac{1}{|P_B P_T| f} \left(\frac{N^{\rightleftharpoons} - N^{\Rightarrow}}{N^{\rightleftharpoons} + N^{\Rightarrow}} \right)$$


Mesure simultanée des deux états de spin dans une cible à cellules avec polarisations opposées

$$\frac{d\sigma^{\rightleftharpoons} - d\sigma^{\Rightarrow}}{d\sigma^{\rightleftharpoons} + d\sigma^{\Rightarrow}} = \frac{1}{|P_B P_T| f} \left(\frac{N^{\rightleftharpoons} - N^{\Rightarrow}}{N^{\rightleftharpoons} + N^{\Rightarrow}} \right)$$

Mesure simultanée des deux états de spin dans une cible à cellules avec polarisations opposées


Rotation du champ du solénoïde ⇒ suppression des différences d'acceptance

Cible polarisée

$$\frac{d\sigma^{\rightleftharpoons} - d\sigma^{\Rightarrow}}{d\sigma^{\rightleftharpoons} + d\sigma^{\Rightarrow}} = \frac{1}{|P_B P_T| f} \left(\frac{N^{\rightleftharpoons} - N^{\Rightarrow}}{N^{\rightleftharpoons} + N^{\Rightarrow}} \right)$$

Mesure simultanée des deux états de spin dans une cible à cellules avec polarisations opposées

Rotation du champ du solénoïde \Rightarrow suppression des différences d'acceptance Changement des fréquences micro-onde \Rightarrow suppression de la corrélation champ/acceptance

マロケス倒り マラケスラケーラ

Deux sortes de contributions : $\begin{cases} - & \text{Multiplicatives} \\ - & \text{Additives} \end{cases}$

$$A_1^{1\gamma} = \frac{1}{fDP_BP_T}A^{raw} - \left(A_1^{RC} + A_2 + A_{fausses}\right)$$

			I
	Polarisation du faisceau	dP_F/P_F	5%
Variables	Polarisation de la cible	dP_C/P_C	5%
Multiplicatives	Facteur de dépolarisation	dD/D	2 – 3 %
ΔA_1^{mult}	Facteur de dilution	df/f	2 %
	Total		$\Delta A_1^{mult} \simeq 0.08 A_1$
Variables	Asymétrie transverse	ΔA_2	$10^{-3} - 10^{-2}$
Additives	Corrections radiatives	ΔA_1^{RC}	$0.1 \cdot Max(A_{1, incl}^{RC} , A_{1, hadr}^{RC}) = 10^{-5} - 10^{-3}$
ΔA_1^{add}	Fausses asymétries	$\Delta A_{fausses}$	$< 0.3:0.8\cdot\Delta A_1^{stat}$ (Dominant)

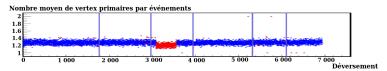
40.49.41.41. 1 000

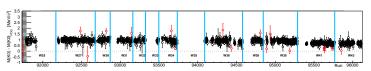
Estimation d'asymétries non-physiques

- Mauvaise combinaison d'états de spin :
 - Asymétrie de l'appareillage
- Droite-gauche & Haut-bas :

- Anisotropie d'efficacité 🗸
- Amont-aval & centrale-centrale :
 - Inhomogénéité de la polarisation et effet d'acceptance 🗸
- Jour-nuit :
- Dilatation de l'appareillage et bruit électronique
- Tranche de la cible :

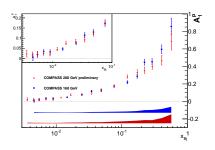
- Remplissage de la cible
- Variation dans le temps (5 mois) : Echantillonnage et vérification de dispersion statistique X

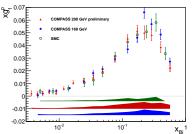

Erreurs systématiques de 0.007 à 0.09 = fraction de l'erreur statistique


Vincent Andrieux (CEA-Saclav)

Réduction de l'impact de l'appareillage

- ullet Stabilité déversement/déversement du faisceau : \sim 120 000 déversements
 - 416 plans de détection (efficacité)
 - ullet \sim 50 distributions de variables de reconstructions

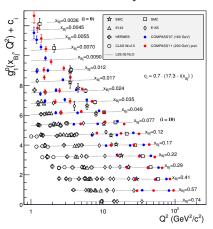



- Stabilité run/run : ~ 4000 runs
 - ullet Mesure de la masse du K_s
 - Mesure de x_{Bj} des évènements élastiques $(\mu e o \mu e)$

⇒ Rejet des instabilités locales & Regroupement des périodes stables

Résultat $A_1 \& g_1$ proton à 200 GeV

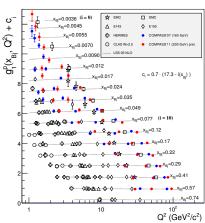
- ▲ COMPASS 200 GeV
- COMPASS 160 GeV
- O SMC 190 GeV


Résultats

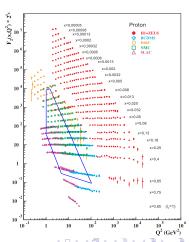
- Erreurs statistiques (2007 et 2011) 2-3 fois plus faibles que SMC (1994 et 1996)
- Plus faible valeur de x_{Bj} atteinte
- A chaque x_{Bj} un plus grand Q^2

Mesure indirecte de AG

Données mondiales $g_1^p(x, Q^2)$ en fonction de Q^2 pour chaque valeur de x_{Bi}

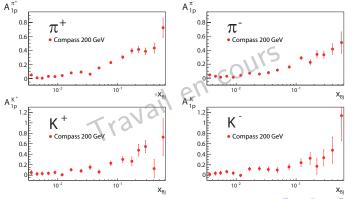

- COMPASS 200 GeV
- COMPASS 160 GeV

- Domaine étendu en (x, Q^2)
- Grande précision

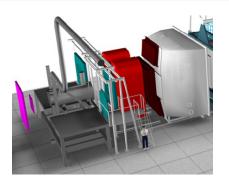

Nouvelles données pour l'analyse globale des données mondiales Equations DGLAP :

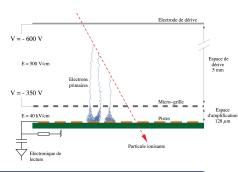
$$\frac{\partial g_1^P}{\partial \ln(Q^2)} \Rightarrow \Delta G$$

Données mondiales $g_1^p(x, Q^2)$ en fonction de Q^2 pour chaque valeur de x_{Bj}


Fonction de structure non-polarisée : $F_2^p(x, Q^2)$

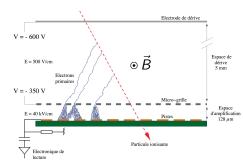
Polarisation des quarks par saveur : Δu , Δd , Δs


Asymétrie semi-inclusive : $\mu P \rightarrow \mu h X$


 $A_1^h = rac{\sum_q e_q^2 \Delta q(\mathbf{x}) D_q^h}{\sum_a e_a^2 q(\mathbf{x}) D_a^h}$, le hadron étiquette la saveur du quark.

Caractérisation des détecteurs Micromegas

Caractéristiques :


La région la plus difficile du trajectographe

- Très haute intensité
- En sandwich entre le solénoïde et le premier dipôle

Caractérisation des détecteurs Micromegas

Travail expérimental complémentaire à l'analyse

- Efficacités et résolutions des Micromegas
- Correction de l'angle de Lorentz
- Caractérisation de prototypes Micromegas Pixellisés pour le futur de COMPASS (banc cosmigue)

Conclusions

Résultats

- \rightarrow Mesure de g_1^p à 200 GeV (Publication en cours de rédaction) :
 - Grande précision aux petits x_{Bj} avec de plus grands Q^2 sur un domain étendu
 - Nouvelles contraintes pour les analyses QCD globales

Perspectives

- Mesure indirecte de ΔG via les fit globales de g_1
- Extraction de $A_{1,p}^{\pi^+}$, $A_{1,p}^{\pi^-}$, $A_{1,p}^{K^+}$ et $A_{1,p}^{K^-}$
- Extraction de Δu , Δd , Δs

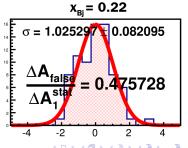
Détecteur : Caratérisation des Micromegas

- Données faisceau & Tests cosmiques
- Mesure et correction de l'angle de Lorentz

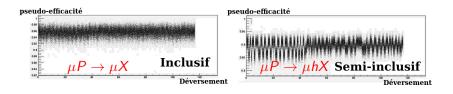
16/15

10.1

10.2



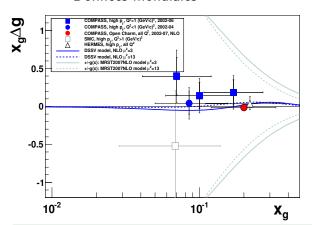
Exemple de dispersion de l'asymétrie sur l'année pour $x_{Bj}=0.22$ Elargissement de la distribution \rightarrow utilisé dans les erreurs systématiques


Hypothese d'asymétrie Jour-Nuit nulle :

$$\chi^2/ndl = 10.9/16$$

Pas d'effet visible aux erreurs statistiques prêts

Oscillations de la distributions d'efficacité des détecteurs Micromegas avec les renversements de la polarisation dans le canal $\mu P \rightarrow \mu h X$



Les hadrons peu énergétiques de l'état final sont fortement sensibles aux champs de fuite du solénoïde

6 : Mesure directe de la polarisation des gluons

Données mondiales

PLB 718 (2013) 922 Hight p_T

PRD subm. 2013 Open charm

- 5 mesures de COMPASS
- ullet $\Delta G \sim 0$ dans la région mesurée

COMPASS-II : Programmes majeurs

- Drell-Yan polarisé (spin transverse et TMDs)
- Diffusion Compton virtuelle (GPDs)

La diffusion Compton virtuelle $\mu \, \mathbf{p} o \mu \, \mathbf{p} \, \gamma$

Mesure des distributions de partons généralisées

- \Rightarrow Tomographie du proton :
 - → Position transverse
 - ightarrow Impulsion longitudinale
- ⇒ Accès au moment orbital

- Détecteur du proton de recul (2012)
- Micromegas résistifs pixelisés (en cours)

Prises de données :

- run pilote 2012
- 2 années en 2016-17

996