

Introduction to the superconducting magnets development at IMP

Wei Wu

Magnet & Mechanical technique group

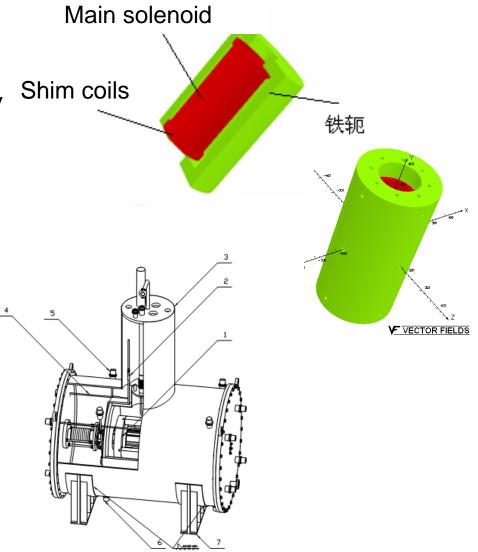
Nov. 24, 2014

Institute of Modern Physics , Chinese Academy of Sciences

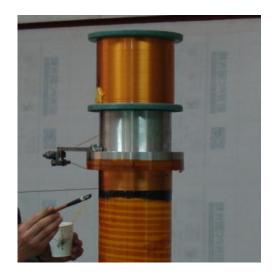
wuwei@impcas.ac.cn

Outline

- We started with solenoids
- Research fundamentals
- Projects in progress
 - Progress of the SECRAL II superconducting magnet
 - Progress of Fast-cycling dipole prototype for HIAF
 - R&D of tilted solenoid type dipole
- Future plans
 - Superconducting magnets for HIAF and ADS
 - >The next generation ECRIS superconducting magnet
 - Superconducting magnets for Cancer Therapy Facility


We started with solenoids

- 3T solenoid with cold iron yoke
- 5T active shielding
- Low stray field focusing solenoid for ADS
- 7T magnet for Lanzhou Penning Trap


3T solenoids with cold iron yoke (1)

- This is our first self-developed superconducting magnet (2009);
- Two shim coils at the ends was designed to improve homogeneity
- Cold iron yoke is used to lower stray field

Magnetic field in the center	Т	3.004
Operating current	А	270
Operating temperature	K	4.2
Inductance	H	1.5
Stored energy	kJ	57
Field constant	G/A	111
Diameter of warm bore	mm	70
Outer diameter of cryostat	mm	870
Cryostat length	mm	790

3T solenoids with cold iron yoke (2)

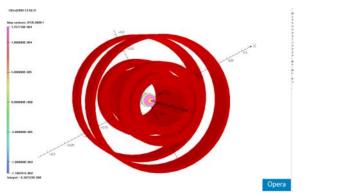
Wet winding

Cold iron yoke

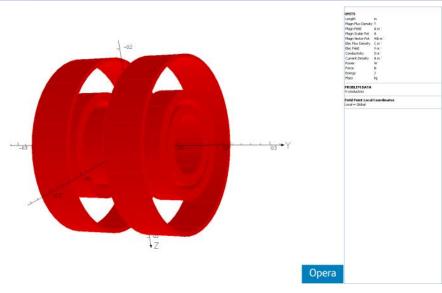
Cryostat

Testing

With this magnet, we explored:


- The winding techniques
- Cryostat fabrication techniques
- Cryogenic testing techniques

Finished

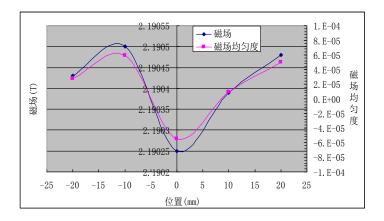

5T actively shielding solenoid(1)

- This magnet is similar to the NMR design;
- The shape and position of each coil is optimize to achieve good homogeneity;
- Bulking coils are used to minimum stray field.

Central field	5T
Inner diameters	120 mm
Outer radius	360mm
Length	250mm

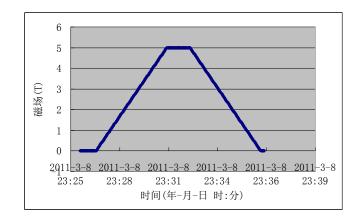
100ppm without shimming, Φ 40 DSV

Coil configurations



5 Gauss line about 1 meter from center

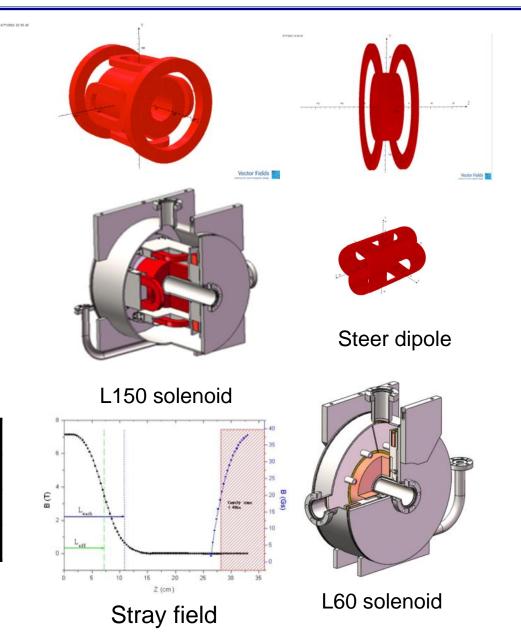
5T active shielding solenoid(2)


Finished winding

Field homogeneity

Cryogenic testing

Charging and discharging


ADS low stray field focusing solenoid

These two kinds of solenoids is

developed for ADS superconducting

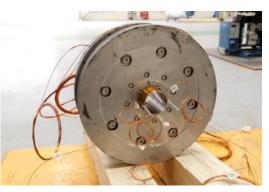
Linac as strong focusing element

between two SC cavity

ADS solenoid parameters

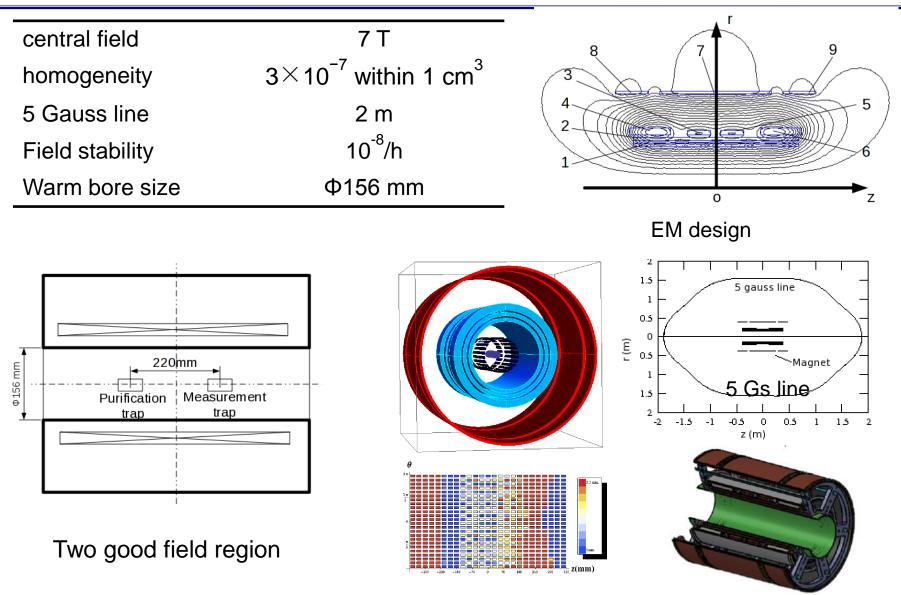
Central field	3 T-7 T
Bore	40 mm
Effective length	150 mm , 60mm
Fringe field	<200 Gs

ADS low stray field focusing solenoid



Winding process (L60) Steering dipoles (L60)

Three L150 solenoid has been finished and tested



Assembled L60 solenoid

Installed in the Cryomodule

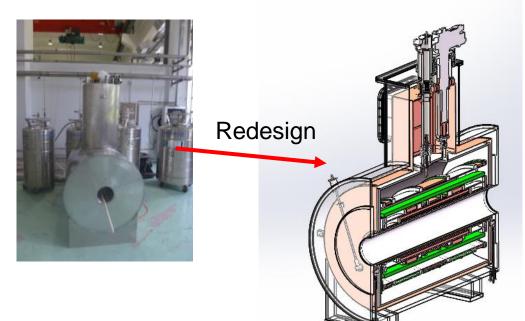
7T magnet for Lanzhou Penning Trap

Passive shimming

Coil bobbin

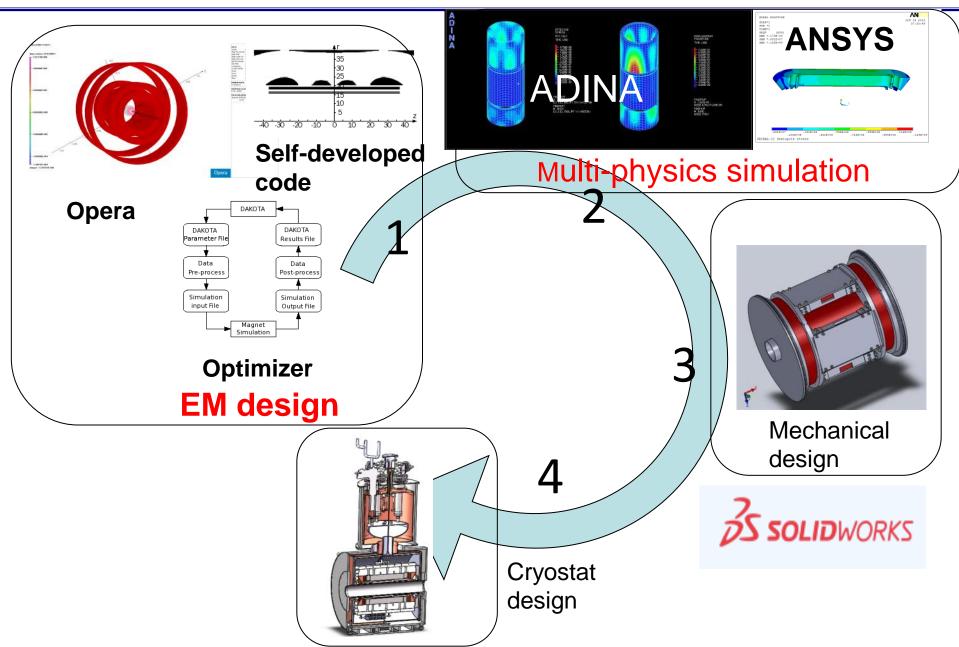
7T magnet for Lanzhou Penning Trap

Winding



Finished winding

Assembly



Research fundamentals

SC magnet design process and tools;

- SC magnet manufacturing;
- Testing

SC Magnet design process and tools

Xi'an Superconducting Magnet Technology Co., Ltd.

Testing

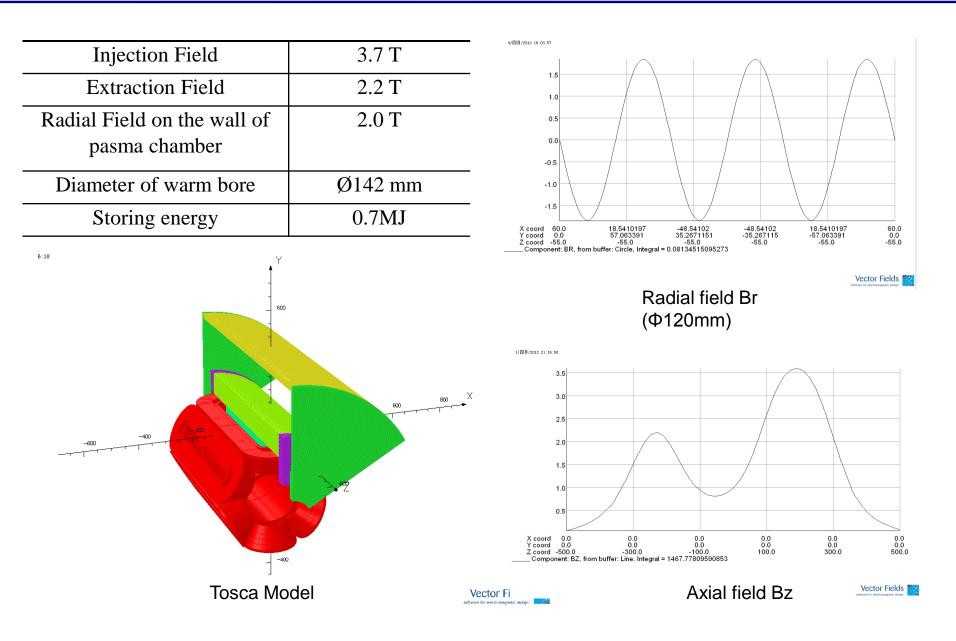
- Linde LR280 refrigerator;
- Several testing dewar (200mm 800mm);
- NI PXI based data-acquisition system

LR280

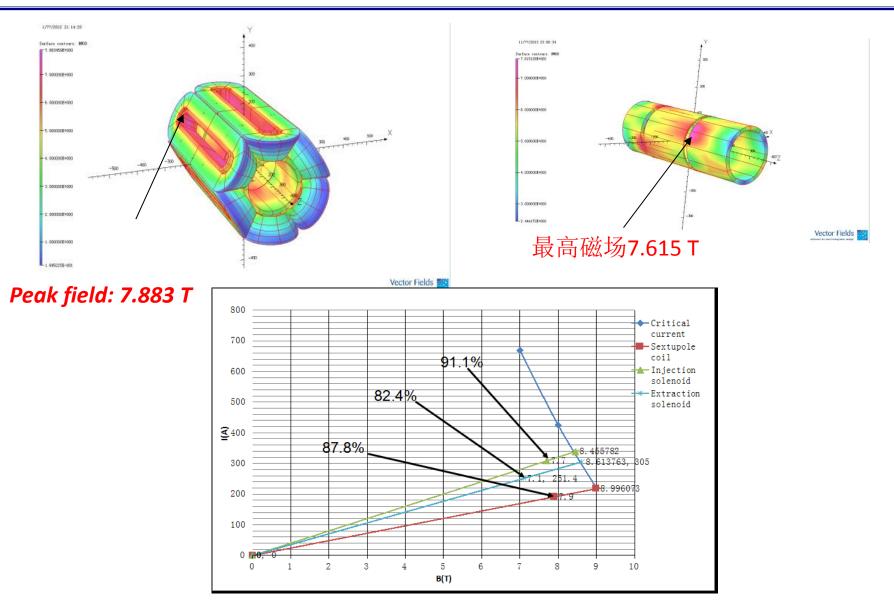
Data-acquisition system

Φ 300mm Dewar

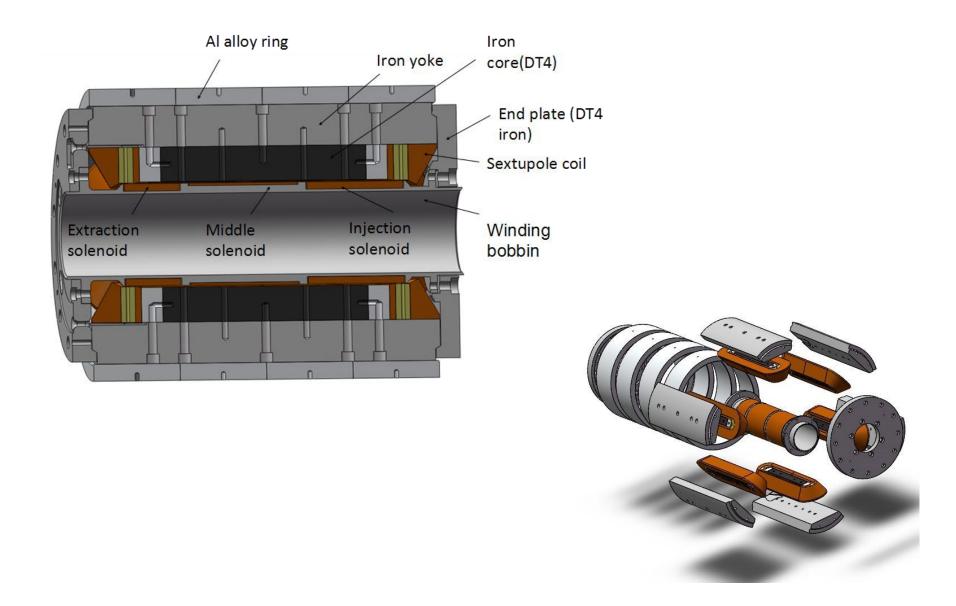
Φ 800mm Dewar

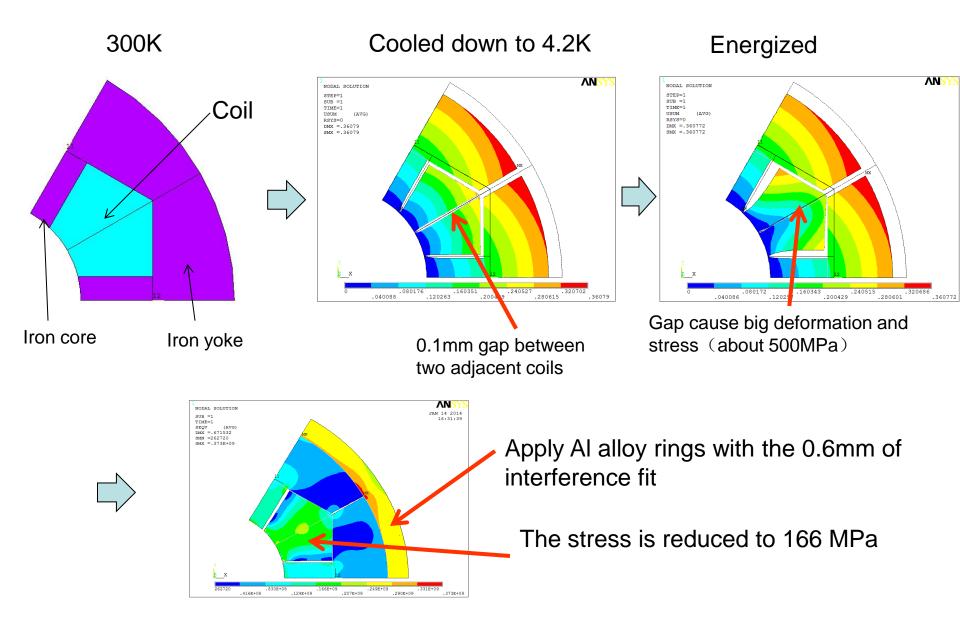

Projects in progress

SECRAL II SC ECRIS(28 GHz) magnet

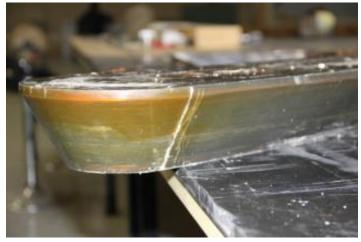

Fast-cycling dipole prototype for HIAF

R&D of tilted solenoid type dipole


SECRAL II magnet (EM Design)


SECRAL II magnet (EM design)

SECRAL II magnet (Cold mass design)


SECRAL II magnet (Stress anlysis)

SECRAL II magnet (Fabrication)

Wet winding

After vacumm impregantion

Finished racetrack coils

Trial assembly

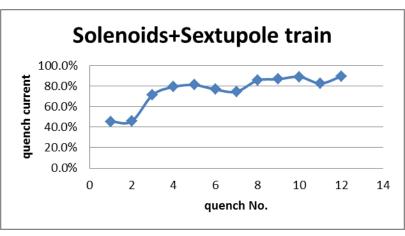
SECRAL II magnet (Fabrication)

Remember the position with pin

Remove the coils and process the iron yoke assembly to improve the precision

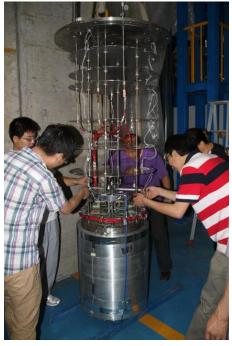
shrinkage fit(150°C)

Finished


SECRAL II magnet (Testing)

Winding completed in 2013, begun to assemble in 2014
In June 2014, the cold mass was dilverd to IMP for testing

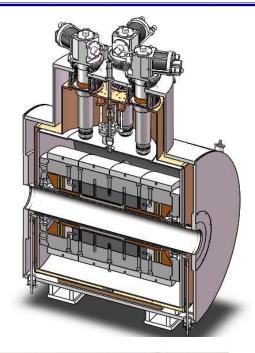
✤After 10 times quench, 90% of design value was achieved



Finished assembly

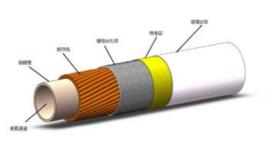
Ready for testing

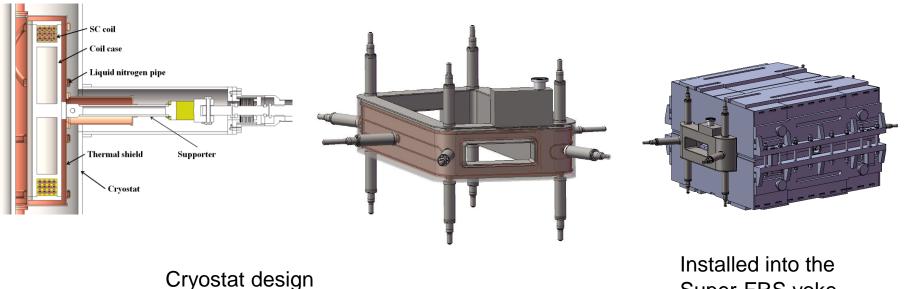
Installed into testing dewar



Cool down

SECRAL II magnet (Cryostat fabrication)



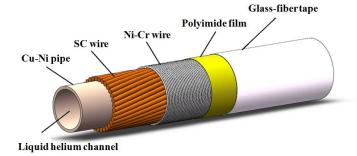


Prototype dipole for HIAF BRing (Design)

- Base on the Super-FRS * dipole's design;
- Use nuclotron type cable to achieve cycling rate of 2T/s;

Super-FRS yoke

Prototype dipole for HIAF BRing


(CACC Cable)

Advantages:

- Good performance of mechanical stability
- Lower eddy current loss
- Good performance of cooling
- Withstand high voltage

Structure of cable:

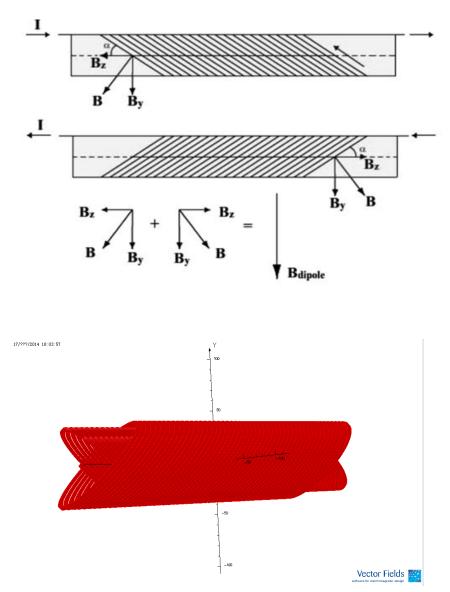
- Cu-Ni pipe: inner radius 6 mm with thickness
 0.5 mm
- > NbTi superconducting wire: diameter 0.7 mm
- > NiCr (0.3 mm) wire is wound for SC wire
- > The polyimide film (0.1 mm) is half wrapped one layer
- The Glass-fiber tape (0.1 mm) is half wrapped two layer

Superconducting cable

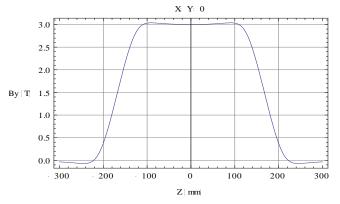
Parameters of SC wire					
Diammeter	0.7 mm				
Filament diameter	5 μm				
Twist pith on filaments	8~12 mm				
Ratio of Cu and SC	>1.6				
Numbers of wire in cable	33				
Twist of wire	115±5 mm				
Critical current Ic of wire	>600 A (3 T, 4.2 K)				
Critical current Ic of cable	>19.8 kA(3 T, 4.2 K)				

Prototype dipole for HIAF BRing (Design)

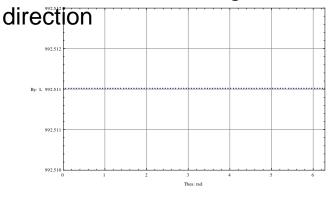
 Finished the coil winding and expoxy impregnation;


 The cryostat has been fabricated and assembled

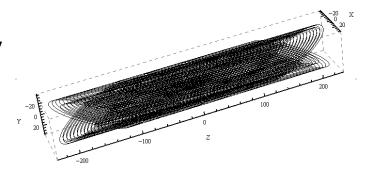
 Waiting for the feeding box, cryogenic system, current leads and power supply to do cryogenic testing

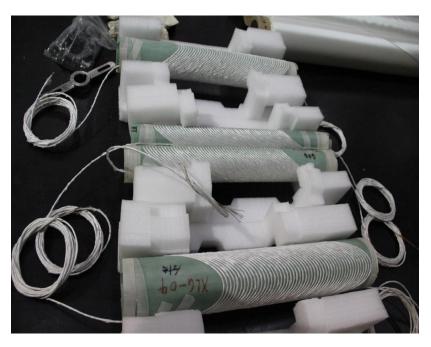

Tilted solenoid dipole

- First suggested by D.I. Meyer and R. Flasck in 1970
- BNL & LBNL have started the R&D
- Compared with conventional cosinetheta coil, screwed solenoid coil is an almost perfect approximation of a cosine-theta magnet, thus yields very good field distribution(especially for integral field)
- The combined function coil can be easily achieved
- Avoid tight bends for the ends of the coils
- Has good application prospect in particle accelerator: synchrotron, FFAG, Heavy ion Gantry



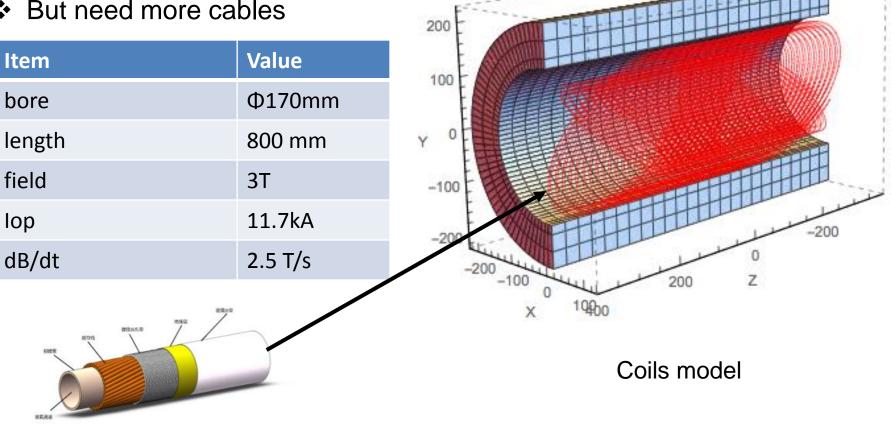
Tilted solenoid dipole


- A 3T dipole with Φ50mm bore was designed and fabricated
- This sample aims to explore the possibility of tilted solenoid dipole used in synchrotron



Field distribution along beam

Integral field homogeneity



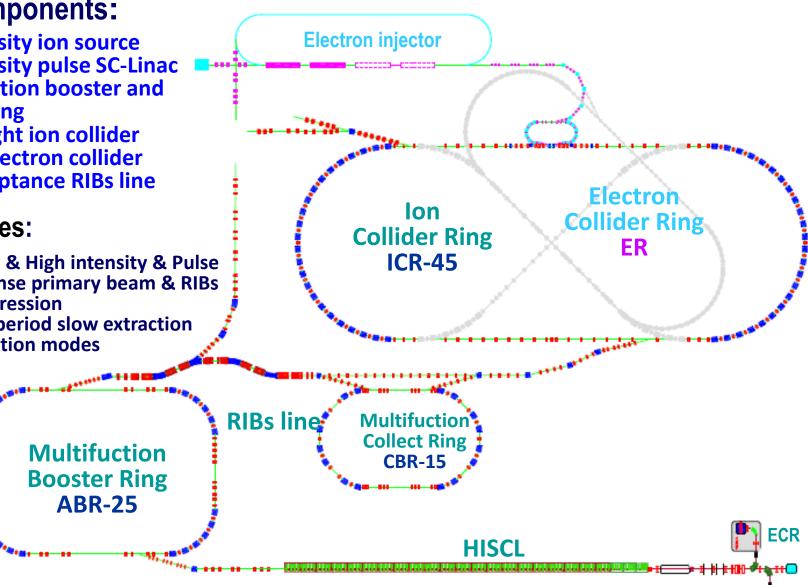
Finished winding, to be vacuum impreganated and assembled

Prototype dipole for HIAF CRing (Design)

- Winding tilted solenoids with CACC cable
- ↔ alternative to superferric design & $cosn\theta$ design
- ✤ High quality field
- Simpler structure and cryostat
- But need more cables

Future plans

- Superconducting magnet system for HIAF
- Superconducting magnets for Chian ADS
- ➢ Next generation SC ECR source(50 GHz)
- Supercoducting magnets for Cancer therapy facility


The Layout of HIAF Complex

> Main Components:

- > High intensity ion source
- High intensity pulse SC-Linac
- Multi-function booster and collector ring
- Long straight ion collider
- Figure-8 electron collider
- Large acceptance RIBs line

Key features:

- High energy & High intensity & Pulse
- Cooled intense primary beam & RIBs
- Beam compression
- Super long period slow extraction
- Multi-operation modes

LIS

Schedule for early stage work

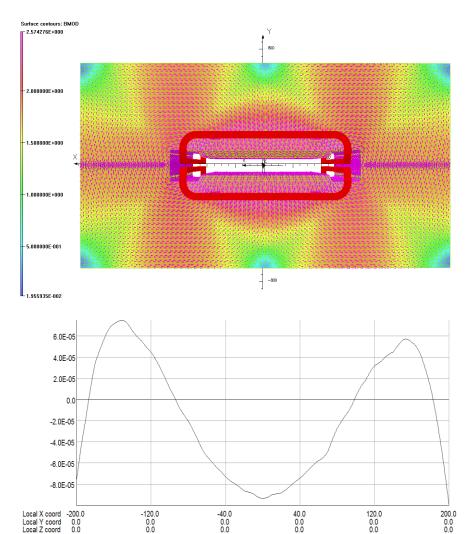
Project proposal: refered to National Development and Reform Commission (NDRC) in Sep 2014; Approval expected in March, 2015

Land expropriation: March, 2015

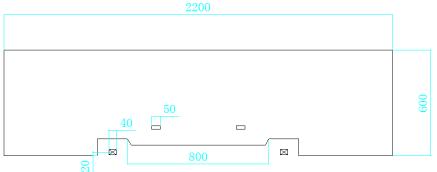
Site formation: December, 2015

PT 714		GANTT project	$\mathbf{\mathbf{x}}$		2014 大月 -{	1 1	<u>院省∜上报</u> ┃	<u>料四、1</u> 月 十月		<u>规划完成</u> ┃	规批复	<u>後改委</u> +月 +-	201 五、2.场平开 月十二月一月	五月
名称		a management to the state	开始日期	结束日期										
► - 4		、1.项目建议书阶段	14-8-25	15-2-27								 		
▶ (、2.可行性研究阶段	15-3-02	16-1-29										
▶ (、3.初步设计阶段	16-2-01	17-1-31										
▶ (ə —	、4.开工报告阶段	17-2-01	17-8-31										
	• _	、1.院省领导小组第一次会议	14-6-30	14-6-30	•									
(• <u> </u>	、2.领导小组2014年工作会议(提出需解决	14-9-29	14-9-29				•						
(₽ <u> </u>	、3.成立工程筹备组	14-8-01	14-9-30										
	• <u> </u>	、4.成立地方法人	14-8-19	14-9-30										
(Ξ	、政府匹配项目经费计算	14-8-01	14-10-31										
	◎四	、1.园区初步规划评审	14-9-30	14-9-30				٠						
	∍四	、2.划定蓝线、开始征地前工作	14-10-01	14-10-01				•						
	◎四	、3.地形图测绘、地质初勘	14-8-19	14-11-28										
(∍四	、4.园区控制性规划(含单体建筑)	14-12-15	15-2-27										
	◎四	、5.划定红线,开始征地(控规批复,项建书	15-3-02	15-3-02					•					
	◎四	、6.编制园区详规、批复	15-3-02	16-2-01										
	0	完成地质详勘、总图编制	15-3-02	15-9-30										
	0	施工图设计、单体建筑设计	15-10-01	16-2-01										
	◎五	、1.场平规划完成	15-2-02	15-2-02					•					
(◎五	、2.场平开工	15-12-01	15-12-01									٠	
	◎ 六	、总部区入驻	17-6-01	17-6-01										
	◎七	、社会稳定风险分析	14-10-01	15-2-27										
	■ 八	、环境影响评价	15-2-02	15-7-31										

Superconducting magnets for HIAF project


Name	Number	Parameters
Dipoles for BRing	32	R=6 m, L=2.36m φ=22.50, Bmax=2.25T A= 275mm×70mm
Dipoles for SRing	16	R=19.2m, L=2.51m ∳=7.5°, Bmax=2.25T A= 114mm×54mm
Dipoles for CRing	48	R=19.2m, L=2.51m ∳=7.5°, Bmax=2.25T A= 114mm×54mm

Main parameters of B-ring dipole magnet


Parameters	Values	Unit
Magnetic field	2.25	Т
Gap	120	mm
Good field region	$\pm 160 \times 110$	mm
Curvature radius	20	m
Bending angle	7.5	deg
Effective length	2618	mm
Integral field quality	$\pm 3 \times 10^{-4}$	
Ramping rate	1.125	T/s

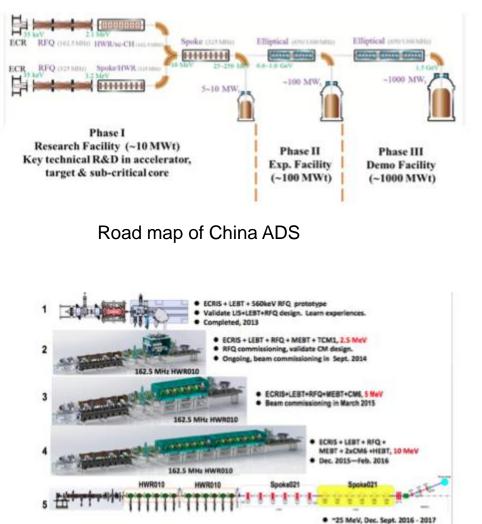
3-D magnetic field analysis

> The horizontal field homogeneity of high field level is up to $\pm 1 \times 10^{-4}$

Component: BY/2.26115-1, from buffer: Line, Integral = -5.348576571E-03

China ADS Project


The ultimate goal of the ADS research in China is to establish an industrial-scale demo facility for nuclear waste transmutation through the following three phases:


Phase 1: To resolve the key technology issues related to the accelerator, spallation target, and sub-critical core of ADS, and then start building a 10 MWt research system

Phase 2: To construct an experimental system of several hundreds of MWt around 2030.

Phase 3: To construct a demo system around 2040.

Hundreds of

Next generation SC ECR source(50 GHz)

Nb3Sn- 80 GHz

NbTi- 50 GHz

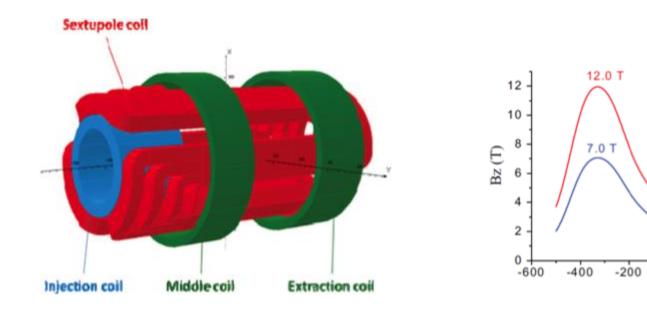
5.8 T

3.5 T

400

600

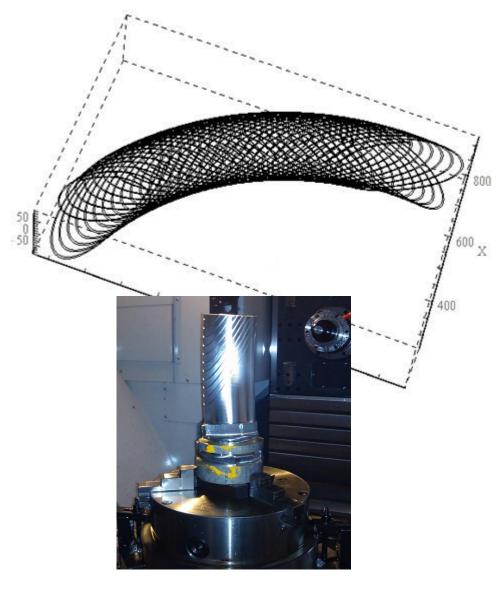
200


2.9

1.7 T

0

Z (mm)


- Higher field;
- New type and configuration of coils to optimize the EM force;
- All NbTi coils;
- Difficult to fabricate;

SC magnets for Cancer therapy facility

MAGNET GEOMETRY					
Torus curvature radius	833mm				
Clear bore diameter	150mm				
Coil inner diameter	173mm				

MAGNETIC PARAMETERS					
Central dipole field	3.6T				
Turns	250				
Number of layers	4				
Current	2500A				

Trial process of a test former

Thanks for your attention!