RECENT RESULTS FROM THE ICECUBE NEUTRINO OBSERVATORY

CHAD FINLEY OSKAR KLEIN CENTRE STOCKHOLM UNIVERSITY

CEA SACLAY

Photo: Sven Lidström

2015 JANUARY 19

The Big Picture

Chad Finley (OKC, Stockholm University) - CEA Saclay 2015 Jan 19

The Big Picture

Chad Finley (OKC, Stockholm University) - CEA Saclay 2015 Jan 19

Chad Finley (OKC, Stockholm University) - CEA Saclay 2015 Jan 19

Hajo Drescher, Frankfurt U.

time = -300 µs

Hajo Drescher, Frankfurt U.

The Cosmic Ray Spectrum

Extraordinary particle accelerators **somewhere**, but still **poorly identified** after a century

- Supernova remnants?
- Active galactic nuclei?
- Gamma ray bursts?

Cosmic ray interactions with matter and photons near source produce:

$$p + N \to X + \{\pi^+, \pi^-, \pi^0\}$$
$$\pi^0 \to \gamma + \gamma$$
$$\pi^+ \to \mu^+ + \nu_\mu$$
$$\mu^+ \to e^+ + \nu_e + \bar{\nu}_\mu$$

Chad Finley (OKC, Stockholm University) - CEA Saclay 2015 Jan 19

(W. Hanlon after S. Swordy)

Chad Finley (OKC, Stockholm University) - CEA Saclay 2015 Jan 19

Chad Finley (OKC, Stockholm University) - CEA Saclay 2015 Jan 19

The IceCube Collaboration

University of Alberta

Stockholm University **Uppsala Universitet**

Niels Bohr Institute

University of Oxford University of Manchester

Ecole Polytechnique Fédérale de Lausanne University of Geneva

Université Libre de Bruxelles Université de Mons University of Gent Vrije Universiteit Brussel

Deutsches Elektronen-Synchrotron Humboldt Universität Ruhr-Universität Bochum **RWTH Aachen University** Technische Universität München Universität Bonn Universität Dortmund Universität Mainz Universität Wuppertal University of Erlangen

International Funding Agencies

Clark Atlanta University

Ohio State University

Stony Brook University

University of Alabama

University of Delaware

University of Maryland

University of Kansas

Georgia Institute of Technology

Pennsylvania State University

University of Alaska Anchorage

University of California-Berkeley

University of Wisconsin-Madison

University of Wisconsin-River Falls

University of California-Irvine

Lawrence Berkeley National Laboratory

Southern University and A&M College

Fonds de la Recherche Scientifique (FRS-FNRS) Fonds Wetenschappelijk Onderzoek-Vlaanderen (FWO-Vlaanderen) Federal Ministry of Education & Research (BMBF) German Research Foundation (DFG)

Deutsches Elektronen-Synchrotron (DESY) Inoue Foundation for Science, Japan Knut and Alice Wallenberg Foundation Swedish Polar Research Secretariat The Swedish Research Council (VR)

Foundation (WARF)

Photo: Haley Buffman

IceCube **Neutrino Observatory**

Photo: Haley Buffman

IceCube Neutrino Observatory

86 strings

60 Optical Modules per string

5 160 total modules in Ice

1 km³ = Gigaton instrumented volume

Began full operations May 2011

DeepCore Low-energy Extension

Dark Matter, Neutrino Oscillations

Chad Finley (OKC, Stockholm University) - CEA Saclay 2015 Jan 19

High Energy Neutrino Detection Principles

Chad Finley (OKC, Stockholm University) - CEA Saclay 2015 Jan 19

[Ons, 11000ns]

Run 114305 Event 10091078 [Ons, 12000ns]

Run 114305 Event 10091078 [Ons, 13000ns]

Run 114305 Event 10091078 [Ons, 14000ns]

Hit Modules:

zenith: Azimuth: Angular Unc.:

Long track, excellent pointing

Neutrino interaction happens at unknown distance before detector:

> **Energy measured** is lower bound for track events

Run 114305 Event 10091078

[Ons, 14000ns]

Photons produced by Neutrino Interactions

Track topology

Energy measured: lower bound

Good pointing: 0.2° - 1°

Photons produced by Neutrino Interactions

Track topology

Energy measured: lower bound

Good pointing: 0.2° - 1°

Cascade topology

Good energy resolution, 15%

Some pointing, 10° - 15°

time delay s. direct liah

"on tim

delayed

Track topology

Energy measured: lower bound

Good pointing: 0.2° - 1°

Cascade topology

Good energy resolution, 15%

Some pointing, 10° - 15°

Photons produced by Neutrino Interactions

charged current

time delay vs. direct light

"on time" -

delayed

Photons produced by Neutrino Interactions

Track topology

Energy measured: lower bound

Good pointing: 0.2° - 1°

Cascade topology

Good energy resolution, 15%

Some pointing, 10° - 15°

charged current ν_τ 6 neutral current e

time delay s. direct liah

"on tim

delayed

~ 100 000 000 000 triggered events – mostly muons from cosmic rays above ice

~ 100 000 neutrino events – mostly from cosmic ray air showers

~ 100 astrophysical neutrinos – that we estimate so far...

Wide-ranging analysis topics across different data sets...

neutrino events mostly from cosmic ray air showers $\sim 100\ 000$

~ 100 astrophysical neutrinos – that we estimate so far...

 $\sim 100\ 000\ 000\ 000$ triggered events – mostly muons from cosmic rays above ice

 $\sim 100\ 000$ neutrino events mostly from cosmic ray air showers

~ 100 astrophysical neutrinos – that we estimate so far...

Chad Finley (OKC, Stockholm University) - CEA Saclay 2015 Jan 19

(arXiv:1410.7227)

~ 100 000 000 000 triggered events – mostly muons from cosmic rays above ice

~ 100 000 neutrino events – mostly from cosmic ray air showers

~ 100 astrophysical neutrinos – that we estimate so far...

Extracting information about the ~ 10² astrophysical neutrinos requires many different analysis strategies and event selections.

Here I will focus on:

- High-Energy Starting Event Analysis (3-year)
- **Muon Neutrino Diffuse Analysis (2-year)**
- **Point Source Analysis (4-year)**

Chad Finley (OKC, Stockholm University) - CEA Saclay 2015 Jan 19

Chad Finley (OKC, Stockholm University) - CEA Saclay 2015 Jan 19

Chad Finley (OKC, Stockholm University) - CEA Saclay 2015 Jan 19

Require that event:

- Does not start in veto region
- Has at least 6000 photoelectrons

to region otoelectrons

Chad Finley (OKC, Stockholm University) - CEA Saclay 2015 Jan 19

Significance of astrophysical flux: **5.7** σ

Of the 36 events, ~ half are expected to be bkg (atm. muons and atm. neutrinos)

Astrophysical fit (and its significance) depends on number, direction, and energy

Shape (energy and zenith distribution) of signal and background is different...

distributions of astrophysical and

Schönert, Resconi, Schulz, Phys. Rev. D, 79:043009 (2009)

Gaisser, Jero, Karle, van Santen, Phys. Rev. D, 90:023009 (2014)

Assuming unbroken E⁻² spectrum, best-fit astrophysical normalization is:

$$E^2 \phi(E) = 0.95 \pm 0.3 \times 10^{-8} \,\text{GeV}\,\text{cm}^{-2}\,\text{s}^{-1}\,\text{sr}^{-1}$$

Lack of events above 2 PeV (3.1 expected in this analysis; more in the EHE analysis, PRL 111, 021103 (2013)) suggests unbroken E⁻² disfavored

Best power-law fit yields a spectral index of -2.3 (and fits 0 charm component):

 $E^{2}\phi(E) = 1.5 \times 10^{-8} (E/100 \text{TeV})^{-0.3} \text{GeV}\text{cm}^{-2}\text{s}^{-1}\text{sr}^{-1}$

Chad Finley (OKC, Stockholm University) - CEA Saclay 2015 Jan 19

More sophisticated analysis published this fall: PRD 91:022001 (2014)

Nested layers of vetoes

Series of lower energy thresholds

388 events selected in 2 years of data

87 ± 14 astrophysical neutrinos

Prompt component of background atmospheric neutrinos still not observed, but limits now:

 Φ_{prompt} < 1.52 × ERS Model

Best-fit astrophysical spectral index E^{-γ}

$$\gamma = 2.46 \pm 0.12$$

Chad Finley (OKC, Stockholm University) - CEA Saclay 2015 Jan 19

Diffuse Cosmic Background Radiation

5M light years Local Galactic Group

Universe becomes opaque for high energy Photons:

100M light years Virgo Supercluster

1G light years Local Superclusters

$\gamma + \gamma_{\text{background}} \rightarrow e^+ + e^-$

5M light years Local Galactic Group

Universe becomes opaque for high energy Photons: $\gamma + \gamma_{\text{background}} \rightarrow e^+ + e^-$

- Mean free path at:
- 10 TeV

100M light years Virgo Supercluster

1G light years Local Superclusters

5M light years Local Galactic Group

Universe becomes Photons:

Mean free path at:

- 10 TeV
- 100 TeV

100M light years Virgo Supercluster

1G light years Local Superclusters

opaque for high energy $\gamma + \gamma_{\text{background}} \rightarrow e^+ + e^-$

Virgo Supercluster

100M light years

5M light years Local Galactic Group

Photons:

Mean free path at:

- 10 TeV igodol
- 100 TeV lacksquare

1 PeV

1G light years Local Superclusters

Universe becomes opaque for high energy $\gamma + \gamma_{\text{background}} \rightarrow e^+ + e^-$

5M light years Local Galactic Group

Universe is energies

100M light years Virgo Supercluster

1G light years Local Superclusters

transparent to neutrinos at all

Diffuse Cosmic Background Radiation

Chad Finley (OKC, Stockholm University) - CEA Saclay 2015 Jan 19

pp interactions can produce IceCube PeV

corresponding PeV gamma flux cascades down, fits Fermi flux

Allow events to enter from **outside** detector, use Earth as filter against muons from cosmic rays

Track events from muon neutrinos

Good pointing: ~ 0.5°

 \log_{10} muon energy resolution ~ 0.3 (at energies ~ 100 TeV)

Complementary analysis to Starting Event analysis

Energy estimate for the muon track. Only lower-bound on neutrino energy (interacted before reaching detector)

4.0 $\left[10^{-8}\,{
m GeVcm^{-2}\,s^{-1}\,sr^{-1}}\,
ight]$ Still only upper limits on prompt Differential Spectrum (best-fit, charm component floats to zero) 3.5 Differential Spectrum (fit with charm fixed at IC59 90% C.L.) background. 3.0 **Starting Events Differential Spectrum** Best fit for E⁻² astrophysical 2.5 spectrum is: 2.0 Muon Neutrino E⁻² fit 1.5 $0.96 \pm 0.35 \times 10^{-8} \text{ GeV}^{-1} \text{ cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$ $E_{\nu}^{2} dN_{\nu}/dE_{\nu}$ [0.0 Strengthens evidence that: 10⁵ 10^{6}

flux is all-sky

flavor ratio is 1:1:1

E⁻² flux implies there are ~ 100 astrophysical muon neutrino events in sample at lower energies...

or much more, if spectrum is softer than E⁻²

These events are nearly hidden in diffuse analysis, but can stand out in point source analysis

178 000 upgoing neutrinos

216 000 downgoing CR muons

Perform a search looking for significant clustering of events above random background expectation (unbinned maximum likelihood analysis)

Chad Finley (OKC, Stockholm University) - CEA Saclay 2015 Jan 19

Chad Finley (OKC, Stockholm University) - CEA Saclay 2015 Jan 19

Northern Sky sensitive for TeV – PeV

Southern Sky sensitive mainly > PeV

ANTARES sensitive to TeV – PEV in both skies

Point-source equivalent flux if the diffuse flux came from:

one point in the sky

100 points in the sky

Chad Finley (OKC, Stockholm University) - CEA Saclay 2015 Jan 19

Point-source equivalent flux if the diffuse flux came from:

one point in the sky

100 points in the sky

1000 points in the sky

Chad Finley (OKC, Stockholm University) - CEA Saclay 2015 Jan 19

Point-source equivalent flux if the diffuse flux came from:

one point in the sky

100 points in the sky

1000 points in the sky 64

Stacked Neutrino Point Source Search

using Fermi LAT catalog of 862 Blazars

No significant excess seen

Total flux upper limit is well below measured diffuse neutrino flux

Summary

Detection of astrophysical neutrino flux in TeV - PeV range

- Complementary analyses: all-flavor cascades and tracks (mainly southern sky) and muon-neutrino tracks (northern sky) agree on flux measurement.
- Consistent so far with simplest assumptions of:
 - diffuse, all-sky flux
 - 1:1:1 flavor ratio
- Spectrum can be reasonably fit with power law between E^{-2.2} and E^{-2.6}

Summary

Immediate Challenges

Diffuse:

Better measurement of spectrum: unbroken power-law, or features? Single all-sky component? Or mixture of extra-galactic and galactic component? **Equal Flavor ratio?**

Point source:

Galactic sources should be coming within reach (maybe unrelated to diffuse flux) Extragalactic sources individually fainter, but may be detected or constrained by stacking searches, or timing searches (e.g. GRBs)

With neutrino telescopes we now have a window onto the PeV universe!

graphic South P

Chad Finley (OKC, Stockholm University) - CEA Saclay 2015 Jan 19