Time variations of constants in cosmology

Jim Rich

SPP-IRFU CEA-Saclay 91191 Gif-sur-Yvette

james.rich@cea.fr

January, 2015

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - わへで

Time variations of constants in cosmology?

arXiv:1412.8160

Investigation of the fundamental constants stability based on the reactor Oklo burn-up analysis (M.S. Onegin)

arXiv:1412.7801

Searching for dark matter and variation of fundamental constants with laser and maser interferometry (Stadnik and Flambaum)

general ref on $\dot{\alpha}$: arXiv:hep-ph/0205340 (J.-P. Uzan)

Outline:

- $\dot{\alpha}$ from laboratory experiments
- $\dot{\alpha}$ from doublets in cosmological spectra
- $\dot{\alpha}$ from ancient nuclear reactors (Oklo)
- Some models of $\dot{\alpha}$

\dot{lpha} from laboratory experiments

Standard example: compare two clocks

- Hydrogen maser $u \sim h^{-1} lpha^4 (g m_e/m_p) m_e c^2$
- Cavity oscillator of length L: $\nu \propto c/L \propto c/a_B = \hbar^{-1} \alpha m_e c^2$ (interatomic spacings \propto Bohr radius)

Therefore:

 $rac{
u_{cavity}}{
u_{maser}} \propto lpha^3 (m_e/m_p)$

Frequency ratio is constant in time if α and m_e/m_p are constant.

Present limits with variants of this technique: $\dot{\alpha} < 10^{-17} yr^{-1}$

Illustrates a general prinicple: only variations of dimensionless parameters are meaningful. See physics/0209016 (JR) for amusing examples of this principle.

- 4 同 6 4 日 6 4 日 6

technique of 1412.7801: laser interferometry

Interferometer with two arms of lengths L_1 and L_2 , for which the observable is the phase difference $\Delta \Phi = \omega (L_1 - L_2)/c...$

For $L_i \propto a_B$ and $\omega \propto \alpha^2 m_e$, $\Delta \Phi \propto \alpha$.

LIGO precision: $\Delta\Phi\sim 10^{-21}$

sensitive to:

- oscillating α
- \bullet transient α due to passage of topological defects
- gradiants of α (cosmo-doublets $\Rightarrow \dot{\alpha} \sim 10^{-19} yr^{-1}$ from movement of Earth through solar system)

cosmological spectral doublets

Atomic lines and fine structure splitting:

$$\lambda \propto \hbar c/lpha^2 m_e c^2$$
 $\Delta \lambda_{fs} \propto \hbar c/lpha^4 m_e c^2$

Cosmological expansion conserves $\Delta\lambda/\lambda$ so

$$rac{\Delta\lambda_{obs}}{\langle\lambda
angle_{obs}}\sim lpha^2(t_{emission})$$

Bahcall and Schmidt (1967)

Abstract:

The fine structure constant at red shifts $\Delta\lambda/\lambda \sim 0.2$, corresponding to an epoch around two billion years ago, has been determined using the wavelengths of a pair of O III emission lines measured in the spectra of five radio galaxies. We find $\alpha(z = 0.2)/\alpha(lab) = 1.001 \pm 0.002$ probable error.

present limites: $\Delta \alpha / \alpha < \sim 10^{-5}$

observed " α dipole" would imply spatial gradiant of α that could be tested with technique of 1412.7801

$\Delta \alpha$ vs. redshift (arXiv:1412:8160)

Oklo (Gabon) prehistoric reactor

Oklo uranium sample has

- depleated $^{235}U \Rightarrow$ thermal neutrons inducing fission $\sim 2 \times 10^9 {\rm years}$ ago.
- depleated ^{149}Sm (thermal neutron capture resonance for $n^{149}Sm \to \gamma^{150}Sm$

Capture resonance corresponds to a state of ${}^{150}Sm \sim 0.1 eV + 8 MeV$ above ground state. Apparently it was still in the thermal region 2×10^9 years ago [Shlyakhter, 1976].

Oklo analysis in arXiv:1010.6299

The lutetium isotope ratio at the end of burn up is sensitive to the ground state ^{176}Lu yield in the absorption of neutron by ^{175}Lu nuclei. This yield have rather high uncertainty: 0.283 ± 0.056 with 1σ error. We have investigated the dependence of the $^{176}Lu/^{175}Lu$ ratio at the end of burn-up on this yield..... As a result the core temperature determined from the lutetium isotope ratio is in the range $364\,{\rm K} < T < 525\,{\rm K}$ at 99% C.L.

The values of the ¹⁴⁹Sm cross section (as it follows from Table 7) are in the range 62.6 kb to 74.0 kb. Following the dependence of the ¹⁴⁹Sm cross section on a resonance shift.....we conclude that the resonance shift should be in the range

$-11.3\,\mathrm{meV} < \Delta E_r < 0.8\,\mathrm{meV},$

to satisfy the experimental condition.

Oklo analysis in arXiv:1010.6299 (cont.)

Constraints for the shift of the ¹⁴⁹Sm resonance obtained in the previous section can be converted into the limits for the variation of the fine structure constant α (see [Petrov:2005])

$$\frac{\Delta \alpha}{\alpha} = \frac{\Delta E_r}{M} \tag{1}$$

where: *M* is estimated in [Damour&Dyson,1996] as $-(1.1 \pm 0.1)$ MeV. Using this value of *M* we obtain constraints for the variation of the fine structure constant

$$-0.7 \cdot 10^{-9} \le \frac{\Delta \alpha}{\alpha} \le 1.0 \cdot 10^{-8}$$
 (2)

during the past $2 \cdot 10^9$ years.

model of 1412.8160 (astro-ph/0107512)

BSBM theory [Sandvik,Barrow,Maguiljo] is the extension of the Bekenstein theory to include dynamics of the gravitational field. Total action of this theory has a form:

$$S = \int d^4x \sqrt{-g} (L_g + L_{mat} + L_{\psi} + e^{-2\psi} L_{em})$$
(3)

where $L_{\psi} = -\frac{\omega}{2} \partial_{\mu} \psi \partial^{\mu} \psi$ and $L_{em} = -\frac{1}{4} f_{\mu\nu} f^{\mu\nu}$. A parameter ω here is definite as $\omega = \frac{\hbar c}{l^2}$ where dimensional parameter l is having sense of characteristic length. Fine structure constant expressed via ψ with the equation: $\alpha = \frac{e_0^2}{\hbar c} e^{2\psi}$. Varying ψ we get the following equation:

$$\Box \psi = \frac{2}{\omega} e^{-2\psi} L_{em}.$$
 (4)

For pure radiation $L_{em} = (E^2 - B^2)/2 = 0$, so ψ remains constant during radiation domination epoch. Only in matter domination epoch changes in α take place.

Jim Rich (IRFU)

$\Delta \alpha$ vs. redshift (arXiv:1412:8160)

Jim Rich (IRFU)

January 2015 12 / 16

$\Delta \alpha$ vs. redshift (arXiv:1412:8160)

model 1 of 1412.7801: scalar field η

$$\mathcal{L}_{\rm int}^f = -\sum_{f=e,p,n} \eta_0 \cos(m_\eta c^2 t/\hbar) \frac{m_f c^2}{\Lambda_f} \bar{f} f, \qquad (5)$$

where f is the fermion Dirac field and $\bar{f} = f^{\dagger}\gamma^{0}$, and to the electromagnetic field:

$$\mathcal{L}_{\rm int}^{\gamma} = \frac{\eta_0 \cos(m_\eta c^2 t/\hbar)}{4\Lambda_{\gamma}} F_{\mu\nu} F^{\mu\nu}, \qquad (6)$$

 $\Lambda > 10^9 GeV$ from lab and astro observations.

$$m_{f} \to m_{f} \left[1 + \frac{\eta_{0} \cos(m_{\eta} c^{2} t/\hbar)}{\Lambda_{f}} \right],$$
(7)
$$\frac{\alpha}{1 - \eta_{0} \cos(m_{\eta} c^{2} t/\hbar)/\Lambda_{\gamma}} \simeq \alpha \left[1 + \frac{\eta_{0} \cos(m_{\eta} c^{2} t/\hbar)}{\Lambda_{\gamma}} \right].$$
(8)

 $\alpha \rightarrow$

model 2 of 1412.7801: scalar topological defects

Another possible DM candidate is topological defect DM, which is a stable non-tr ivial form of DM that consists of light DM fields and is stabilised by a self-in teraction potential [Vilenkin1985]. These objects may have various dimensionalities: 0D (monopoles), 1D (strings) or 2D (domain walls). The transverse size of a topological defect depends on the mass of the particle comprising the defect, $d \sim \hbar/m_{\phi}c$, which may be large (macroscopic or galactic) for a sufficiently light DM particle.

The light DM particle comprising a topological d efect can be either a scalar, pseudoscalar or vector particle. Recent proposals for pseudoscalar-type defect searches include using a global network of magnetom eters to search for correlated transient spin precession effects [GNOME2013] and electric dipole moments [Stadnik2014] that arise from the coup ling of the scalar field derivative to the fermion axial vector currents.

1412.7801 (cont.)

Recent proposals for scalar-type defect searches include using a global network of atomic clocks [Derevianko2014], and Earth rotation and pulsar timing [Stadnik2014], to search for transient-in-time alterations of the system freq uencies due to transient-in-time variation of the fundamental constants that ari se from the couplings of the scalar field to the fermion and photon fields. The best current sensitivities for transient-in-time variations of the fundamental c onstants on the time scale of $t \sim 1 - 100$ s with terrestrial experiments ar e offered by atomic clocks, with an optical/optical clock combination [Hinkley2013,Bloom2014] sensitive to variations in α : $\delta \alpha / \alpha \sim 10^{-15} - 10^{-16}$ and a hyperfine/optical clock combination [Jefferts2013] to variations in the electron-to-proton mass ratio m_e/m_p : $\delta(m_e/m_p)/(m_e/m_p) \sim 10^{-13} - 10^{-14}$.