

Détecteurs de type MPGD pour la TPC à argon liquide double phase de WA105

Apéro du SPP du 30/01/2014

E. Mazzucato

Plan de l'exposé

- Le projet WA105
- Le démonstrateur DLAr
- Le prototype 3×1×1m³
- Détecteurs LEM
- Et MicroMegas?
- Conclusion

Le projet WA105 au CERN

CERN-SPSC-2014-013; SPSC-TDR-004 (2014)

10 pays, 22 instituts et 120 membres

- Réalisation et opération de démonstrateurs de grande taille au CERN (plateforme R&D neutrino) :
 - TPC à argon liquide en mode diphasique (DLAr) de 300t
 - Détecteur en fer magnétisé MIND500
- Démontrer l'évolutivité vers des détecteurs souterrains de très grande masse (20-50kt) de type GLACIER (Laguva-LBNO) pour les programmes futurs de v en Europe/U.S.A.

Violation de CP, hiérarchie de masse, astrophysique du v, etc...

 Apport de concepts innovants pour la réalisation des détecteurs en partenariat avec l'industrie.

Laguva-LBNO (2008-2014)

arXiv: 1409.4405; arXiv:1412.0593

- « Design Study » financé par l'Union Européenne (FP7).
- Conception d'un détecteur souterrain DLAr pour l'étude des oscillations de v dites « long baseline » en Europe + la recherche de la désintégration du proton et l'astrophysique des v.
- Solutions technologiques pour des détecteurs de 20-50kt.

Contexte actuel

- Fin des travaux du consortium Laguva-LBNO en 2014.
- En accord avec la Stratégie Européenne et avec les recommandations de APPEC et de P5, la collaboration Laguva-LBNO se concentre désormais sur le projet WA105 au CERN et une collaboration avec le projet LBNF (U.S.A.).

LBNF :

- Projet d'expérience "long baseline" FNAL → Homestake (1300 km) soutenu par la direction du FNAL et le DOE.
- LOI vient d'être soumis au PAC de FNAL.
- Upgrade du faisceau (PIP-II) à 1.2MW.
- Détecteur lointain souterrain: TPC LAr de 10kt en 2021, puis 40kt.

Le démonstrateur DLAr

- TPC à argon liquide double phase ⇒ amplification de la charge avec gain réglable!
- Volume fiduciel de 6×6×6m³ (300t)
- Anode de lecture de 6×6m² avec 7680 canaux de lecture
- 6m de dérive max. (3ms @ 1kV/cm)
- HT: 300 600kV
- Pureté: < 100ppt O₂
- Enceinte à membrane GTT® et isolation thermique passive
- 36 photo-multiplicateurs
- Toit avec isolation et cheminées
- Passage du faisceau chargé

~1/20 de la surface de détection de GLACIER 20kt

Performances du DLAr

- Calorimètre homogène avec une granularité fine de ~3×3mm²
- Contient totalement les gerbes de pions jusqu'à plus de 10GeV
- Calorimétrie avec particules chargées (e,μ,π,p) de 0.5 à 20GeV/c E-flow, e/π, dE/dx, ré-intéractions hadroniques
- Reconstruction de traces
 - ⇒ Important pour la reconstruction de l'énergie du neutrino

Quelques dates jalon

- Réalisation du démonstrateur DLAr pour la mi-2018 et démarrage des tests en faisceau avec des particules chargées.
- Travaux d'extension du hall EHN1 (Bât. 887) à Prévessin en cours.
- Construction en 2015 d'un prototype de taille réduite de 3m³ pour le test et l'optimisation des choix techniques pour le démonstrateur de 300t :
 - Réservoir LAr
 - Isolation thermique
 - Cryogénie et purification
 - Collection de charge
 - Cheminées et passages étanches
 - Electronique

Le prototype 3×1×1m³

CRP : Charge Readout Plane

Détecteurs LEM

LEM : Large Electron Multipliers

Prototypes DLAr

Etude par le groupe de ETHZ dans une TPC DLAr de 3 litres au CERN:

- épaisseur de LEM
- diamètre et disposition des trous
- taille de l'anneau autour des trous
- gain maximum
- évolution temporelle du gain

C. Cantini et al., arXiv:1412.4402

Gain max ~150 et S/B ~800 pour un mip

LEM et anode de 50×50cm² Lecture 2D

L'extrapolation à des grandes surfaces de détection pose de nombreux défis techniques :

- Précision mécanique (e.g. planéité de ± 1mm sur 3m²)
- Nettoyage, cuisson, manutention
- Calibration, uniformité et stabilité du gain

Collaboration ETHZ-IRFU-CERN (R.de Oliveira)

	distance [mm]	tolerance [mm]
anode-LEM	2	0.1
LEM thickness	1	0.01
LEM-grid	10	0.5
LEM-LAr	5 (from grid)	0.5
x-y position of the 50 cm ² modules	500	0.1

Implication de l'Irfu dans WA105

- Contribution à la fourniture de la moitié des 144 détecteurs (LEM + ANODE) du démonstrateur DLAr de 300t
- Suivi qualité (QA) des LEM et calibration des détecteurs
- Reconstruction et analyse
- Formation en cours d'une équipe SEDI + SPP +

Signature du MOU prévue au printemps 2015

Test de LEM dans un mélange gazeux

Calibration des détecteurs LEM

- Mélange gazeux e.g. Ar(95%)/iC₄H₁₀(5%)
- Température ambiante
- Source de ⁵⁵Fe

D. Desforge, A. Le Coguie, J. Ph. Mols (SEDI)

30/01/2015

Calibration avec source de ⁵⁵Fe

Prototype 10×10cm²

Nov. 2014

Contrôle Qualité (QA) des LEM

- LEM de grande surface délicat à mettre en oeuvre
- Apprentissage des méthodes de nettoyage et de « cuisson » des détecteurs
- Définition des procédures d'assemblage et conception des outillages de montage
- Production chez ELTOS (Italie) des LEM et anodes pour le prototype 3×1×1m³ en cours

Réalisation du prototype 3×1×1m³ au Bât. 182 du CERN

salle blanche

Travaux de réalisation du prototype 3×1×1m³ déjà bien avancés!

Tests en cosmiques en DLAr dès 2016!

Et MicroMegas?

Détecteurs bulk-MicroMegas (MM) dans une TPC DLAr

Premiers tests au CERN en 2010 avec un prototype MM de $102\mu m$

Tests fin 2013 à Liverpool avec des prototypes MM de 115 μ m et 192 μ m

Tests bulk-MM à Liverpool

Collaboration avec K. Mavrokoridis et al.

Tests TPC DLAr avec cosmiques

Gains max. ~4 avant décharges permanentes dues aux intéractions des UV dans la région d'amplification

Scintillation secondaire

M Pos: 39.20.0s

30/01/2015

CH1 _-256mV

15.9693Hz

TRIGGER

Type Edge

Source

CH4

Slope

Falling

Mode

Auto

Coupling

DC

CH4 Coupling

DC

BW Limit

Off

200MHz

Volts/Div

Coarse

Probe

Voltage

Invert

Off

160mV

21.8805Hz

Tests de bulk-MM dans l'argon pur (GAr)

HT maximum rapidement limitée par des décharges permanentes dans le détecteur

Gains de 20-30 maxi. obtenus en mode GAr pas encore suffisants pour une TPC DLAr

⇒ **R&D** nécessaire!

Conclusion

- Projet WA105 de construction d'une TPC DLAr de 300t ambitieux et innovant
- 2015 2016 : réalisation et test du prototype 3×1×1m³
- 2016 2018 : construction du démonstrateur de 300t
- WA105 peut largement bénéficier des compétences de l'Irfu sur les MPGD
- Sujet de thèse sur WA105 proposé

Détecteurs bulk-MicroMegas

- Détecteurs gazeux monolithiques, robustes et faciles à produire.
- Très bonnes performances (gain, résolutions spatiales et d'énergie
- Applications pour des chambres de TPC (e.g. T2K, LC-TPC).
- Utilisés avec des mélanges gazeux contenant un « quencher » absorbant les UV produits durant une avalanche. Et dans de l'argon pur?

Bulk résistif

T. Alexopoulos et al. / Nuclear Instruments and Methods in Physics Research A 640 (2011) 110-118

