Nuclear Reaction Measurements for Explosive Nuclear Astrophysics

PJ Woods

University of Edinburgh

Explosive H burning in Novae

Isaac Newton, Principia Mathematica (1666): 'from this fresh supply of new fuel those old stars, acquiring new splendour, may pass for new stars'

Elemental abundances in novae ejecta

J. José, M. Hernanz, C. Iliadis. Nucl Phys A, 777, (2006), 550-578

Presolar grains

- Grains of nova origin are thought to have a large ³⁰Si/²⁸Si ratio.
- Abundance of ³⁰Si is determined by the competition between the ³⁰P β⁺ decay and the ³⁰P(p,γ)³¹S reaction rate.

Novae Nucleosynthesis

Reaction rate can be dominated by a few resonances in Gamow burning window

week ending 29 JUNE 2012

Key Resonances in the ${}^{30}P(p, \gamma){}^{31}S$ Gateway Reaction for the Production of Heavy Elements in ONe Novae

D. T. Doherty,¹ G. Lotay,¹ P. J. Woods,¹ D. Seweryniak,² M. P. Carpenter,² C. J. Chiara,^{2,3} H. M. David,¹ R. V. F. Janssens,² L. Trache,⁴ and S. Zhu²

However, key resonance strengths, ω_v , unknown

$$\omega \gamma = \frac{2J_{\rm R} + 1}{(2J_1 + 1)(2J_2 + 1)} \frac{\Gamma_p \Gamma_{\gamma}}{\Gamma_{\rm tot}}$$

use transfer reactions to estimate Γ_p for (p, γ) reactions where resonance has $\Gamma_p << \Gamma_\gamma$, ω_γ is proportional to $\Gamma_{p.}$ $\Gamma_p \alpha P_1$ (barrier penetration factor) X S(spectroscopic factor)

P.J. Woods, A Kankainen, H. Schatz, et al.

(d,n) transfer reaction cross-section measurements as a surrogate for (p,γ)

Primary beage: 18+ 150 MeV/u Ar

Particle identification: ³¹S

$^{31}S \gamma$ -ray energy spectrum

Levels above the proton threshold energy in ³¹S

Extracted Γ_p values from cross-section indicate reaction rate is entirely dominated by a single strong –ve parity resonance at 196 keV

Galactic abundance distribution of the cosmic γ-ray emitter ²⁶Al

INTEGRAL satellite telescope - 2.8(8) M_{sun} of ²⁶Al in our galaxy [R. Diehl, Nature **439** 45(2006)]

Supernova Cycle

Life Cycle of a Red Supergiant Supernova Massive Star Ne bula Black Hole Ne ut ro n Recycling Star

Stellar Life

For a 25 solar mass star:

Stage	Duration
H → He	7x106 years
He → C	7x10 ⁵ years
C → O	600 years
O → Si	6 months
Si → Fe	1 day
Core Collapse	1/4 second

Hydrogen burning in Mg – Al Cycle

destruction of ²⁶Al burning in massive stars?

High resolution d(^{26g}Al,p)²⁷Al study of analog states of ²⁷Si resonances using Edinburgh TUDA Si array @ ISAC II Triumf

150 MeV 26g Al beam bombarding 50 µg.cm $^{-2}$ (CD₂)_n target I_{beam}~ 5*10⁸ pps

Silicon detectors placed at backward angles, corresponding to forward angle transfer in CoM

Inverse Kinematic Study of the ${}^{26g}Al(d, p){}^{27}Al$ Reaction and Implications for Destruction of ${}^{26}Al$ in Wolf-Rayet and Asymptotic Giant Branch Stars

V. Margerin,¹ G. Lotay,^{1,2,3,*} P. J. Woods,¹ M. Aliotta,¹ G. Christian,⁴ B. Davids,⁴ T. Davinson,¹ D. T. Doherty,^{1,†} J. Fallis,⁴ D. Howell,⁴ O. S. Kirsebom,^{4,‡} D. J. Mountford,¹ A. Rojas,⁴ C. Ruiz,⁴ and J. A. Tostevin²

Analogue states to key astrophysical resonances

$^{26}Al(p,\gamma)^{27}Si$ reaction rate

→ Conclude 9/2+ 127 keV resonance in ²⁷Si dominates burning of ²⁶Al in Wolf Rayet and AGB stellar environments ~ 0.3- 0.8 .10⁸ K

See also independent study by Pain et al. PRL 114,212501 (2015)

The ¹⁵O(α,γ)¹⁹Ne reaction: the nuclear trigger of X-ray bursts

A NEW ESTIMATE OF THE ¹⁹Ne(p, γ)²⁰Na AND ¹⁵O(α , γ)¹⁹Ne REACTION RATES AT STELLAR ENERGIES

K. LANGANKE,¹ M. WIESCHER,² AND W. A. FOWLER W. K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena

AND

J. GÖRRES Department of Physics, University of Pennsylvania, Philadelphia Received 1985 May 24; accepted 1985 August 19

¹⁵O(α,γ)¹⁹Ne reaction rate predicted to be dominated by a single resonance at a CoM energy of 504 keV

Key unknown - α-decay probability from excited state at 4.03 MeV in ¹⁹Ne compared to γ-decay, predicted to be ~ 10^{-4}

PHYSICAL REVIEW C 67. 065808 (2003) PHYSICAL REVIEW C 67, 065808 (2003)

Astrophysical rate of ¹⁵O(α, γ)¹⁹Ne via the (p, t) reaction in inverse kinematics

B. Davids,* A. M. van den Berg, P. Dendooven, F. Fleurot,[†] M. Hunyadi, M. A. de Huu, R. H. Siemssen, H. W. Wilschut, and H. J. Wörtche

FIG. 1. (Color online) Experimental setup for the measurement of α -decay branching ratios of states in ¹⁹Ne using a recoil coincidence technique at the Big-Bite Spectrometer of the KVI.

p(²¹Ne,³H)¹⁹Ne*

Counts / 20 keV

Detector Pocket

•16x16 strips

\rightarrow p(²⁰Ne,²H)¹⁹Ne reaction looks promising

Can we find a new approach that can utilises this reaction, and combines necessary features?

→ Discussions with Lolly, Valerie, Dan and Alan yesterday

(i) Require a 0° spectrometer, to identify α particles <1°
(VAMOS a good option)

(ii) A target containing enough protons, and robust under beam current of at least ~1pnA (Kapton?!)

(iii) High granularity/efficiency Silicon strip detector system (MUST2/MUGAST) latter combines measuring γ -branch

Summary and Outlook

Exciting new challenges being addressed at the interface between nuclear structure and reactions, and explosive nuclear astrophysics.

New techniques and approaches required to address these challenges. We made some good progress this week!

TSR@ISOLDE – Injection of RIBs into ring at MeV/u energies

Spokesperson: K Blaum (Heidelberg)

Deputies: R Raabe (Leuven), PJW (Edinburgh)

entire issue of EPJ 207 1-117 (2012)

In-ring DSSD System for ultra-high resolution (d,p), (p,d) and (³He,d) transfer studies of astrophysical resonances
→ Newly funded UK ISOL-SRS project (Spokesperson PJW)

Figure 1: Illustration of upstream or downstream assembly of 4 DSSDs about beam axis

For ultra high resolution mode resolution should be entirely limited by transverse beam emittance

 \rightarrow resolutions approaching 10 keV FWHM attainable