

DEVELOPMENT OF A LOW MASS/LOW BACKGROUND REAL XY-MICROMEGAS DETECTOR FOR NEUTRON BEAM PROFILING

M. Diakaki¹, E. Berthoumieux¹, T. Papaevangelou², F. Gunsing^{1,2}, E. Dupont¹, M. Kebbiri², S. Anvar², P. Sizun², E. Monmarthe²,

D. Desforge², D. Jourde², M. Sabarte-Gilarte²,

T. Geralis³, T. Daphni⁴, E. Ferrer-Ribas¹, L. Tassan-Got⁵, L. Audouin⁵,

J. Heyse⁶, P. Schillebeeckx⁶, C. Paradela⁶, F. Belloni⁶

¹ IRFU-SPhN / CEA-Saclay, France. ²IRFU-SEDI / CEA-Saclay, France.

³ CERN, Geneva, Switzerland.

⁴ INPP / NCSR « Demokritos », Athens, Greece.

⁵ University of Zaragoza, Spain.

⁶ IPN, Université d' Orsay, France.

⁷ IRMM, Geel, Belgium.

SPhN, 20/7/2015

- Motivation (n_TOF collaboration)
- Detector & electronics setup description
- Development & testing
- Results & future work

Cer THE n_TOF COLLABORATION

- Started before 2000, >100 participants, 37 institutes (Europe, India, Japan ...)

Goal: Provide high accuracy data on useful parameters of neutron induced reactions for:

- Nuclear Technology
- Nuclear Astrophysics
- Medical Physics
- Fundamental Nuclear Physics
- > Experiments performed at the **n_TOF (neutron Time-Of-Flight) facility** * at CERN.

Reaction yields measured at n_TOF:

- Fission: (n,f) actinides
- Capture: (n,g) medium-mass nuclei to actinides
- Charged particle: (n,cp)

Active participation of SPhN.

* C Rubbia et al., A High Resolution Spallation Driven Facility at the CERN-PS to measure Neutron Cross Sections in the Interval from 1 eV to 250 MeV, CERN/LHC/98-02(EET) 1998.


```
DE LA RECHERCHE À L'INDUSTRI
```

THE n_TOF FACILITY (CERN)

Ces NEUTRON BEAM MONITOR + PROFILER

TARGET

TARGET

Accurate neutron reaction yield measurements require:

Neutron fluence/Beam interception factor

Number/fraction of neutrons hitting the area covered by the sample.

Shape of the beam profile

Beam optics misalignment => Beam fluence variations.

For **non-monoenergetic** neutron sources:

=>Dependence of profile on the neutron energy

DETECTION SYSTEM:

- Quasi-online neutron flux monitor + beam profiler as well
- LOW MASS: Minimal perturbation of the neutron beam / Minimal induced background: (not to disturb the main experiment)

MICROMEGAS DETECTORS FOR BEAM MONITORING

 Neutron beam profile: =>Bulk micromegas with Segmented or pixelised anodes. =>OR other type detectors: SiMon2D, Gafchromic, Timepix, GEM. **SEGMENTED MESH MICROBULK DEVELOPMENT**

Previous existing 2D MicroMegas at n_TOF

« A low mass microbulk with real XY structure », Th. Geralis, RD51 Common Fund Project « Transparent XY-MicroMegas neutron beam profiler », F. Gunsing, P2IO Project

Segmented mesh microbulk:

CO2 PROTOTYPE EVOLUTION

First batch:

- Problems during etching x due to holes topology.
- Many strips in short circuit. x

Second batch

Etching OK with the new topology

All detectors working

Bad energy resolution due to ×

Third batch

- Holes \oslash 60/50 µm
- Gaps reduced to 35 µm
- **Energy resolution OK!**

The first TWO detectors produced:

- 58 x 59 strips on a 6 x 6cm² area (**1mm** thickness)
- Mesh hole:~ 60µm / Pitch: 100 µm.


```
DE LA RECHERCHE À L'INDUSTR
```

NEUTRON BEAM PROFILE EXTRACTION

ELECTRONICS

Challenge: No global trigger signal + timing difference between strips. => AGET electronics* + Reduced CoBo configuration

- Auto trigger: discriminator and threshold
- 64 analog channels /chip.
- Multiplicity signal: analog OR of 6discriminators
- Address of the hitted channels
- SCA readout mode (all/hitted/selected channels)
- Max sampling rate: 100 MHz.
- 16 peaking time values: 50 ns-1us.
- 4 charge ranges/channel: 120fC/ 240fC/ 1pC/ 10 pC.

AsAd card: 4 AGET chips

*GET, General electronics for TPC, ANR proposal / GET-QA-000-0005, AGE1 Data Sheet.

Front end electronics:

- 1) Protection diodes
- 2) take the signal from the strips (mesh+anode)
- 3) distribute the HV (mesh)
- 4) take the sum signal (recorded with conventional electronics)=>neutron flux Acquisition

FIRST VERSION: problems: missing strips, wrong routing, noise from low voltage supply module

DE LA RECHERCHE À L'INDUSTR

Cer New FRONT END CARDS

DE LA RECHERCHE À L'INDUSTRI

SIGNAL ANALYSIS

Peak useful parameters are stored (**Amplitude**, **Peak position**, TOT etc) **Event** useful information is stored (Time of event, multiplicities etc)

CONDITION: If **both** mesh and anode had at least one strip with signal.

DE LA RECHERCHE À L'INDUSTRI

Cea detector setup mounted and tested at:

SEDI Saclay: Tests with X-rays *Grounding+shielding essential*

DETECTOR PERFORMANCE TESTS WITH Xrays AT SEDI (1)

X-ray source : ⁵⁷Fe / **Gas**: Ar (95%), C₄H₁₀ (5%)

 No stripped microbulk at good transparency: ~11%.

Possible reasons:

- Additional electronic noise
- Strips not crossing DAQ threshold
- Gain variations among strip response

Channel no

DE LA RECHERCHE À L'INDUSTRIE

TESTS WITH Xrays AT SEDI (2)

- ⁵⁵Fe X-ray source.
- 10 ns/time bucket/240fC gain
- Ar (95%)-C₄H₁₀ (5%)

Beam image (weighted average track)

TESTS WITH NEUTRON BEAM n_TOF EAR-2

- ⁶LiF target, 91.8µg/cm²
- V_m=310 V / V_d =750 V.
- Gas: Ar(88%) / CF₄(10%) / C₄H₁₀(2%)
- Through n_TOF DAQ: 1) Trigger signal 2) **Sum signal**

Saturated for ms or very noisy, ongoing activity

ORTEC preamp, (high gain)

2) Total Amplitude histogram:

- Good energy resolution, (Similar for mesh+anode)
- Pile-up.
- Low energy deposition events.

22 EVENT SELECTION CRITERIA FOR BEAM PROFILE (1)

Criterion 1: Δt <= (drift distance)/(e⁻ drift velocity)

From each event + for each dimension we calculate the time difference between first and last strip hit (Δt)

Criterion 2: 0.5 < tot amp ratio<1.5

Anode to Mesh total amplitude ratio HTotAmpRatio Entries 1144216 Mean 1.079 6000 RMS 0.6957 5000 4000 3000 2000 1000 0 0.5 1.5 2.5 3.5 4.5

Final total amplitude hist much cleaner:

DE LA RECHERCHE À L'INDUSTRI

EVENT SELECTION CRITERIA FOR BEAM PROFILE (2)

Criterion 3: strips hit have to be consecutive

Criterion 4: Only alphas

Cea towards the beam profile

Beam image (criterias applied)

COOR BEAM PROFILE RESULTS EAR-2

Radius X:

7 mm

8.2 mm

13.8 mm

Radius Y:

7 mm

16.5 mm

Radius:

7 mm

9 mm

13.9 mm

8.2 mm

htemp

2 xp

-0.07812 0.6875

DE LA RECHERCHE À L'INDUSTRI

Ce2 n_TOF EAR_1 (~200 m)

- ⁶LiF target, 91.8µg/cm²
- V_m =-320 V / V_d =-750 V.
- Gas: Ar(88%) / CF₄(10%) / C₄H₁₀(2%)
 - Sum signal
 - Dead time

« Mean strip from the track »

XYMGAS neutron beam profiler in operational mode.
The electronics were improved / Dead time + Sum signal (neutron counting)
Will stay permanently in-beam at n_TOF.

• 2nd detector has worse resolution (~19%): differences in the production (missing holes+bigger gap)

- Further improvements in the design of the detector for the next production, based on the tests performed is foreseen.
- Complete characterisation of the detector at the nuclear reactor Orphee, CEA-Saclay (spatial resolution etc).
- Challenging physics measurements will be investigated with this detector (neutron induced charged particle reactions, angular distributions, axion searches, neutrinoless double beta decay etc)

.....Thank you.....

EXTRA SLIDES

CO2 PREVIOUS BEAM PROFILERS AT N_TOF

- Infer

First detector: bulk on a CAST microbulk prototype!

- 6x6 cm² (2x106 strips, 0.5 mm pitch)
- drift gap = 4 mm
- converter: ${}^{10}B_4C$ enriched in ${}^{10}B$, 2 μ m
- ► Ar + (10%)CF4 + (2%) iC4H10
- XYMM electronics: GASIPLEX coupled to ACQIRIS FADC

Detector (2012): pixelized bulk

- pixelized readout with 2.5 mm pitch
- > number of pixels = 77 x 4
- ➤ mesh gap = 128 µm
- drift gap = 4 mm
- window = 12.5 m kapton
- ➢ Ar + (10%)CF4 + (2%) iC4H10
- Equipped with B converter (2 µm thick)

GELINA TESTS

GELINA TESTS CD FOIL COVERING PART OF THE DETECTOR (II)

DETECTOR SIGNALS IN EAR-2

114421 ntries 5.487 Mean x

1600

1400

1200

1000

8000

6000 4000

Mean y 6.506

RMS x 3.485

RMS v 4 221

16

=>Clear signals generally free from the noise

gamma-flash:charged part. 2015-04-10T23:09:59.000_0000 - Frame no. 0 - Event no CoBo no 0 - AsAd no 0 - ACET no 3 3 500 250 Time Bucket Inde

DEAD TIME- EAR-2

