

Commissariat à l'énergie atomique et aux énergies alternatives

Irfu Institut de recherche sur les lois fondamentales de l'Univers

Direction des sciences de la matière

Service de Physique Nucléaire

SÉMINAIRE du SPhN Le vendredi 30 octobre 2015 à 11h CEA-Saclay, Orme des Merisiers, b703 room 135 Emiko HIYAMA, Nishina Center, RIKEN,

Strangeness Nuclear Physics Laboratory Recent progress of hypernuclear physics

Recently, in hypernuclear physics, we had three neutron-rich Λ hypernuclei, $nn\Lambda$, ${}^{6}{}_{\Lambda}$ H and ${}^{7}{}_{\Lambda}$ He. These observations are very important by following reason: one of the research goals in hypernuclear physics is to study new dynamical features by injecting a Λ particle into a nucleus. Since there is no Pauli principle between nucleons and a Λ particle, the Λ participation gives rise to more bound states and significant contraction of nuclear cores, especially in light systems. If a Λ particle is added to neutron-rich nuclei to have a weakly bound state or resonant one, a resultant hypernucleus will become more stable against neutron decay. Three observed hypernuclei are such systems. Currently, it is important to investigate structure of these Λ hypernuclei theoretically. For this purpose, I will report these hypernuclei within the framework of $nn\Lambda$, $tnn\Lambda$ and $\alpha\Lambda NN$ three- and four-body models. The following will be reported together with my calculation method:

(1) To study $nn\Lambda$ system, the coupled channel calculation of $NN\Lambda$ and $NN\Sigma$ is performed. We do not find any $nn\Lambda$ bound state, which is inconsistent with the interpretation of the data.

(2) Interactions among the constituent subunits in ${}^{6}{}_{\Lambda}$ H are determined so as to reproduce reasonably well the observed low energy properties of the *tn*, *t* Λ and *tnn*. As long as we reproduce the energy and width of 5 H within the error bar, the ground state of ${}^{6}{}_{\Lambda}$ H is obtained as a resonant state.

(3) In our previous work, we predicted the ground state, 1/2+ and the excited states, $3/2^+_1$ and $5/2^+$. The recent observed data at Jlab are in good agreement with our prediction. Here, I will report another new states, $3/2^+_2$ and $5/2^+_2$ in $^7_{\Lambda}$ He which is second 2^+ state of ⁶He coupled to 0s-orbit of Λ particle. I will report also the structure of these spectra.

References:

Resonant states of the neutron-rich hypernucleus ${}^{7}{}_{A}$ He, E. Hiyama, M. Isaka M. Kamimura, T. Myo, T. Motoba, Phys. Rev. C **91**, 054316 (2015). Four-body structure of neutron-rich hypernucleus ${}^{6}{}_{A}$ H, E. Hiyama, S. Ohnishi, M. Kamimura, Y. Yamamoto, Nucl. Phys. **A908**, 29 (2013).

This seminar is organized within the framework of the ESNT for the project entitled "Computation of 3- and 4-neutron resonances", 24thOct.-1stNov.,http://esnt.cea.fr/Phocea/Page/index.php?id=55

http://irfu.cea.fr/Sphn/Phocea/Vie_des_labos/Seminaires/

http://esnt.cea.fr Contact : vlapoux@cea.fr

Commissariat à l'énergie atomique et aux énergies alternatives www.cea.fr CEA Centre de Saclay 91191 GIF sur YVETTE Cedex 09/2015 Tel (SPhN Secretary): 01 69 08 73 54 – FAX : 01 69 08 75 84 Accès au site de l'Orme : <u>http://irfu.cea.fr/en/Phocea/Page/index.php?id=199</u>