Recent progress of hypernuclear physics

E. Hiyama (RIKEN)

Copyright(C) 2007 TSUKUI International Inc. All Rights Reserved.

I shall explain about my laboratory.

▲和光本所・和光研究所

Wako branch

- 6 PDs 4 Graduate students
- Y. Funaki S. Maeda
- H. Suno T. Yoshida
- H. Togashi C.Schmickler (Gemany
- M. Isaka K.Sallmen(Sweden)
- N. Yamanaka
- T. Sun

Recently, we had three epoch-making data from the view point of few-body problems.

Observation of Neutron-rich Λ-hypernuclei

These observations are interesting from the view points of few-body physics as well as physics of unstable nuclei.

What is Λ particle?

hyperon: including strangeness quark

I focus on Λ particle. The mass of Λ is similar with neutron And no charge. Life time ~ 10⁻¹⁰ sec

Sec.1 Introduction

When some neutrons or protons are added to clustering nuclei, additional neutrons are located **outside** the clustering nuclei due to the Pauli blocking effect.

As a result, we have neutron/proton halo structure in these nuclei. There are many interesting phenomena in this field as you know.

 Λ particle can reach deep inside, and attract the surrounding nucleons towards the interior of the nucleus.

> Due to the attraction of ΛN interaction, the resultant hypernucleus will become more stable against the neutron decay.

Nuclear chart with strangeness

Multi-strangeness system such as Neutron star

Neutron Number

Question : How is structure change when a ∧ particle is injected into neutron-rich nuclei?

Observed at JLAB, Phys. Rev. Lett. Ob 110, 12502 (2013). Ph

Observed by FINUDA group, Phys. Rev. Lett. **108**, 042051 (2012).

C. Rappold et al., HypHI collaboration Phys. Rev. C 88, 041001 (R) (2013) In order to solve few-body problem accurately,

Gaussian Expansion Method (GEM), since 1987

A variational method using Gaussian basis functions

Take all the sets of Jacobi coordinates

Developed by Kyushu Univ. Group,
Kamimura and his collaborators.
Review article :
E. Hiyama, M. Kamimura and Y. Kino,
Prog. Part. Nucl. Phys. 51 (2003), 223.

High-precision calculations of various 3- and 4-body systems:

Exotic atoms / molecules ,

3- and 4-nucleon systems,

multi-cluster structure of light nuclei,

Light hypernuclei,

3-quark systems, ⁴He-atom tetramer

Section 2 Gaussian Expansion Method (GEM) for Few-Body Systems

In order to solve the Schrödinger equation, we use Rayleigh-Ritz variational method and we obtain eigen value E and eigen function Ψ .

$$(\mathbf{H} - \mathbf{E}) \Psi = \mathbf{0}$$

Here, we expand the total wavefunction in terms of a set of L²-integrable basis function $\{\Phi_n: n=1,...,N\}$

$$\Psi = \sum_{n=1}^{N} \, C_n \, \Phi_n$$

The Rayleigh-Ritz variational principle leads to a generalized matrix eigenvalue problem.

$$\begin{array}{lll} \left\langle \, \Phi_i \, \middle| \, \mathbf{H} \, - \, \mathbf{E} \, \middle| \, \sum\limits_{n=1}^{N} \, \mathbf{C}_n \, \Phi_n \, \right\rangle \; = \; \mathbf{0} \; , \qquad (\mathbf{i} = \mathbf{1}, ..., \mathbf{N}) \\ & & \\ \mathbf{I} \\ & & \\ \mathbf{\Psi} \end{array}$$

Where the energy and overlap matrix elements are given by

$$H_{in} = \langle \Phi_i | H | \Phi_n \rangle$$

$$N_{in} = \langle \Phi_i | 1 | \Phi_n \rangle$$

Next, by solving eigenstate problem, we get eigenenergy E and unknown coefficients C_n .

$$\left(\mathbf{H}_{in} \right) - \mathbf{E} \left(\mathbf{N}_{in} \right) \right] \left[\mathbf{C}_{n} \right] = 0$$

An important issue of the variational method is how to select a good set of basis functions.

What is good set of basis functions?

(1) To describe short-ranged correlation and long-range tail behaviour, highly oscillatory character of few-body wave functions, etc.

(2) Easily to calculate the matrix elements of Hamiltonian

$$H_{in} = \langle \Phi_i | H | \Phi_n \rangle, \ N_{in} = \langle \Phi_i | 1 | \Phi_n \rangle$$

For this purpose, we use the following basis function:

$$\Phi_{\rm lmn}(\mathbf{r}) = r^{\ell} e^{-\nu_n r^2} Y_{\ell m}(\hat{\mathbf{r}})$$
$$v_{\rm n} = (1/r_{\rm n})^2$$
$$r_{\rm n} = r_1 a^{\rm n-1} \quad (n = 1 - n_{\rm max})$$

The Gaussian basis function is suitable not only for the calculation of the matrix elements but also for describing short-ranged correlations, long-ranged tail behaviour.

The merit of this method:

(1)To calculate the energy of bound state

- very accurately
- (2) To calculate the wavefunction very precisely

one successful examples

PRC 64, 044001(2001)

Benchmark-test calculation to solve the 4-nucleon bound state

7 different groups (18 co-authors)

- 1. Faddeev-Yakubovski (Kamada et al.)
- 2. Gaussian Expansion Method (Kamimura and Hiyama)
- 3. Stochastic varitional (Varga et al.)
- 4. Hyperspherical variational (Viviani et al.)
- 5. Green Function Variational Monte Carlo (Carlson at al.)
- 6. Non-Core shell model (Navratil et al.)
- 7. Effective Interaction Hypershperical HarmonicsEIHH (Barnea et al.)

4-nucleon bound state NN: AV8'

Benchmark-test calculation of the 4-nucleon bound state

0.025

Good agreement among 7different methods

In the binding energy, r.m.s. radius and wavefunction density

H. KAMADA et al.

TABLE I. The expectation values $\langle T \rangle$ and $\langle V \rangle$ of kinetic and potential energies, the binding energies E_b in MeV, and the radius in fm.

Method	$\langle T \rangle$	$\langle V \rangle$	E_b	$\sqrt{\langle r^2 \rangle}$	-3]
FY	102.39(5)	-128.33(10)	-25.94(5)	1.485(3)	ſm
GEM _	102.30	-128.20	-25.90	1.482	
SVM	102.35	-128.27	-25.92	1.486	E
HH	102.44	-128.34	-25.90(1)	1.483	
GFMC	102.3(1.0)	-128.25(1.0)	-25.93(2)	1.490(5)	ours
NCSM	103.35	-129.45	-25.80(20)	1.485	
EIHH	100.8(9)	-126.7(9)	-25.944(10)	1.486	

0.02 0.015 0.015 0.005 0.005 0.005 0.005 1 1.5 2 2.5 3r [fm]

very different techniques and the complexity of the nuclear force chosen. Except for NCSM and EIHH, the expectation values of T and V also agree within three digits. The NCSM results are, however, still within 1% and EIHH within 1.5% of the others but note that the EIHH results for T and V are

FIG. 1. Correlation functions in the different calculational schemes: EIHH (dashed-dotted curves), FY, CRCGV, SVM, HH, and NCSM (overlapping curves).

PHYSICAL REVIEW C 64 044001

E. Hiyama, S. Ohnishi, B.F. Gibson, and T. A. Rijken, PRC89, 061302(R) (2014). What is interesting to study $nn\Lambda$ system?

The lightest nucleus to have a bound state is deuteron.

Search for evidence of ${}^{3}_{\Lambda}n$ by observing $d + \pi^{-}$ and $t + \pi^{-}$ final states in the reaction of ${}^{6}\text{Li} + {}^{12}\text{C}$ at 2A GeV

C. Rappold,^{1,2,*} E. Kim,^{1,3} T. R. Saito,^{1,4,5,†} O. Bertini,^{1,4} S. Bianchin,¹ V. Bozkurt,^{1,6} M. Kavatsyuk,⁷ Y. Ma,^{1,4} F. Maas,^{1,4,5} S. Minami,¹ D. Nakajima,^{1,8} B. Özel-Tashenov,¹ K. Yoshida,^{1,5,9} P. Achenbach,⁴ S. Ajimura,¹⁰ T. Aumann,^{1,11} C. Ayerbe Gayoso,⁴ H. C. Bhang,³ C. Caesar,^{1,11} S. Erturk,⁶ T. Fukuda,¹² B. Göküzüm,^{1,6} E. Guliev,⁷ J. Hoffmann,¹ G. Ickert,¹ Z. S. Ketenci,⁶ D. Khaneft,^{1,4} M. Kim,³ S. Kim,³ K. Koch,¹ N. Kurz,¹ A. Le Fèvre,^{1,13} Y. Mizoi,¹² L. Nungesser,⁴ W. Ott,¹ J. Pochodzalla,⁴ A. Sakaguchi,⁹ C. J. Schmidt,¹ M. Sekimoto,¹⁴ H. Simon,¹ T. Takahashi,¹⁴ G. J. Tambave,⁷ H. Tamura,¹⁵ W. Trautmann,¹ S. Voltz,¹ and C. J. Yoon³ (HypHI Collaboration) -23.7fm nnΛ breakup threshold

? They did not report the binding energy.

Observation of nn∧ system (2013) Lightest hypernucleus to have a bound state Any two-body systems are unbound.=>nn∧ system is bound. Lightest Borromean system. Theoretical important issue: Do we have bound state for nnA system? If we have a bound state for this system, how much is binding energy?

NN interaction : to reproduce the observed binding energies of ³H and ³He

NN: AV8 potential We do not include 3-body force for nuclear sector.

How about YN interaction?

Non-strangeness nuclei

Ν

Ν

Nucleon can be converted into Δ . However, since mass difference between nucleon and Δ is large, then probability of Δ in nucleus is not large.

On the other hand, the mass difference between Λ and Σ is much smaller, then Λ can be converted into Σ particle easily.

 To take into account of Λ particle to be converted into Σ particle, we should perform below calculation using realistic hyperon(Y)-nucleon(N) interaction.

YN interaction: Nijmegen soft core '97f potential (NSC97f) proposed by Nijmegen group

reproduce the observed binding energies of ${}^3_\Lambda\text{H},~{}^4_\Lambda\text{H}$ and ${}^4_\Lambda\text{He}$

What is binding energy of $nn\Lambda$?

We have no bound state in $nn\Lambda$ system. This is inconsistent with the data.

Now, we have a question.

Do we have a possibility to have a bound state in nnA system tuning strength of YN potential ?

It should be noted to maintain consistency with the binding energies of ${}^3_\Lambda H$ and ${}^4_\Lambda H$ and ${}^4_\Lambda He$.

$$V_{T}^{\ \Lambda N-\Sigma N}$$
 X1.1, 1.2

When we have a bound state in nnA system, what are binding energies of ${}^{3}_{\Lambda}$ H and A=4 hypernuclei?

Question: If we tune ${}^{1}S_{0}$ state of nn interaction, Do we have a possibility to have a bound state in nn/? In this case, the binding energies of ${}^{3}H$ and ${}^{3}He$ reproduce the observed data?

Some authors pointed out to have dineutron bound state in nn system. Ex. H. Witala and W. Gloeckle, Phys. Rev. C85,

064003 (2012).

n

T=1, ${}^{1}S_{0}$ state

I multiply component of ${}^{1}S_{0}$ state by 1.13 and 1.35. What is the binding energies of nn Λ ?

PHYSICAL REVIEW C 85, 064003 (2012)

Di-neutron and the three-nucleon continuum observables

H. Witała M. Smoluchowski Institute of Physics, Jagiellonian University, PL-30059 Kraków, Poland

W. Glöckle Institut für Theoretische Physik II, Ruhr-Universität Bochum, D-44780 Bochum, Germany (Received 24 April 2012; published 25 June 2012)

We investigate how strongly a hypothetical ${}^{1}S_{0}$ bound state of two neutrons would affect observables in neutron-deuteron reactions. To that aim we extend our momentum-space scheme of solving the three-nucleon Faddeev equations and incorporate in addition to the deuteron also a ${}^{1}S_{0}$ di-neutron bound state. We discuss effects induced by a di-neutron on the angular distributions of the neutron-deuteron elastic scattering and deuteron breakup cross sections. A comparison to the available data for the neutron-deuteron total cross section and elastic scattering angular distributions cannot decisively exclude the possibility that two neutrons can form a ${}^{1}S_{0}$ bound state. However, strong modifications of the final-state-interaction peaks in the neutron-deuteron breakup reaction seem to disallow the existence of a di-neutron.

Summary of nnA system:

Motivated by the reported observation of data suggesting a bound state nn Λ , we have calculated the binding energy of this hyperucleus taking into account ΛN - ΣN explicitly. We did not find any possibility to have a bound state in this system. However, the experimentally they reported evidence for a bound state. As long as we believe the data, we should consider additional missing elements in the present calculation.

- H. Garcilazo and A. Valcarce, PRC89, 057001(2014).
- A. Gal and H. Garcilazo, PLB736, 93 (2014).

They concluded to have no bound state in $nn\Lambda$ system.

It is planned to perform an improved experiment of nnΛ system at HypHI collaboration+Super FRS in 2018.

Furthermore, it should be noted that a direct measurement of nnA by the (e,e'K+) reaction can be possible at JLab. If we have a bound state for this system, it is important to get information on AN- Σ N coupling.

For this purpose, it is a quite important measurement theoretically as well as experimentally.

E. H, S. Ohnishi, M. Kamimura, Y. Yamamoto, NPA 908 (2013) 29.

PRL 108, 042501 (2012)

PHYSICAL REVIEW LETTERS

S Evidence for Heavy Hyperhydrogen ⁶_AH

M. Agnello,^{1,2} L. Benussi,³ M. Bertani,³ H. C. Bhang,⁴ G. Bonomi,^{5,6} E. Botta,^{7,2,*} M. Bregant,⁸ T. Bressani,^{7,2} S. Bufalino,² L. Busso,^{9,2} D. Calvo,² P. Camerini,^{10,11} B. Dalena,¹² F. De Mori,^{7,2} G. D'Erasmo,^{13,14} F. L. Fabbri,³ A. Feliciello,² A. Filippi,² E. M. Fiore,^{13,14} A. Fontana,⁶ H. Fujioka,¹⁵ P. Genova,⁶ P. Gianotti,³ N. Grion,¹⁰ V. Lucherini,³ S. Marcello,^{7,2} N. Mirfakhrai,¹⁶ F. Moia,^{5,6} O. Morra,^{17,2} T. Nagae,¹⁵ H. Outa,¹⁸ A. Pantaleo,^{14,†} V. Paticchio,¹⁴ S. Piano,¹⁰ R. Rui,^{10,11} G. Simonetti,^{13,14} R. Wheadon,² and A. Zenoni^{5,6}

(FINUDA Collaboration)

A. Gal

Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel (Received 2 November 2011; published 24 January 2012)

Before experiment, the following authors calculated the binding energies by shell model picture and G-matrix theory.

(1) R. H. Dalitz and R. Kevi-Setti, Nuovo Cimento 30, 489 (1963).

(2) L. Majling, Nucl. Phys. A585, 211c (1995).

(3) Y. Akaishi and T. Yamazaki, Frascati Physics Series Vol. 16 (1999).

Motivating the experimental data, I calculated the binding energy of $^6_\Lambda H$ and I shall show you my result.

Before doing full 4-body calculation,

it is important and necessary to reproduce the observed binding energies of all the sets of subsystems in ${}^{6}H$.

Namely, All the potential parameters are needed to

adjust in the 2- and 3-body subsystems.

Among the subsystems, it is extremely important to adjust the energy of ⁵H core nucleus.

Framework:

To calculate the binding energy of $_{\Lambda}$ ⁶H, it is very important to reproduce the binding energy of the core nucleus ⁵H.

transfer reaction p(⁶He, ²He)⁵H

A. A. Korcheninnikov, et al. Phys. Rev. Lett. 87 (2001) 092501.

To reproduce the data, for example, **R. De Diego et al, Nucl. Phys. A786 (2007), 71.** calculated the energy and width of ⁵H with t+n+n three-body model using complex scaling method. The calculated binding energy for the ground state of ⁵H is 1.6 MeV with respect to t+n+n threshold and width has 1.5 MeV.

How should I understand the inconsistency between our results and the observed data?

We need more precise data of ${}^{5}H$.

1 1	

(E_R, Γ_R) (MeV)		
J^{π}	1/2+	
⁵ H (full)	(1.57, 1.53)	
$^{5}\mathrm{H}\left(d=0\right)$	(1.55, 1.35)	
Theor. [16]	(2.26, 2.93)	
Theor. [12]	(2.5-3.0, 3-4)	
Theor. [13]	(3.0-3.2, 1-4)	
Theor. [15]	(1.59, 2.48)	
Exp. [3]	$(1.7 \pm 0.3, 1.9 \pm 0.4)$	We cited this experiment.
Exp. [8]	$(1.8 \pm 0.1, < 0.5)$	However, you have many
Exp. [4]	(1.8, 1.3)	different decay widths.
Exp. [5]	(2, 2.5)	width is strongly related to
Exp. [6]	(3, 6)	the size of wavefunction.
Exp. [9]	$(5.5\pm 0.2, 5.4\pm 0.6)$	

[3] A.A. Korosheninnikov et al., PRL87 (2001) 092501
[8] S.I. Sidorchuk et al., NPA719 (2003) 13
[4] M.S. Golovkov et al. PRC 72 (2005) 064612
[5] G. M. Ter-Akopian et al., Eur. Phys. J A25 (2005) 315.

Search for ${}^{6}_{\Lambda}$ H hypernucleus by the ${}^{6}Li(\pi^{-}, K^{+})$ reaction at $p_{\pi^{-}} = 1.2 \text{ GeV}/c$

H. Sugimura^{a,b,*}, M. Agnello^{c,d}, J.K. Ahn^e, S. Ajimura^f, Y. Akazawa[§], N. Amano^a, K. Aoki^h, H.C. Bhangⁱ, N. Chiga[§], M. Endo^j,
P. Evtoukhovitch^k, A. Feliciello^d, H. Fujioka^a, T. Fukuda^l, S. Hasegawa^b, S. Hayakawa^j, R. Honda[§], K. Hosomi[§], S.H. Hwang^b,
Y. Ichikawa^{a,b}, Y. Igarashi^h, K. Imai^b, N. Ishibashi^j, R. Iwasaki^h, C.W. Jooⁱ, R. Kiuchi^{i,b}, J.K. Lee^e, J.Y. Leeⁱ, K. Matsuda^j,
Y. Matsumoto[§], K. Matsuoka^j, K. Miwa[§], Y. Mizoi^l, M. Moritsu^f, T. Nagae^a, S. Nagamiya^b, M. Nakagawa^j, M. Naruki^a,
H. Noumi^f, R. Ota^j, B.J. Roy^m, P.K. Saha^b, A. Sakaguchi^j, H. Sako^b, C. Samantaⁿ, V. Samoilov^k, Y. Sasaki[§], S. Sato^b,
M. Sekimoto^h, Y. Shimizu¹, T. Shiozaki[§], K. Shirotori^f, T. Soyama^j, T. Takahashi^h, T.N. Takahashi^o, H. Tamura[§], K. Tanabe[§],
T. Tanaka^j, K. Tanidaⁱ, A.O. Tokiyasu^f, Z. Tsamalaidze^k, M. Ukai[§], T.O. Yamamoto[§], Y. Yamamoto[§], S.B. Yangⁱ, K. Yoshida^j,

Theoretically, we might understand by the following reason. If the state is resonant state, the reaction cross section would be much smaller than that we expect. => I should calculate reaction cross section ${}^{6}Li (\pi,K) {}^{6}_{\Lambda}H$.

n n a A

PHYSICAL REVIEW C 91, 054316 (2015)

Resonant states of the neutron-rich Λ hypernucleus $^{7}_{\Lambda}$ He

E. Hiyama and M. Isaka Nishina Center for Accelerator-Based Science, Institute for Physical and Chemical Research (RIKEN), Wako 351-0198, Japan

M. Kamimura Department of Physics, Kyushu University, Fukuoka, 812-8581, Japan and Nishina Center for Accelerator-Based Science, Institute for Physical and Chemical Research (RIKEN), Wako 351-0198, Japan

⁷He

T. Myo General Education, Faculty of Engineering, Osaka Institute of Technology, Osaka, 535-8585, Japan

T. Motoba

Laboratory of Physics, Osaka Electro-Communication University, Neyagawa 572-8530, Japan and Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8317, Japan (Received 27 October 2014; revised manuscript received 20 April 2015; published 18 May 2015)

⁶He : One of the lightest n-rich nuclei

⁷He: One of the lightest n-rich hypernuclei

Observed at JLAB, Phys. Rev. Lett. 110, 12502 (2013). CAL: E. Hiyama et al., PRC 53, 2075 (1996), PRC 80, 054321 (2009)

⁷Li(e,e'K⁺)⁷ He

The calculated energy of the excited state is in good agreement with the data.

Question: In 7 He, do we have any other new states? If so, what is spin and parity?

First, let us discuss about energy spectra of ⁶He core nucleus.

 $2 + \frac{2}{1}$ 1.8 MeV 0 MeV $\alpha + n + n$

⁶He

Exp.

Data in 2012 X. Mougeot et al., Phys. Lett. B 718 (2012) 441. p(⁸He, t)⁶He

Question: What are theoretical results?

 $\Gamma=1.6 \pm 0.4 \text{ MeV}$ 2^{+}_{2} 1.6±0.3 MeV

Γ=0.12 MeV 2+////// 1.8 MeV

0 MeV α +n+n

-0.98

⁶He

Exp.

Data in 2012 X. Mougeot et al., Phys. Lett. B 718 (2012) 441. p(⁸He, t)⁶He These are resonant states.

I should obtain energy position and decay width.

To do so, I use complex scaling method which is one of powerful method to get resonant states. I will not explain about this method. The Hamiltonian for $^6\mathrm{He}$ is written as

$$H = T + V_{NN} + \sum_{i=1}^{2} \left[V_{\alpha N_i} + V_{\alpha N_i}^{\text{Pauli}} \right] \quad ,$$

and for $^7_\Lambda {\rm He}$ is written as

$$H = T + V_{NN} + V_{\Lambda\alpha} + \sum_{i=1}^{2} \left[V_{\Lambda N_i} + V_{\alpha N_i} + V_{\alpha N_i}^{\text{Pauli}} \right] \quad .$$

Complex scaling is defined by the following transformation.

$$U(\theta)f(\boldsymbol{x}) = \exp\left(i\frac{3}{2}\theta\right)f(\exp(i\theta)\boldsymbol{x})$$
$$H(\theta) = U(\theta)HU(\theta)^{-1},$$
$$|\Psi_{\theta}\rangle = U(\theta)|\Psi\rangle.$$

As a result, I should solve this Schroediner equation.

$$H(\theta) | \Psi_{\theta} \rangle = E(\theta) | \Psi_{\theta} \rangle$$

My result

Data in 2012 X. Mougeot et al., Phys. Lett. B 718 (2012) 441. p(⁸He, t)⁶He

Γ=0.1	4 MeV
MeV	α+n+n
0+ —	-0.98
	⁶ He
	Cal.

0

E=0.07 MeV+1.13 MeV The energy is measured with respect to $\alpha+\Lambda+n+n$ threshold.

Motoba san recently estimated differential cross sections for each state.

At E^{lab}=1.5 GeV and θ =7 deg (E05-115 experimental kimenatics)

$^{7}Li(e,e'K^{+})^{7}_{\Lambda}He$

At present, due to poor statics, It is difficult to have the third peak. But, I hope that next experiment at Jlab will observe the third peak.

Fitting results

Peak	State	Number of	$-B_{\Lambda}$ [MeV]	$\left. \overline{\left(\frac{d\sigma}{d\Omega_K} \right)} \right _{1^\circ - 13^\circ}$
number	${}^{6}\mathrm{He}[J_{C}]\otimes j^{\Lambda}$	events	(E_{Λ})	[nb/sr]
1	$1/2^{+}$	413 ± 20	$-5.55 \pm 0.10 \pm 0.11$	$10.7 \pm 0.5 \pm 1.7$
	$[0^+; \text{ g.s.}] \otimes s_{1/2}^{\Lambda}$		(0.0)	
2	$3/2^+, 5/2^+$	239 ± 15	$-3.65 \pm 0.20 \pm 0.11$	$6.2 \pm 0.4 \pm 1.0$
	$[2^+; 1.80] \otimes s_{1/2}^{\Lambda}$		$(1.90 \pm 0.22 \pm 0.05)$	

Good agreement with my prediction

They plan to submit their proposal for $^{7}_{\Lambda}$ He to JLab next June.

Summary

Neutron-rich Λ hypernuclei

Nuclear chart with strangeness

Neutron Number

Thank you!