Potentiel microscopique avec l'interaction de Gogny: Traitement de l'appariement

R. Bernard ¹ G. Blanchon ²

¹ESNT, CEA, DAM, DIF et DSM SPhN

²CEA,DAM,DIF

Espace de Structure Nucléaire Théorique, CEA-Saclay, Orme des Merisiers, 17 Sept 2015

Motivations

Remplacement des ingrédients phénoménologiques des codes de réaction (TALYS) par des ingrédients microscopiques

- Densités de niveaux
- Fonctions de force gamma
- Prééquilibre
- Potentiel optique
- ► ...

Potentiel optique

Le potentiel optique comme possible point de contact entre différents degrés de phénoménologie.

- Potentiels optiques phénoménologiques
- Potentiels basés sur les interactions NN effectives phénoménologiques (Gogny, Skyrme...)
- Potentiels ab initio basés sur les interactions NN nues phénoménologiques

Potentiel optique

Le potentiel optique comme possible point de contact entre différents degrés de phénoménologie.

- Potentiels optiques phénoménologiques
- Potentiels basés sur les interactions NN effectives phénoménologiques (Gogny, Skyrme...)
- Potentiels ab initio basés sur les interactions NN nues phénoménologiques

Possibilité d'échanges entre ces différentes communautés

Potentiels optiques phénoménologiques

- Précision requise pour les évaluations
- Contraints par une grande quantité de calculs dans des codes de réaction : TALYS, EMPIRE
- Expertise accumulée sur leur forme et leur dépendance en énergie
- Question de la capacité prédictive en dehors de la zone de fit
- Paramétrisation de potentiels non locaux dispersifs
- Développement de nouveaux outils afin de traiter la non localité (Codes de réaction adaptés)
- Problèmes induits par les méthodes de localisation : effet Perey, dépendance spurieuse en énergie

Potentiels optiques phénoménologiques

- Précision requise pour les évaluations
- Contraints par une grande quantité de calculs dans des codes de réaction : TALYS, EMPIRE
- Expertise accumulée sur leur forme et leur dépendance en énergie
- Question de la capacité prédictive en dehors de la zone de fit
- Paramétrisation de potentiels non locaux dispersifs

$$\begin{cases} \frac{d^2}{dr^2} - E - \frac{l(l+1)}{r^2} \end{cases} f_{lj}(r) - \int r\nu_{jl}(r,r')r'f_{lj}(r')dr' = 0 \\ \text{Potentiel local}: r\nu_{jl}(r,r')r' = V(r)\delta(r,r') \end{cases}$$

- Développement de nouveaux outils afin de traiter la non localité (Codes de réaction adaptés)
- Problèmes induits par les méthodes de localisation : effet Perey, dépendance spurieuse en énergie

- Nuclear Structure Method développée au début des années 70 basée sur les fonctions de Green (N. Vinh Mau)
- Regain récent d'intérêt pour la thématique des réactions basées sur les interactions effectives (Orsay, Hanoï, Japon, Milan, Chine, Bruyères, Russie)
- Méthodes champ moyen souvent utilisées comme ingrédients microscopiques dans les calculs de réaction : densité, densités de niveaux...
- Permet d'envisager des calculs impliquant une grande variété de cibles (noyaux lourds, sphériques, déformés, appariement)
- Pouvoir prédictif lié à celui des approches champ moyen
- Contraindre la paramétrisation des nouvelles interactions effectives avec des observables de réaction (Y. Xu et al.)
- Perte du lien direct avec l'interaction nue
- Donner des tendances pour les prochains potentiels phénoménologiques (non localité, dépendance en énergie, forme)

HF Sphérique

(Figures, J. P. Ebran)

HFB Sphérique

(Figures, J. P. Ebran)

HFB Déformé

(Figures, J. P. Ebran)

Potentiel ab initio

- Méthode de la matière nucléaire (50 MeV 1 GeV)
- Resonating Group Method / No Core Shell Model (noyaux légers et faible énergie)
- Green's function Monte Carlo (noyaux légers et faible énergie)
- Self-consistent Green's function (doublement magiques)
- Gorkov-SCGF (autour des doublement magiques)
- Coupled cluster (doublement magiques)

Projet

Méthode de la structure nucléaire (NSM)

$$V = V^{HF} + \Delta V^{RPA}$$

Méthode de la structure nucléaire

Potentiel optique (fonctions de Green)

$$V = V^{HF} + V^{PP} + V^{RPA} - 2V^{(2)}$$

Interaction Nue

Méthode de la structure nucléaire

Méthode de la structure nucléaire

Auto-cohérence

Auto-cohérence

En pratique, on ne réhabille qu'une seule fois le propagateur HF. Le calcul est donc cohérent au niveau RPA. On peut envisager de le rendre auto-cohérent avec des particules-trous purs dans un premier temps. Application à la diffusion $n/p + {}^{40}Ca$

Cas test: Couplage à un seul état

- ▶ Diffusion: p+⁴⁰Ca
- ▶ Potentiel: $V^{HF} + \operatorname{Im}(V^{RPA})$
- Couplage au premier état 1^- du ⁴⁰Ca avec $E_{1^-} = 9.7$ MeV

Cas test: Couplage à un seul état

- ▶ Diffusion: p+⁴⁰Ca
- ▶ Potentiel: $V^{HF} + \text{Im}(V^{RPA})$
- Couplage au premier état 1⁻ du ⁴⁰Ca avec E₁₋ = 9.7 MeV

Déphasage HF de l'onde intermédaire

Cas test: Couplage à un seul état

- ▶ Diffusion: p+⁴⁰Ca
- Potentiel: V^{HF} + Im(V^{RPA})
- Couplage au premier état 1⁻ du ⁴⁰Ca avec E₁₋ = 9.7 MeV

- Effet important des résonances de l'onde intermédiaire.
- Forte influence sur la section efficace de réaction.

Déphasage HF de l'onde intermédaire

Sections efficaces intégrales $n/p + {}^{40}Ca$ > $p + {}^{40}Ca$

- Couplage aux 4500 d'états excités de la cible (J = 0 à 14) issus du code RPA/D1S sur base d'oscillateurs.
- Utilisation d'une largeur phénoménologique d'amortissement fonction de la l'énergie de l'état excité.

Sections efficaces intégrales $n/p + {}^{40}Ca$ > $p + {}^{40}Ca$

▶ n + ⁴⁰Ca

- Couplage aux 4500 d'états excités de la cible (J = 0 à 14) issus du code RPA/D1S sur base d'oscillateurs.
- Utilisation d'une largeur phénoménologique d'amortissement fonction de la l'énergie de l'état excité.
- Détermination microscopique de la largeur et décalage en énergie: couplage 2p-2h

Sections efficaces et polarisations $n/p+^{40}Ca$

NSM (trait plein) Koning-Delaroche (pointillés)

- Bonne reproduction des sections efficaces jusqu'à environ 30 MeV.
- NSM est complémentaire des approches de type matrice g.
- Bonne reproduction des pouvoirs d'analyse: bonne contribution "spin-orbite".
- Interaction effective paramétrée sur des données de structure + hauteurs de barrières de fission

Potentiels microscopique et phénoménologique

Potentiel n + 40 Ca @ 10 MeV

- Potentiel NSM
- Potentiel non local dispersif paramétré sur l'intégralité des données disponibles sur le ⁴⁰Ca

M.H. Mahzoon, R.J. Charity, W.H. Dickhoff, H. Dussan, S.J. Waldecker, Phys. Rev. Lett. 112, 162503 (2014)

Potentiel phénoménologique et interaction effective

Intégrale de volume:
$$J_V^{lj} = \frac{-4\pi}{A} \int dr \ r^2 \int dr' r'^2 \nu_{lj}(r,r')$$

 Le potentiel de Perey Buck est un potentiel optique avec une non localité gaussienne et indépendant de l'énergie.

Intégrale de volume:
$$J_V^{lj}=rac{-4\pi}{A}\int dr \; r^2\int dr' r'^2
u_{lj}(r,r')$$

 Le potentiel de Perey Buck est un potentiel optique avec une non localité gaussienne et indépendant de l'énergie.

Intégrale de volume:
$$J_V^{lj}=rac{-4\pi}{A}\int dr \; r^2\int dr' r'^2
u_{lj}(r,r')$$

 Le potentiel de Perey Buck est un potentiel optique avec une non localité gaussienne et indépendant de l'énergie.

Intégrale de volume:
$$J_V^{lj}=rac{-4\pi}{A}\int dr \; r^2\int dr' r'^2
u_{lj}(r,r')$$

 Le potentiel de Perey Buck est un potentiel optique avec une non localité gaussienne et indépendant de l'énergie.

Intégrale de volume:
$$J_V^{lj}=rac{-4\pi}{A}\int dr \; r^2\int dr' r'^2
u_{lj}(r,r')$$

 Le potentiel de Perey Buck est un potentiel optique avec une non localité gaussienne et indépendant de l'énergie.

Intégrale de volume:
$$J_V^{lj}=rac{-4\pi}{A}\int dr \; r^2\int dr' r'^2
u_{lj}(r,r')$$

 Le potentiel de Perey Buck est un potentiel optique avec une non localité gaussienne et indépendant de l'énergie.

Intégrale de volume:
$$J_V^{lj}=rac{-4\pi}{A}\int dr \; r^2\int dr' r'^2
u_{lj}(r,r')$$

 Le potentiel de Perey Buck est un potentiel optique avec une non localité gaussienne et indépendant de l'énergie.

Intégrale de volume:
$$J_V^{lj} = \frac{-4\pi}{A} \int dr \ r^2 \int dr' r'^2 \nu_{lj}(r,r')$$

 Le potentiel de Perey Buck est un potentiel optique avec une non localité gaussienne et indépendant de l'énergie.

Même problème de saturation de J_v observé avec l'interaction D1M

Conclusion HF+RPA

Travaux en cours

- Publications (PRC 91, 014612 (2015), EPJA accepté)
- Etude des isotopes du Calcium et comparaison avec les potentiels dispersifs (R. Charity).
- Etude des autres noyaux RPA (Zr, Sn, Pb).

Projets

- Calcul microscopique des largeurs pour les états RPA.
- Prise en compte d'observables de réaction pour contraindre les nouvelles interactions effectives.

Extension aux noyaux cibles avec appariement

Diffusion de particule par un potentiel sphérique non local

- ► Diffusion de quasiparticule par un champ sphérique non local
 - Equation radiale
 - Conditions aux limites, raccordement
 - Cas test : puits carré

- Diffusion de quasiparticule, cas déformé en symétrie axiale
 - Extraction des champs
 - Test états liés

Diffusion par un potentiel sphérique non local (I)

$$(T+V) |\phi\rangle = E |\phi\rangle, \qquad \phi_{jlm}(\vec{r}) = \frac{u_{lj}(r)}{r} \mathcal{Y}_{jl1/2}^{m}(\hat{\mathbf{r}})$$

Développement en ondes partielles de l'équation de Schrödinger intégro-différentielle,

$$\left\{-\frac{\hbar^2}{2m}\left(\frac{d^2}{dr^2}-\frac{l(l+1)}{r^2}\right)-E\right\}u_{lj}(r)+\int r\nu_{jl}(r,r')r'u_{lj}(r')dr'=0$$

$$V(\mathbf{r},\mathbf{r}') \equiv \langle \mathbf{r} | V | \mathbf{r}' \rangle$$

= $\sum_{jlm} \mathcal{Y}_{jl1/2}^m(\hat{\mathbf{r}}) \nu_{jl}(r,r') \mathcal{Y}_{jl1/2}^{\dagger m}(\hat{\mathbf{r}}')$

On obtient un système d'équations non couplées en (j, l)

Diffusion par un potentiel sphérique non local (II)

Pour un couple (j,l) donné, on exprime l'équation sur un maillage radial de pas h et tel que le potentiel soit négligeable en $R_{max} = h \times N$.

$$\begin{array}{ccc} u(r) & \longrightarrow & u_i \\ \\ \frac{d^2}{dr^2}u(r) & \longrightarrow & \frac{u_{i+1} - 2u_i + u_{i-1}}{h^2} \\ \nu(r,r') & \longrightarrow & \nu_{ij} \end{array}$$

L'équation de Schrödinger se met sous la forme

Conditions aux limites : $u_0 = 0$, $u_{N+1} = 1$, $M_{i,N+1} = 0$

Diffusion par un potentiel sphérique non local (III)

L'équation s'écrit

$$\sum_{k} \mathcal{M}_{i,k} u_{k} = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ -1 \end{pmatrix}$$

La solution s'obtient par inversion de la matrice $\ensuremath{\mathcal{M}}$

$$u_i = -\left(\mathcal{M}^{-1}\right)_{i,N}$$

La solution est ensuite réinjectée dans l'équation de Schrödinger avec une dérivée seconde en 5 points et itérée jusqu'à l'obtention de la précision désirée. Diffusion par un potentiel sphérique non local (IV)

Raccordement aux solutions asymptotiques

$$u_{lj}(r) =_{r \to +\infty} C[\cos(\delta_{lj})j_l(kr) - \sin(\delta_{lj})n_l(kr)]$$

avec $k^2 = -(2m/\hbar^2) \times E$

avec j_l , n_l les fonctions de Bessel et Neumann sphériques. La fonction est normalisée par un Dirac en énergie d'où

$$C = \sqrt{\frac{1}{\pi} \frac{2m}{\hbar^2 k}}$$

On obtient le déphasage

$$\frac{u'_N}{u_N} = \frac{\cos(\delta_{lj})j'_l(kR_{max}) - \sin(\delta_{lj})n'_{lj}(kR_{max})}{\cos(\delta_{lj})j_l(kR_{max}) - \sin(\delta_{lj})n_{lj}(kR_{max})}$$

Diffusion de quasiparticule (I)

Equations HFB en représentation coordonnées

$$\int d^{3}\mathbf{r}' \sum_{\sigma'} \begin{pmatrix} h(\mathbf{r}\sigma,\mathbf{r}'\sigma') & \Delta(\mathbf{r}\sigma,\mathbf{r}'\sigma') \\ \Delta(\mathbf{r}\sigma,\mathbf{r}'\sigma') & -h(\mathbf{r}\sigma,\mathbf{r}'\sigma') \end{pmatrix} \begin{pmatrix} \phi_{1}(E,\mathbf{r}'\sigma') \\ \phi_{2}(E,\mathbf{r}'\sigma') \end{pmatrix} = \begin{pmatrix} E+\lambda & 0 \\ 0 & E-\lambda \end{pmatrix} \begin{pmatrix} \phi_{1}(E,\mathbf{r}\sigma) \\ \phi_{2}(E,\mathbf{r}\sigma) \end{pmatrix}$$

- $h(\mathbf{r}\sigma, \mathbf{r}'\sigma') \equiv$ Terme cinétique et champ moyen
- $\Delta(\mathbf{r}\sigma,\mathbf{r}'\sigma') \equiv \text{Champ d'appariement}$

On développe l'équation en ondes partielles (j,l)

$$\begin{cases} \phi_1(E, \mathbf{r}\sigma) = \frac{u_{lj}(E, r)}{r} \mathcal{Y}_{j|1/2}^m(\hat{\mathbf{r}}\sigma) \\ \phi_2(E, \mathbf{r}\sigma) = \frac{v_{lj}(E, r)}{r} \mathcal{Y}_{j|1/2}^m(\hat{\mathbf{r}}\sigma) \end{cases}$$

Les champs HFB et le potentiel chimique λ sont extraits du code HFB sphérique avec D1S. On retrouve les énergies de qp avec les champs en représentation coordonnées (Dechargé, Gogny PRC 21, 1568 (1980))

Pour un couple (j,l) donné

Conditions aux limites des fonctions d'ondes :

$$\begin{cases} u_0 = v_0 = 0\\ u_{N+1} = Y_0\\ v_{N+1} = Y_1 \end{cases}$$

► L'inversion de la matrice (2N × 2N) M permet d'obtenir les solutions

$$u_{i} = -Y_{0} (\mathcal{M}^{-1})_{i,N} + Y_{1} (\mathcal{M}^{-1})_{i,2N}$$

$$v_{i} = -Y_{0} (\mathcal{M}^{-1})_{i+N,N} + Y_{1} (\mathcal{M}^{-1})_{i+N,2N}$$

Diffusion de quasiparticule (II)

- Champ moyen et champ d'appariement sont négligeables en *R_{max} = N × h*
- Raccordement aux solutions asymptotiques pour $(E + \lambda) > 0$

$$u_{lj}(r) = C[\cos(\delta_{lj})j_l(\alpha r) - \sin(\delta_{lj})n_l(\alpha r)]$$

$$v_{lj}(r) = Dh_l(\beta r)$$

avec h_l la fonction sphérique de Hankel, $\alpha^2 = -(2m/\hbar^2)(\lambda + E), \ \beta^2 = (2m/\hbar^2)(\lambda - E).$

- ► La normalisation de *u* par un Dirac en énergie donne *C*
- Y₀, Y₁, D et δ_{lj} sont déterminés en assurant la continuité de u, v, u' et v' en R_{max}

Exemple du puits carré (I)

$$\text{Pour } r \leq 5.2 \, \text{fm} \begin{cases} V = -45.35 \, \text{MeV}, \ V_{so} = 0.5 \, \text{MeV} \\ \Delta = 1 \, \text{MeV} \end{cases}$$

Raccordement des fonctions $u_{1,1/2}$ et $v_{1,1/2}$ (avec $\lambda = -2$ fm, E = 10 MeV)

(M. Grasso et al, Phys. Rev. C 64, 064321 (2001))

Exemple du puits carré (II)

Déphasage onde $\mathsf{p}_{1/2},$ exemple de résonance induite par un état lié du champ moyen

Validation du code de diffusion de quasiparticule en sphérique (*M. Grasso et al, Phys. Rev. C 64, 064321 (2001)*)

Noyaux déformés en symétrie axiale

Le potentiel optique V_{HF}^{sph} est remplacé par :

- un potentiel HF V^{ax}_{HF}
- un potentiel HFB V^{ax}_{HFB}

Approximation Hartree-Fock en représentation coordonnées et symétrie axiale

 Ω la projection du moment angulaire totale ${\bm j}$ sur l'axe de symétrie est un bon nombre quantique

Développement de la fonction d'onde en ondes partielles

$$\phi_{\Omega}(\vec{r}) = \sum_{j,l} rac{u_{jl\Omega}(r)}{r} \mathcal{Y}^{\Omega}_{jl1/2}(\hat{\mathbf{r}})$$

avec le changement de variables

$$\begin{cases} r_{\perp} = r \sin\theta \\ z = r \cos\theta \\ \phi_{\perp} = \phi \end{cases}$$

(I. Hamamoto, PRC 73, 044317 (2006))

Equation intégro-différentielle

L'équation de Schrödinger

$$\left\{-\frac{\hbar^2}{2m}\left(\frac{d^2}{dr^2}-\frac{l(l+1)}{r^2}\right)-E\right\}u_{jl\Omega}(r)+\sum_{j'l'}\int rV_{jl\Omega,j'l'\Omega}(r,r')r'u_{j'l'\Omega}(r')dr'=0$$

 \rightarrow Système d'équations intégro-différentielles couplées en (jl, j'l')

Le potentiel $V_{j|\Omega,j'|'\Omega}(r,r')$ n'est plus diagonal en j, l

$$V_{jl\Omega,j'l'\Omega}(r,r') = \int d\mathbf{\hat{r}} \, d\mathbf{\hat{r}}' \, \mathcal{Y}^{\Omega}_{jl1/2}(\mathbf{\hat{r}}) \langle \vec{r} | V | \vec{r'} \rangle \mathcal{Y}^{\Omega\dagger}_{j'l'1/2}(\mathbf{\hat{r}}')$$

Calcul du potentiel non local $V_{j|\Omega,j'|'\Omega}(r,r')$

$$V_{jl\Omega,j'l'\Omega}(r,r') = \int d\mathbf{\hat{r}} \, d\mathbf{\hat{r}}' \, \mathcal{Y}^{\Omega}_{jl1/2}(\mathbf{\hat{r}}) \langle \vec{r} | \, V | \, \vec{r'}
angle \mathcal{Y}^{\Omega\dagger}_{j'l'1/2}(\mathbf{\hat{r}}')$$

 $\langle \vec{r} | V | \vec{r'} \rangle$ est déterminé en le développant sur une base d'oscillateurs harmoniques Φ en symétrie axiale :

$$\langle \vec{r} | V | \vec{r'}
angle = \sum_{a,c} \Phi_a(\vec{r}) \Gamma_{ac} \Phi_c^*(\vec{r'}), \qquad a = \{\Omega_a, m_a, n_{\perp a}, n_{za}\}$$

 Γ_{ac} est le champ moyen Hartree-Fock fourni par un code HF en base d'oscillateurs harmoniques

 \rightarrow Optimisation du temps de calcul du potentiel nécessaire

Résolution du système d'équations couplées, états liés (I)

 Approximation HF déformé : Diagonalisation du hamiltonien discrétrisé pour un Ω donné

$$\sum_{k'} H_{k,k'} u_{k'} = E_k u_{k'}, \qquad u_{k'} = \begin{pmatrix} u^{\frac{1}{2},0}(r_j) \\ u^{\frac{1}{2},1}(r_j) \\ \vdots \end{pmatrix}$$

avec $k = (r_i, j, l)$, $k' = (r_j, j', l')$ et $u^{j,l}(r_i)$ matrice en r_i Matrice $H_{kk'}$ à diagonaliser de taille $k_{max} \times k_{max} \sim 5000^2$

$$H_{kk'} = \begin{pmatrix} H^{\frac{1}{2},0,\frac{1}{2},0}(r_i,r_j) & H^{\frac{1}{2},0,\frac{1}{2},1}(r_i,r_j) & \dots \\ H^{\frac{1}{2},1,\frac{1}{2},0}(r_i,r_j) & \ddots \\ \vdots & & \end{pmatrix}$$

Résolution du système d'équations couplées, états liés (II)

Approximation HFB déformé :

$$\begin{pmatrix} H_{k,k'} & \Delta_{k,k'} \\ \Delta_{k,k'} & -H_{k,k'} \end{pmatrix} \begin{pmatrix} u_{k'} \\ v_{k'} \end{pmatrix} = \begin{pmatrix} E_k + \lambda & 0 \\ 0 & E_k - \lambda \end{pmatrix} \begin{pmatrix} u_k \\ v_k \end{pmatrix}$$

- Extraction des champs moyen et d'appariement d'un code de structure en symétrie axiale
- Vérification : Diagonalisation du hamiltonien HFB en représentation coordonnées

Conclusion HFB

Visite ESNT

- Extraction du champ moyen et du champ d'appariement du code sphérique sur base d'oscillateurs harmoniques
- Champs convertis en représentation coordonnées et testés
- Code de diffusion de quasiparticule en sphérique implémenté et testé
- ► Extraction des champs dans le cas déformé et tests effectués

Suite

- Tester la convergence du déphasage avec la taille de base d'oscillateurs
- Couplage du propagateur HFB avec les états QRPA en sphérique (généralisation de NSM : formalisme, implémentation)
- Code de diffusion de quasiparticule en déformé en gestation (généralisation des conditions aux limites, couplage en (j,l), passage du repère intrinsèque au repère du laboratoire)
- Application aux noyaux cibles rigides bien décrits par la QRPA