Next-generation CMB projects

Jean-Baptiste Melin

October 27, 2015

The Planck mission is ending

- Towards the European Coordination of the CMB programme (Florence, 31 Aug. and 1 Sept. 2015) https://indico.cern.ch/event/376392/timetable/#20150831
- Cosmology with CMB-S4 workshop (Ann Arbor, 21 and 22 Sept. 2015)
- COrE++ meeting in preparation for the M5 call (Paris, 28 and 29 Sept. 2015)
- Conseil scientifique de l'IN2P3 (22 oct. 2015)
- •

Where are we ?

J. Delabrouille - Space Missions

Delabrouille @ Florence 2015

CMB science

- Inflation of course, but also...
- A census of mass (CMB lensing)
- A census of hot gas (thermal SZ)
- The cosmic velocity field (kinetic SZ)
- Cosmological parameters
- Detailed validation of the model
- Thermal history
- Surprises

Requires us to → resolve the CMB FWHM < 4'

> Requires us to resolve clusters FWHM < 1'

Requires absolute calibration with precision ≈ 10⁻⁸

Parameter extensions ?

Inflationary parameters (initial conditions)

$$r = \frac{P_t(k_0)}{P_s(k_0)} = 0$$
 $n_t \simeq -r/8 = 0$

Spatial curvature $\Omega_k h^2 = 0$

Dark Energy equation of state $w_0 = -1$ $w_1 = 0$

Neutrino sector

$$N_{\text{eff}} = 3.046$$
 $\Omega_{\nu} h^2 = \frac{\Sigma m_{\nu}}{93 \,\text{eV}}$ $\Sigma m_{\nu} \simeq 60 \,\text{meV}$

Helium abundance $Y_{\rm He} \simeq 0.25$

Delabrouille @ Florence 2015

Parameter extensions ?

Inflationary parameters (initial conditions)

$$r = \frac{P_t(k_0)}{P_s(k_0)} = 0$$
 $n_t \simeq -r/8 = 0$

Spatial curvature

 $\Omega_k h^2 = 0$

Dark Energy equation of state $w_0 = -1$ $w_1 = 0$

Neutrino sector

$$N_{\text{eff}} = 3.046$$
 $\Omega_{\nu} h^2 = \frac{\Sigma m_{\nu}}{93 \,\text{eV}}$ $\Sigma m_{\nu} \simeq 60 \,\text{meV}$

Helium abundance

 $Y_{\rm He} \simeq 0.25$

REQUIREMENT:

 $\frac{dn_s}{d\ln k}\simeq 0$

The next space mission can reduce the error box volume **by a factor >10**⁶ (a factor of ≈5 on each parameter on average)

measure all spectra with the best accuracy possible

Experiments/Projects

- Current ground Europe : QUBIC and NIKA2 in France, QUIJOTE in Spain
- Balloons Europe : LSPE and Olimpo in Italy
- Balloons US : EBEX, SPIDER, PIPER, BFORE
- Future space : LiteBIRD (Japan & US), CorE++ (Europe), PIXIE (US)
- Future ground US : CMB-S4

Summary^{Piat & Hamilton @ Florence 2015}

QUBIC is a novel instrumental concept

- Bolometric Interferometer optimized to handle systematics (selfcalibration)
 - Synthesized imager observing a selected range of spatial frequencies that can be accurately calibrated
- Dedicated to CMB polarimetry and inflationary physics
- ★ High sensitivity with ~2000 TES bolometers
- ★ Dual Band (150 / 220 GHz): Dust contamination control
- ★ Location: Dome C, Antarctica
- Target :
 - First module (150 & 220 GHz, 2 yrs): r < 0.04 at 95% C.L. (incl. dust + eff.)
 - Six modules (90, 150, 220 GHz) : r ~ 0.002 at 95% C.L.

Current difficulties

- Installation at Concordia appears more difficult than expected
- Exploring another possible site on the Argentinian side of the Atacama Plateau
- Budget is not fully secured (detection chain, mount)
 - New partners are welcome!

Towards the European Coordination of the CMB Programme Villa Finaly, Firenze, Aug. 3 I st 2015

NIKA2 scientific objectifs

• Resident multipurpose instrument at the IRAM 30 m telescope

•NIKA2 Large programs:

- thermal Sunyaev-Zeldovich (SZ) effect on
 - high redshift clusters
- deep cosmological survey
- early stage of star formation in the galaxy

2

- study of nearby galaxies
- polarisation

- Site: Teide Observatory (altitude 2400 m, 28.3° N, 16.5 W)
- **Frequencies**: 11, 13, 17, 19, 30 and 42 GHz.
- Angular resolution: 0.92° to 0.26°
- Sky coverage: -32° < Dec. < 88° (fsky=0.65).</p>
- **Telescopes and instruments: two phases, fully funded.**

≻ <u>Phase I.</u>

- ➢ First telescope (QT1). In operation since Nov 2012.
- > Multi-Frequency Instrument (MFI) with 4 polarimeters at 10-20 GHz. In operation (Nov12)
- Second Instrument (TGI) with 31 polarimeters @ 30 GHz. Starting fall 2015.

➢ Phase II.

- Second telescope (QT2). Installed since July 2014.
- > Third instrument (FGI) at 42 GHz (31 polarimeters). Late 2015/2016.
- ep

- Technology: Coherent detectors.
- Polarization detection: modulation (mechanical for MFI; phase switches for TGI and FGI).
- Observing strategy: Deep observations in selected areas using <u>raster scans</u>, plus wide survey using "nominal mode".
- Scientific operation plan: 2012-2020.

Science with QUIJOTE second (TGI) and third (FGI) instruments

Left: Example of the QUIJOTE scientific goal after the Phase I: <u>1 year</u> (<u>effective</u>) observing time, and a sky coverage of 3,000 deg². The red line corresponds to r = 0.1.

Right: QUIJOTE Phase II. Here we consider <u>3 years of effective</u> <u>operations</u> with the TGI, and that during the last 2 years, the FGI will be also operative. The red line now corresponds to r = 0.05.

Experiments/Projects

- Current ground Europe : QUBIC and NIKA2 in France, QUIJOTE in Spain
- Balloons Europe : LSPE and Olimpo in Italy
- Balloons US : EBEX, SPIDER, PIPER, BFORE
- Future space : LiteBIRD (Japan & US), CorE++ (Europe), PIXIE (US)
- Future ground US : CMB-S4

LSPE in a nutshell

- The Large-Scale Polarization Explorer is :
 - an instrument to measure the polarization of the CMB at large angular scales
 - using a **spinning** stratospheric balloon payload
 - flying long-duration (> 10 days), in the polar night
- Frequency coverage: 40 250 GHz (2 instruments: STRIP & SWIPE)
- Angular resolution: 1.4° FWHM
- Sky coverage: 20-25% of the sky per flight
- Use a polarization modulator or OMT to achieve high stability
- Combined sensitivity: 10 µK/arcmin per flight
- See arXiv:1208.0298, 1208.0281, 1208.0164
- Current collaboration: Italian Universities, INAF, INFN + UK

Masi @ Florence 2015

Experiments/Projects

- Current ground Europe : QUBIC and NIKA2 in France, QUIJOTE in Spain
- Balloons Europe : LSPE and Olimpo in Italy
- Balloons US : EBEX, SPIDER, PIPER, BFORE
- Future space : LiteBIRD (Japan & US), CorE++ (Europe), PIXIE (US)
- Future ground US : CMB-S4

Currently Funded CMB - Timelines

- ~\$1M/year/project; ~8 years to first dataset
- Compared to 20 years ago, complexity has increased (much) more than funding
- MO: \$35M/7 years; Partner Mission: \$65M; SMEX: \$100M; EX: \$230M; Probe: \$1B; (Large>\$1B)

14

Frequency and \ell coverage

Observational Cosmology - University of Minnesota

Hanany @ Florence 2015

EBEX10K and BFORE

EBEX10K / BFORE

Both probing high freq. (4 bands / 3 bands)

Both extending coverage to high ell

Both complementing ground measurements

Both achieving >x5 deeper than Planck on dust

Both using latest focal plane tech. with ~11,000 detectors

26

Experiments/Projects

- Current ground Europe : QUBIC and NIKA2 in France, QUIJOTE in Spain
- Balloons Europe : LSPE and Olimpo in Italy
- Balloons US : EBEX, SPIDER, PIPER, BFORE
- Future space : LiteBIRD (Japan & US), CorE++ (Europe), PIXIE (US)
- Future ground US : CMB-S4

LiteBIRD Overview

Lite (Light) Satellite for the Studies of B-mode Polarization and Inflation from Cosmic Background Radiation Detection

- CMB B-mode satellite proposed to JAXA and NASA
- Proposed launch year: JFY 2022
- Success criteria
 - Total uncertainty on r: $\sigma(r) < 0.001^*$
 - Multipole coverage: $2 \le \ell \le 200$
 - Each bump (reionization, recombination) with >5sigma if r > 0.01
- Orbit: L2
- Observing time: \geq 3 years

*Our current studies yield $\sigma(\mathbf{r}) = 2 \ge 10^{-4}$

for 3 year observation

COrE+ concept and strategy

Think the mission as the **(near)-ultimate CMB** polarisation mission, with **guaranteed science** whatever the value of r, and **great legacy value** and discovery potential.

Performance / requirement	Solution
Resolve the CMB ≈ 4'-6' resolution or better	Class 1.5m telescope or better ≈ 6' at 135 GHz; ≈ 4' at 200 GHz
Signal dominated data (S/N >2-3 for B_{lens}) $\sigma_p = 1.5-2.5 \ \mu K.arcmin \ on \approx 100\% \ sky$	from ≈ 2500 (base) to 5000 (extension) detectors at ≈ 100 mK
Exquisite control of systematic effets for polarisation measurements	L2 orbit; Redundancy and polarisation modulation by scanning strategy
Exquisite control/separation of polarised (and intensity) foregrounds	15-20 frequency bands (or more) covering ≈ 60-600 GHz (or more)

Spectral Distortions: Structure Formation

Planck measures thermal SZ effect

Monopole floor: $y > 5.4 \times 10^{-8}$ PIXIE 50-sigma detection

Contribution from unresolved sources

Total monopole: $y = 1.6 \times 10^{-6}$ PIXIE 1500-sigma detection

- Dipole: Compare to CMB at z=1000 Gravitational accelerations
- Cross-correlate vs redshift surveys Growth of structure

Planck 2015 XXII, arXiv:1502.01596 Khatri & Sunyaev 2015, arXiv:1505.00781 Hill et al. 2015, PRL, in prep

Spectral Distortions: Reionization

Spectral Distortions: Inflation

- Scalar index $n_{\rm s}$ and running dln $n_{\rm s}/dln$ k
- Non-Gaussian $f_{\rm NL}$
- Physical scale ~1 kpc (1 $M_{\odot})$

Spectral distortions extend tests of inflation by 4 orders of magnitude in physical scale

Daly 1991 Hu, Scott, & Silk 1994 Chluba, Erickcek, & Ben-Dayan 2012 Energy release at $10^4 < z < 10^6$

Chemical potential $\mu = 1.4 \frac{\Delta E}{E}$

PIXIE limit $\mu < 10^{-8}$

~3 sigma detection, depending on ops

Experiments/Projects

- Current ground Europe : QUBIC and NIKA2 in France, QUIJOTE in Spain
- Balloons Europe : LSPE and Olimpo in Italy
- Balloons US : EBEX, SPIDER, PIPER, BFORE
- Future space : LiteBIRD (Japan & US), CorE++ (Europe), PIXIE (US)
- Future ground US : CMB-S4

Current generation of large aperture CMB telescopes

Exceptional high and dry sites for dedicated CMB observations. Exploiting and driving ongoing revolution in low-noise bolometer cameras

Carlstrom @ Florence 2015

Maintaining Moore's Law: focal planes are saturated so must use parallel processing and multiple telescopes.

Carlstrom @ Florence 2015

Stage IV experiment: CMB-S4

CMB-S4: a ground-based program working with, and building on, CMB stage II & III projects.

Participation includes, *but is not limited to:*

- the ACT, BICEP/KECK, CLASS, POLARBEAR, SPT, ... CMB Stage II & III teams and their international partners.
- Argonne, FNAL, LBNL, SLAC, NIST U.S. national labs and the high energy physics community.

International partnerships encouraged.

Strive to be complementary with balloon and spacebased instruments.

Nominal CMB-S4 specifications

• Survey:

- Inflation, Neutrino, and Dark Energy science requires an optimized survey which includes a range of resolution and sky coverage from deep to wide

• Sensitivity:

- 1 uK-arcm over ≥70% of the sky

Configuration:

- O(500,000) detectors on multiple telescopes (small and large aperture)
- spanning 30 300 GHz for foreground removal (split atmospheric bands?)
- \approx 3 arcmin resolution required for CMB lensing & neutrino science

- higher resolution leads to amazing and complementary dark energy constraints, gravity tests on large scales via the SZ effects, and mapping the universe in momentum.

CMB polarization timeline

- 2013: Stage II experiments detect lensing B-modes (SPTpol)
- now: *r* ≈ 0.12 from B-modes (BICEP2/KECK with *Planck*)
- 2013-2016: Stage II experiments
 σ(r)~0.03, σ(N_{eff})~0.1, σ(Σm_v)~0.1eV
- 2016-2020: Stage III experiments
 σ(r)~0.01, σ(N_{eff})~0.06, σ(Σm_v)~0.06eV*

 2020-2025: Stage IV experiment, CMB-S4
 σ(r) ≤ 0.001, σ(N_{eff}) = 0.020, σ(Σm_ν) =16 meV*
 each crosses a critical threshold

> * includes BOSS prior Carlstrom @ Florence 2015

Summary

Legacy value & discovery potential

COrE+:

- 21 channels with angular resolution ranging from 1' to 14', 700 million data samples
- x 30 sensitivity improvement in 15 years

Litebird (baseline):

- 6 channels with angular resolution ranging from 16' to 75', 1.4 million data samples
- x 15 sensitivity improvement in 10 years

PIXIE:

- 400 channels with fixed angular resolution of 2.5°, 3.4 million data samples
- x 1000 sensitivity improvement (for absolute spectrum) in 10 years

CMB-S4:

- 4 main channels with angular resolution 0.8 4.4', 50% sky, 250 million data samples
- x 10 sensitivity improvement in 10 years

(Take with a pinch of salt)

A goal and a strategy for the CMB community

J. Delabrouille - Space Missions

Delabrouille @ Florence 2015