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General model

Assumption:

Negligible
electromagnetic radiation

Low frequencies

1 m wire: below 3 MHz

Any vector E(J) relation
of the material

Maxwell equations
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Novel variational principle

J-q formulation

We find J by minimzing fuctional
at constant q

q: charge density

We find q by minimzing fuctional
at constant J

We minimize both functionals iteratively



Reduces computation volume
to the superconductor

High potential to reduce 
computing time

Novel variational principle

Takes inductive and capacitive 
effects into account
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Asymmetric anisotropy

We fit the 

anisotropy

angle [o]

critical 

current

[A]

measurements

fit for internal Jc

150 mT

SuperPower

tape
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Calculations correct 
self-field

magnetic field [mT]

measurements

calculations

angle:

important

self-field

94o

114o

184o

174o

average

J
c

[1010A/m2]

fit for internal J
c

E Pardo et al. 2011 SuST



Power-law exponent
depends on magnetic field



AC loss in test coils agrees with 
experiments

Magnetic field dependent Jc

Magnetic field dependent 
power-law exponent

loss
[J/m]

current amplitude [A]
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Constructed coil

with optimum parameters

670 turns

around 500 m of tape

10 pancakes

SuNAM tape

High-voltage winding of 
transformers

Inductors for passive filters

Resonators 
for high-voltage generation

Similar coils may be used for:

Coil design
for maximum stored energy
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Tape is inhomogeneous in length

Inhomogeneity
introduces uncertainty
in model

Loss dominated by 
average Ic

Coil critical current 
dominated by minimum Ic

Self-field critical current

Which is
the relevant value?

SuNAM tape

Graph provided by SuNAM
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Under magnetic fields, 

different batches are more similar

In-field Ic maybe good
also for low self-field Ic

Self-field inhomogeneity
measurements
not always useful

Ic of
4 mm
tape
[A]

angle [degrees]

180 mT

144

108

72

36

15 mT

self
field Good:

Bad:
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loss
[J]

current amplitude [A]

Whole coil

estimated
eddy current

measurements

model hysteresis + eddy

model hysteresis Measurements
by boil-off method

Calculated AC loss

agrees with experiments
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Transformer with Roebel cable
in low-voltage winding

Roebel cable
in low voltage winding

1 MVA 11 kV/415 V 3 phase transformer

Robinson Research Institute in Wellington
and industrial partners



AC loss agrees with model

Real large scale application

Copper current leads
cause eddy current loss

consistent 
with estimations

~1200 turns or strands

E Pardo et al 2015 SuST, November
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Example winding

26 pancakes

400 turns per pancake more than 10000 turns



Anisotropic field dependent Jc

Fit of Jc from
measurements at 4.2 K

D K Hilton et al. 2015 SuST
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Anisotropic field dependent Jc

Fit of Jc from
measurements at 4.2 K

D K Hilton et al. 2015 SuST

Results useful for
high-field magnets

angle [degrees]

Ic of
4 mm tape
[A]

SuperPower tape

Power-law exponent: 30
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Computing time around 20 days

Possible to make faster
calculations?

No approximation made!

All turns interact with all turns

radius [mm]

axial
position
[mm]

J/Jc,self-field

Detailed current density at all turns
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≈

continuous approximation

Continuous approximation

real coil

Pancake coil approximated by taking:

Less turns

No separation between turns

[Prigozhin and Sokolovsky 2011 SuST]
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Real Continuous approximation

radius [mm]

axial
position
[mm]

radius [mm]

J/Jc,self-field

Practically the same results but faster!



We computed up to 40000 turns

10000 turns: 2.7 hours

40000 turns: 2 days

fulfills requirements for 
high-field magnets

S Awaji et al. 2014 IEEE TAS

number of turns

time
[s] H W Weijers et al. 2014

IEEE TAS

real

continuous



Up to 500 000 elements
in the superconductor

Computing time
scales as second power

real

continuous
fit

number of elements

time
[s]
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time

current

current [A]

B from 
screening
currents
[T]

Stationary state after several cycles

zoom

Stationary state
after several cycles



time

current



Important change after relaxation

time

current

relaxation time [s]

B from 
screening
currents
[T]

one
minute

one 
day

one
hour

one 
month

15 % change

0.6 % change
compared to 
total magnetic field

after one day:
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Dependence on number of pancakes

B from 
screening
currents
[T]

critical
current
[A]

number of pancakes

40000
turns

critical current
saturates

peak of B from
screening currents
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current
[arbitrary units]

Power loss

time [minutes]

loss
[W]

Highest loss at 
first ramp

Sharp peaks
at remnant state

loss



Model

Magnet-size coils

Validation with experiments

Screening currents

Magnetic field distortion

AC loss

3D modelling



Parameters

Isotropic power-law E(J) relation

Jc=108 A/m2

N=30

applied 
magnetic field
161 mT
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Current density: x component

Jx/Jc

1 cm

1 cm

applied 
magnetic field

X

partial current 
penetration



Current density: y component

1 cm

1 cm Jy/Jc

applied 
magnetic field

Y

x and y components
are symmetric



Is there vertical component?

applied 
magnetic field

Z



1 cm

1 cm Jz/Jc

There is current with vertical component

applied 
magnetic field

vertical component 
up to 40 % of Jc

Z



Conclusions
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3D model

Superconducting cube in applied field

First 3D solution by a variational 
principle

Significant current density 
in applied field direction

High potential for complex situations

Once optimised
like the axi-symmetric model

Possible to model stacks of tapes
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Modelling and measurement
of coils

Modelling agrees with experiments

Constructed coil with

Measured AC loss by

670 turns

500 m of tape

electrical means

boil-off methods

Loss dominated by average 
in-field critical current of the tape
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Time efficient method allows modelling:

Up to 10000 turns with no approximation

Up to 40000 turns with 
continuous approximation

Fulfills requirements for:

Transformers: Model agrees with experiments

High-field magnets

SMES

Modelling of coils with many turns
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of magnet or SMES

Modelling of coils with many turns



Further possible situations:

HTS magnet as insert coil 

Partial charge or discharge 
of magnet or SMES

Looking forward to collaborating with you!

Modelling of coils with many turns
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How far can you go in 10 hours?

No need to go so far for lunch!

on foot by plane

to the airport (luckily) almost the whole World



Thank you
for your attention!



Would you like to 
know more?





Optimization of 3 parameters

Find maximum energy

by changing:

1. External radius

2. Turn separation

3. Pancake separation

Repeat until

no change

Constrains

Maximum external radius: 14 cm

Minimum internal radius: 1.5 cm

Maximum tape length 

in pancake: 50 m

Total tape length: 500 m

Stack of pancakes with maximum energy



Optimum values

maximum
energy 
[J]

pancake separation 
[mm]

turn axial separation 
[mm]

external radius [mm]

90%
of maximum

wide peak in turns and 
pancake separations

good for coil
construction
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Functional minimization for J

is the Euler-Lagrange equation of

How to obtain the scalar potential?

E Pardo et al. 2015 SuST

Equation

scalar potential

For given scalar potential, 
we obtain J by minimizing the functional



Functional minimization
for the charge density

The continuity equation



is the Euler-Lagrange equation of

Given J, 
we obtain charge density by minimizing functional

We minimize both functionals iteratively

The continuity equation

Functional minimization
for the charge density



Minimum Electro-Magnetic Entropy

Production (MEMEP)

Very fast

Very low RAM 
memory

Can use any vector E(J) relation

This talk:

Computes detailed current density

Does no need to mesh the air

Self-programmed code

[Pardo et al. 2015 SuST, April]



3D variational principle

We find J by minimizing functional


