Modelling of magnetization currents and AC loss in coated conductor coils of the 10000 turn class and other 3D situations

Enric Pardo, M Kapolka, J Souc, M Solovyov, L Frolek, F Gomory

Institute of Electrical Engineering Slovak Academy of Sciences

on foot

to the airport (luckily)

on foot

to the airport (luckily)

by plane

almost the whole World

on foot

by plane

to the airport (luckily)

almost the whole World

Faster transportation opened new possibilities

1 tape

Brandt 1996 PRB

1 tape

Brandt 1996 PRB

100 tapes

Pardo 2008 SuST

1 tape

Brandt 1996 PRB

100 tapes

Pardo 2008 SuST

This talk

10 000 tapes

Large scale applications with windings of many turns

Transformers up to 2000 turns

Staines et al. 2012 SuST

Large scale applications with windings of many turns

Transformers up to 2000 turns

Staines et al. 2012 SuST Magnets up to 30000 turns

Trociewitz et al. 2011 Appl. Phys. Lett.

Large scale applications with windings of many turns

Transformers up to 2000 turns

Staines et al. 2012 SuST

Magnets up to 30000 turns

Trociewitz et al. 2011 Appl. Phys. Lett.

SMES

DOE, Brookhaven NL, ABB, SuperPower, University of Houston Modelling of magnetization currents and AC loss in coated conductor coils of the 10000 turn class and other 3D situations

Enric Pardo, M Kapolka, J Souc, M Solovyov, L Frolek, F Gomory

Institute of Electrical Engineering Slovak Academy of Sciences

Modelling of magnetization currents and AC loss in coated conductor coils of the 10000 turn class and other 3D situations

Enric Pardo, M Kapolka, J Souc, M Solovyov, L Frolek, F Gomory

Institute of Electrical Engineering Slovak Academy of Sciences

Model Validation with experiments Magnet-size coils 3D modelling

Model Validation with experiments Magnet-size coils 3D modelling

General model

Maxwell equations

Any vector E(J) relation of the material

General model

Maxwell equations

Any vector E(J) relation of the material

Assumption:

Negligible electromagnetic radiation

Low frequencies

1 m wire: below 3 MHz

J-q formulation

q: charge density

J-q formulation

q: charge density

We find **J** by minimzing fuctional at constant q

$$\mathbf{L}_{J} = \int_{V} \left(\frac{1}{2} \Delta \mathbf{J} \cdot \frac{\Delta \mathbf{A}_{SJ}}{\Delta t} + \Delta \mathbf{J} \cdot \frac{\Delta \mathbf{A}_{a}}{\Delta t} + U(\mathbf{J}) + \nabla \phi \cdot \Delta \mathbf{J} \right) dV$$

J-q formulation

q: charge density

We find **J** by minimzing fuctional at constant q

$$\mathbf{L}_{J} = \int_{V} \left(\frac{1}{2} \Delta \mathbf{J} \cdot \frac{\Delta \mathbf{A}_{SJ}}{\Delta t} + \Delta \mathbf{J} \cdot \frac{\Delta \mathbf{A}_{a}}{\Delta t} + U(\mathbf{J}) + \nabla \phi \cdot \Delta \mathbf{J} \right) dV$$

We find q by minimzing fuctional at constant ${\boldsymbol{J}}$

$$\mathbf{L}_{q} = \int_{V} \left(\frac{1}{2} \Delta q \cdot \Delta \phi - \nabla \phi \cdot (\mathbf{J}_{0} + \Delta \mathbf{J}) \right) dV$$

J-q formulation

q: charge density

We find **J** by minimzing fuctional at constant q

$$\mathbf{L}_{J} = \int_{V} \left(\frac{1}{2} \Delta \mathbf{J} \cdot \frac{\Delta \mathbf{A}_{SJ}}{\Delta t} + \Delta \mathbf{J} \cdot \frac{\Delta \mathbf{A}_{a}}{\Delta t} + U(\mathbf{J}) + \nabla \phi \cdot \Delta \mathbf{J} \right) dV$$

We find q by minimzing fuctional at constant ${\boldsymbol{J}}$

$$\mathbf{L}_{q} = \int_{V} \left(\frac{1}{2} \Delta q \cdot \Delta \phi - \nabla \phi \cdot (\mathbf{J}_{0} + \Delta \mathbf{J}) \right) dV$$

We minimize both functionals iteratively

Takes inductive and capacitive effects into account

Reduces computation volume to the superconductor

High potential to reduce computing time

Model Validation with experiments Magnet-size coils 3D modelling Model Validation with experiments Magnet-size coils 3D modelling

Model

Validation with experiments

Small coil Medium size coil Transformer

Magnet-size coils

3D modelling

Model Validation with experiments Small coil Medium size coil Transformer Magnet-size coils

3D modelling

Anisotropy measurements

Asymmetric anisotropy

Calculations correct self-field

Calculations correct self-field

Power-law exponent depends on magnetic field

AC loss in test coils agrees with experiments

Magnetic field dependent J_c

Magnetic field dependent power-law exponent

Model Validation with experiments Small coil Medium size coil Transformer Magnet-size coils

3D modelling

Constructed coil with optimum parameters

SuNAM tape

670 turnsaround 500 m of tape10 pancakes

Coil design for maximum stored energy
Constructed coil with optimum parameters

SuNAM tape

670 turnsaround 500 m of tape10 pancakes

Coil design for maximum stored energy

Similar coils may be used for:

High-voltage winding of transformers

Inductors for passive filters

Resonators for high-voltage generation

Model Validation with experiments Small coil Medium size coil Transformer **Magnet-size coils** 3D modelling

Model

Validation with experiments Small coil Medium size coil

- Tape properties
- Screening currents
- Comparison to experiments

Transformer

Magnet-size coils

3D modelling

Model

Validation with experiments

Small coil

Medium size coil

- Tape properties
- Screening currents
- Comparison to experiments

Transformer

Magnet-size coils

3D modelling

SuNAM tape Self-field critical current

Inhomogeneity introduces uncertainty in model

SuNAM tape Self-field critical current

SuNAM tape Self-field critical current

SuNAM tape Self-field critical current

Anisotropic field dependence of \mathbf{I}_{c}

Anisotropic field dependence of $\mathbf{I}_{\mathbf{c}}$

Anisotropic field dependence of \mathbf{I}_{c}

Under magnetic fields, different batches are more similar

Under magnetic fields, different batches are more similar

Model

Validation with experiments

- Small coil
- Medium size coil
 - Tape properties
 - Screening currents
 - Comparison to experiments
- Transformer

Magnet-size coils

3D modelling

Detailed current density in all turns

Model

Validation with experiments

Small coil

Medium size coil

- Tape properties
- Screening currents
- Comparison to experiments

Transformer

Magnet-size coils

3D modelling

Calculated AC loss agrees with experiments

Calculated AC loss agrees with experiments

Single pancake

Measurements by electrical means

Low currents:

eddy current loss at current leads dominates

Calculated AC loss agrees with experiments

Calculated AC loss agrees with experiments

Model Validation with experiments Small coil Medium size coil Transformer **Magnet-size coils 3D modelling**

Transformer with Roebel cable in low-voltage winding

1 MVA 11 kV/415 V 3 phase transformer **Robinson Research Institute in Wellington and industrial partners**

Roebel cable in low voltage winding

AC loss agrees with model

E Pardo et al 2015 SuST, November

Model Validation with experiments Magnet-size coils 3D modelling

Example winding

26 pancakes400 turns per pancake

pancake 1 radius=50 mm pancake 26

more than 10000 turns

Anisotropic field dependent J_c

Anisotropic field dependent J_c

Model Validation with experiments Magnet-size coils 3D modelling Model Validation with experiments Magnet-size coils Screening currents Magnetic field distortion AC loss

3D modelling

Model Validation with experiments **Magnet-size coils** Screening currents - Real geometry - Continuous approximation Magnetic field distortion AC loss 3D modelling

Model Validation with experiments **Magnet-size coils** Screening currents - Real geometry - Continuous approximation Magnetic field distortion AC loss

3D modelling

Important screening currents

Detailed current density at all turns

Detailed current density at all turns

Detailed current density at all turns

Model Validation with experiments **Magnet-size coils** Screening currents - Real geometry - Continuous approximation Magnetic field distortion AC loss
Continuous approximation

Pancake coil approximated by taking:

Less turns

No separation between turns

continuous approximation

[Prigozhin and Sokolovsky 2011 SuST]

Practically the same results

Practically the same results but faster!

We computed up to 40000 turns

10000 turns: **2.7 hours** 40000 turns: **2 days**

fulfills requirements for high-field magnets

H W Weijers et al. 2014 IEEE TAS S Awaji et al. 2014 IEEE TAS

Up to 500 000 elements in the superconductor

Computing time scales as second power

Model Validation with experiments **Magnet-size coils** Screening currents Magnetic field distortion AC loss 3D modelling

magnetic field at bore center

Stationary state after several cycles

Important change after relaxation

Dependence on number of pancakes

Dependence on number of pancakes

Dependence on number of pancakes

Model Validation with experiments **Magnet-size coils** Screening currents Magnetic field distortion AC loss 3D modelling

Power loss

Power loss

Power loss

Model Validation with experiments **Magnet-size coils** Screening currents Magnetic field distortion AC loss

3D modelling

Parameters

$$\mathbf{E}(\mathbf{J}) = E_c \left(\frac{|\mathbf{J}|}{J_c}\right)^N \frac{\mathbf{J}}{|\mathbf{J}|} \qquad \qquad \mathbf{J_c} = 10^8 \text{ A/m}^2$$

$$\mathbf{N} = \mathbf{30}$$

Current density: x component

Current density: x component

Current density: y component

Is there vertical component?

There is current with vertical component

Conclusions

3D model

Superconducting cube in applied field

First 3D solution by a variational principle

Significant current density in applied field direction

3D model

Superconducting cube in applied field

First 3D solution by a variational principle

Significant current density in applied field direction

Possible to model stacks of tapes

3D model

Superconducting cube in applied field

First 3D solution by a variational principle

Significant current density in applied field direction

Possible to model stacks of tapes

High potential for complex situations

Once optimised like the axi-symmetric model

Modelling and measurement of coils

Constructed coil with 670 turns 500 m of tape

Modelling and measurement of coils

Constructed coils up to 670 turns 500 m of tape

Measured AC loss by

electrical means boil-off methods

Modelling and measurement of coils

Constructed coil with 670 turns 500 m of tape

Measured AC loss by electrical means boil-off methods

Modelling agrees with experiments

Loss dominated by average in-field critical current of the tape

Modelling of coils with many turns

Time efficient method allows modelling:

Up to 10000 turns with no approximation

Up to 40000 turns with continuous approximation
Time efficient method allows modelling:

Up to 10000 turns with no approximation

Up to 40000 turns with continuous approximation

Fulfills requirements for:

Transformers

High-field magnets

SMES

Time efficient method allows modelling:

Up to 10000 turns with no approximation

Up to 40000 turns with continuous approximation

Fulfills requirements for:

Transformers: Model agrees with experiments High-field magnets SMES

Further possible situations:

HTS magnet as insert coil

Partial charge or discharge of magnet or SMES

Further possible situations:

HTS magnet as insert coil

Partial charge or discharge of magnet or SMES

Looking forward to collaborating with you!

How far can you go in 10 hours?

on foot

by plane

to the airport (luckily)

almost the whole World

Faster transportation opened new possibilities

How far can you go in 10 hours?

on foot

by plane

to the airport (luckily)

almost the whole World

No need to go so far for lunch!

Thank you for your attention!

Would you like to know more?

Stack of pancakes with maximum energy

Optimization of 3 parameters

Constrains

Total tape length: **500 m** Maximum external radius: 14 cm Minimum internal radius: 1.5 cm Maximum tape length in pancake: 50 m

Optimum values

E Pardo et al. 2015 SuST

Equation

$$\mathbf{E} = -\dot{\mathbf{A}} -
abla \phi$$

E Pardo et al. 2015 SuST

Equation

 $\mathbf{E} = -\dot{\mathbf{A}} -
abla \phi$

is the Euler-Lagrange equation of

$$\mathbf{L}_{J} = \int_{V} \left(\frac{1}{2} \Delta \mathbf{J} \cdot \frac{\Delta \mathbf{A}_{SJ}}{\Delta t} + \Delta \mathbf{J} \cdot \frac{\Delta \mathbf{A}_{a}}{\Delta t} + U(\mathbf{J}) + \nabla \phi \cdot \Delta \mathbf{J} \right) dV$$

E Pardo et al. 2015 SuST

Equation

 $\mathbf{E} = -\dot{\mathbf{A}} -
abla \phi$

is the Euler-Lagrange equation of

$$\mathbf{L}_{J} = \int_{V} \left(\frac{1}{2} \Delta \mathbf{J} \cdot \frac{\Delta \mathbf{A}_{SJ}}{\Delta t} + \Delta \mathbf{J} \cdot \frac{\Delta \mathbf{A}_{a}}{\Delta t} + \underbrace{U(\mathbf{J})}_{\mathbf{J}} + \nabla \phi \cdot \Delta \mathbf{J} \right) dV$$
$$U(\mathbf{J}) = \int_{0}^{\mathbf{J}} \mathbf{E}(\mathbf{J}') \cdot d\mathbf{J}'$$

Term with the material **E**(**J**) relation

E Pardo et al. 2015 SuST

Equation

 $\mathbf{E} = -\dot{\mathbf{A}} - \nabla\phi$

is the Euler-Lagrange equation of

$$\mathbf{L}_{J} = \int_{V} \left(\frac{1}{2} \Delta \mathbf{J} \cdot \frac{\Delta \mathbf{A}_{SJ}}{\Delta t} + \Delta \mathbf{J} \cdot \frac{\Delta \mathbf{A}_{a}}{\Delta t} + U(\mathbf{J}) + \nabla \phi \cdot \Delta \mathbf{J} \right) dV$$

For given scalar potential, we obtain **J** by minimizing the functional

E Pardo et al. 2015 SuST

Equation

 $\mathbf{E} = -\dot{\mathbf{A}} -
abla \phi$

is the Euler-Lagrange equation of

scalar potential

$$\mathbf{L}_{J} = \int_{V} \left(\frac{1}{2} \Delta \mathbf{J} \cdot \frac{\Delta \mathbf{A}_{SJ}}{\Delta t} + \Delta \mathbf{J} \cdot \frac{\Delta \mathbf{A}_{a}}{\Delta t} + U(\mathbf{J}) + \nabla \phi \cdot \Delta \mathbf{J} \right) dV$$

For given scalar potential, we obtain **J** by minimizing the functional

How to obtain the scalar potential?

Functional minimization for the charge density

The continuity equation

$$\nabla \cdot \mathbf{J} + \dot{q} = 0$$

Functional minimization for the charge density

The continuity equation

$$\nabla \cdot \mathbf{J} + \dot{q} = 0$$

is the Euler-Lagrange equation of

$$\mathbf{L}_{q} = \int_{V} \left(\frac{1}{2} \Delta q \cdot \Delta \phi - \nabla \phi \cdot (\mathbf{J}_{0} + \Delta \mathbf{J}) \right) dV$$

Given **J**, we obtain charge density by minimizing functional

We minimize both functionals iteratively

Minimum Electro-Magnetic Entropy Production (MEMEP)

[Pardo et al. 2015 SuST, April]

Self-programmed code

Computes detailed current density

Does no need to mesh the air

Very fast

Very low RAM memory

Can use any vector E(J) relation

This talk:

$$\mathbf{E}(\mathbf{J}) = E_c \left(\frac{|\mathbf{J}|}{J_c}\right)^N \frac{\mathbf{J}}{|\mathbf{J}|}$$

3D variational principle

We find **J** by minimizing functional

$$\mathbf{L}_{J} = \int_{V} \left(\frac{1}{2} \Delta \mathbf{J} \cdot \frac{\Delta \mathbf{A}_{SJ}}{\Delta t} + \Delta \mathbf{J} \cdot \frac{\Delta \mathbf{A}_{a}}{\Delta t} + U(\mathbf{J}) + \nabla \phi \cdot \Delta \mathbf{J} \right) dV$$