The neutrino phase shift in the CMB

Jim Rich

SPP-IRFU CEA-Saclay 91191 Gif-sur-Yvette

james.rich@cea.fr

November, 2015

《曰》 《聞》 《臣》 《臣》 三臣 --

A First Detection of the Acoustic Oscillation Phase Shift Expected from the Cosmic Neutrino Background

Brent Follin, Lloyd Knox, Marius Millea, Zhen Pan http://arxiv.org/abs/1503.07863 10.1103/PhysRevLett.115.091301

abstract:

The unimpeded relativistic propagation of cosmological neutrinos prior to recombination of the baryon-photon plasma alters gravitational potentials and therefore the details of the time-dependent gravitational driving of acoustic oscillations. We report here a first detection of the resulting shifts in the temporal phase of the oscillations, which we infer from their signature in the Cosmic Microwave Background (CMB) temperature power spectrum.

What Radiation does

Easy to understand:

- 1. Increases expansion rate (Friedman eqn.) \Rightarrow decreases Δt for a given ΔT
- Delays onset of matter domination
 ⇒ less time for structure formation

What Radiation does

Easy to understand:

- 1. Increases expansion rate (Friedman eqn.)
 - \Rightarrow decreases Δt for a given ΔT
- Delays onset of matter domination
 ⇒ less time for structure formation

Harder to understand:

Orive temperature oscillations via potential decay
 ⇒ increases C_ℓ and
 Adds phase shift to each mode

What Radiation does

Easy to understand:

- 1. Increases expansion rate (Friedman eqn.)
 - \Rightarrow decreases Δt for a given ΔT
- Delays onset of matter domination
 ⇒ less time for structure formation

Harder to understand:

Orive temperature oscillations via potential decay
 ⇒ increases C_ℓ and
 Adds phase shift to each mode

For point 3, subtle difference in C_{ℓ} between neutrinos (free-streaming radiation) and photons (acoustic radiation)

Depend on $f_
u =
ho_
u/(
ho_\gamma +
ho_
u)$

Must first understand dominanant radiation effects of

$$f_{\mathsf{rad}} = (
ho_\gamma +
ho_
u)/
ho_M).$$

T modes superimposed on potential modes

くほと くほと くほと

 $\ell_A = D_{rec}/r_s$ (acoustic peaks); ℓ_D (dampled by photon diffusion) Hu et al, (2001) ApJ 549,669

November, 2015

5 / 20

Baryon oscillations in constant CDM wells $(t < t_{rec})$ well plasma plasma falls into well then pressure stops fall then rebounds

Modes at extrema at recombination

November, 2015 7 / 20

Modes at extrema at recombination

modes at min compression at recombination

Doppler effect suppresed by baryon mass

Potential decay drives sub-Hubble temperature oscillations

Potential-less oscillations: just normal everyday sound waves

A 🕨 🔺

Large $\ell \Rightarrow$ Potential decay \Rightarrow phase shift For $\ell \sim 200$ near recombination, modes are oscillating as

$$A_k \sim cos(kr_s(t) + 0.267\pi)$$
 $r_s(t) \sim \int_0^t c_s(t) dt$

Modes at a maxima at recombination satisfy

$$kr_s(t_{rec}) + 0.267\pi = n\pi$$
 $k \sim rac{\ell}{\pi D_{rec}}$

For $D_{rec} = 13891 Mpc$ and $r_s(t_{rec}) = 147 Mpc$:

$$n = 1 \quad \Rightarrow \ell \sim 0.73 \frac{\pi \times 13891 Mpc}{147 Mpc} \sim 220$$

Both the amplification and phase shift depend slightly on whether the potential decay is due to acoustic oscillations or to free streaming.

Jim Rich (IRFU)

High- ℓ modes damped by photon random walk during one Hubble time at recombination

Damping from photon random walk at t_{rec}

 $r_{damp}^2 \sim (\text{time to walk}) \times (\text{photon mean free path})$

$$r_{damp}^2 \sim H_{rec}^{-1} imes rac{1}{n_e \sigma_T} ~\sim~ rac{1}{\sqrt{G
ho_{rec}}} imes rac{1}{n_b imes n_e/n_b imes \sigma_T}$$

On the other hand, $\mathit{r_s} \sim 1/\mathit{H_{rec}}$, so

$$rac{r_{damp}^2}{r_s^2} \sim rac{\sqrt{G
ho_{rec}}}{n_b imes n_e/n_b imes \sigma_T}$$

$$\begin{split} r_{damp}^2/r_s^2 &\Rightarrow (\rho_M + \rho_\gamma + \rho_\nu) \\ C_{220}/C_{30} &\Rightarrow \rho_M/(\rho_\gamma + \rho_\nu) \\ T_{CMB} &\Rightarrow \rho_\gamma \\ &\Rightarrow N_\nu \qquad (r_{damp}/r_s, \text{ peak heights, } T_\gamma, \text{ and Helium abundance}) \end{split}$$

Cummulative effects of N_{ν}

Frame 1: D_{rec} adjusted so that first peak at $\ell = 220$. $\rho_{\gamma} + \rho_{\nu}/\rho_{M}$ fixed to fiducial to approximately fix amplitude of first peak. Damping depends on N_{ν} .

Cummulative effects of N_{ν}

Frame 2: He/H adjusted so that r_s/r_{damp} = fiducial. Amplitude depends on ρ_{ν}/ρ_{γ} .

November, 2015 17 / 20

A 🖓

Cummulative effects of N_{ν}

Frame 3: Amplitude renormalized to show phase shift due to neutrinos.

November, 2015 18 / 20

Calculated neutrino phase shift for $\Delta N_{\nu} = 2$

(The part of the phase shift that depends on ρ_{ν}/ρ_{γ} for fixed $(\rho_{\nu}+\rho_{\gamma})/\rho_{M}$)

Constraints on $(N_{ u}, N_{ u}^{\delta\phi})$

 $N_{
u}=3.3^{+0.7}_{-0.2}$ determined by damping tail

 $N_{\nu}^{\delta\phi} = 2.3^{+1.1}_{-0.4}$ determined by positions of the extrema of C_{ℓ} (well-defined feature not degererate with other parameters)

How the simultaneous fit is done in a physically consistent manner is not entirely clear to me.

One consistent way would add anomolous neutrino-neutrino scattering to prevent free-streaming.

Jim Rich (IRFU)

November, 2015

20 / 20