

The CRESST Experiment

Search for Low-Mass Dark Matter

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Raimund Strauss

Max-Planck-Institut für Physik München, Seminar CEA Saclay, 08.02.2016

Outline

- Dark Matter and Direct Detection
- Principle of Cryogenic Detectors
- The CRESST Experiment
- Recent Results from CRESST-II
- Beyond that: CRESST-III

Dark Matter

Dark Matter exists in the Universe!

WIMPs

Weakly Interacting Massive Particles

Particles are a well-motivated interpretation

Elastic WIMP-nucleus scattering

Direct detection with Earth-bound experiments

Dark Matter

Dark Matter exists in the Universe!

Particles are a well-motivated interpretation

Direct detection with Earth-bound

experiments

How does a possible WIMP signal look like??

- WIMP interactions via elastic scattering
 - Nuclear recoils (few keV)
 - Single scatters
 - Uniformly distributed in detector
- Spectral shape
 - Exponential towards lower energies (similar to background)
- Dependence on material
 - Coherent scattering (A² dependency)
 - Nuclear form factors
 - Consistency checks between experiments
- Annual flux modulation
 - Small effect (~ 3%)

Si Ca W Na

Nuclear Recoil

χ

X

WIMP Signals in Dark Matter Detectors

$$rac{\partial R}{\partial E_R} \propto NF^2(ec{q}) rac{
ho_D}{M_D} \sigma_\chi e^{-rac{E_R}{E_0}}$$

- R measured rate in detector
- N number of target nuclei
- E_R recoil energy of target nucleus
- $\rm M_{\rm D}\,$ mass of WIMP
- ρ_{D} WIMP density @Earth
- ${\rm F}^2\,$ nuclear form factor
- σ_{χ} WIMP nucleus cross section

- mean value: ~0.3 GeVcm⁻³
- 3000 (100GeV/M_D) WIMPs per m³
- mean flux: 10^5 (100GeV/M_D) cm⁻² s⁻¹

Usual (very basic) assumption:

Coherent scattering

 $\succ \sigma_{\gamma} \sim A^2$

• Scattering amplitudes add up in phase

Exclusion Plot – Comparison of Results

Raimund Strauss, MPI Munich

Exclusion Plot – Comparison of Results

Raimund Strauss, MPI Munich

Exclusion Plot – Comparison of Results

Raimund Strauss, MPI Munich

Current Status of Direct Dark Matter Searches

Current Status of Direct Dark Matter Searches

Potential of Cryogenic Detectors

Why are cryogenic detectors particularly sensitive to *low-mass WIMPs* ?

• Low energy threshold

Potential of Cryogenic Detectors

Why are cryogenic detectors particularly sensitive to *low-mass WIMPs* ?

- Low energy threshold
- Light elements

CRESST – Multi-Element Target

 A^2

Direct Search for Dark Matter

PRINCIPLE OF CRYOGENIC DETECTORS

Cryogenic Detector

Cryogenic Detector

Irreducible thermal fluctuations:

$$\left< \Delta E^2 \right> = k_B T^2 C$$

Need:

- > Low temperature
- Low heat capacity

Cryogenic Detector

Irreducible thermal fluctuations:

$$\left< \Delta E^2 \right> = k_B T^2 C$$

Need:

> Low temperature

Low heat capacity

Operation at mK:

Temperature increase from particles interactions can be measured! ($1 \text{keV} \rightarrow \mu \text{K}$)

"phonons flow into the thermometer more quickly than out of it !"

Experimental Basics

THE CRESST EXPERIMENT

The CRESST Experiment

Cryogenic Rare Event Search with Superconducting Thermometers

The CRESST Experiment

Cryogenic Rare Event Search with Superconducting Thermometers

CaWO₄ Target Crystal

- scintillating
- multi-element target
- mass: 250 350 g

¹⁶O ⁴⁰Ca ¹⁸⁴W

In-house production and processing at our institutes

Light Absorber for scintillation-light detection

- silicon-on-sapphire disc
- diameter: 40mm
- thickness: 500µm

- mK temperatures
- calorimetric / bolometric operation
- read-out with SQUIDs

Transition-Edge-Sensors → 2 independent calorimeters

Phonon detector (CaWO₄)

- Threshold: $E_{th} \lesssim 1 \text{keV}$
- Resolution: $\sigma \approx 100-200 \text{ eV}$

Light detector (SOS)

• Baseline noise $\sigma \approx 5 \text{eV}$

Polymeric Foil

- (1) Highly reflective
 - light collection
- 2 Scintillating
 - rejection of surface events

Support Structure

- radio-pure copper
- flexible bronze clamps

clamps do not scintillate

Phonon-Light Technique

Simultaneous measurement of phonon and light signal

Phonon-Light Technique

Phonon-Light Technique

Quenching Factor Measurements

Neutron-Scattering Facility at MLL Accelerator

- Precise measurement of QF of O, Ca and W at mK temperatures
- For CRESST detectors in ROI: $QF_0 = (11.2 \pm 0.5)\%$ $QF_{Ca} = (5.94 \pm 0.49)\%$ $QF_W = (1.72 \pm 0.21)\%$

R. Strauss et al., EPJ-C , arXiv:1401.3332

Raimund Strauss, MPI Munich

Signal and Backgrounds

39

Results of the Previous Run – Run32

CRESST II

STATE-OF-THE-ART

Recently Finished – CRESST-II Phase 2

Data-taking from July 2013 to August 2015

2014 Results: "TUM-40"

- Efficient surface-event rejection
- Best intrinsic background level
- Best overall performance

2015 Results: "Lise"

- Incomplete surface rejection
- Lowest threshold
- Factor ~2 higher background

Final Data: Total exposure

- About 500 kg-days acquired
- Data release end of 2015

Fully-Scintillating Design

Stick-Based Detector Holder

Stick-Based Detector Holder

Raimund Strauss, MPI Munich

Stick-Based Detector Holder

R. Strauss et al. arxiv:1410.1753 EPJ-C (2015)

Efficient Veto of Surface Backgrounds

47

TUM-40: Surface Backgrounds

exposure: 29 kg-days

TUM-40: Surface Backgrounds

exposure: 29 kg-days

TUM-40: Surface Backgrounds

exposure: 29 kg-days

CaWO₄ Crystal Production at TU Munich

Furnace for Czochralski process

A. Erb and J.-C. Lanfranchi, *CrystEngComm*, 2013,**15**, 2301-2304 M. von Sivers, Opt. Mat. 34, 11 (2012) 1843-1848, arXiv:1206.1588

Dedicated machine for CRESST:

- All production steps under control
- Machining of crystals in-house

Goals :

- Increase radiopurity
- Increase light output
- Ensure supply

Major achievements:

- Reproducible growth process
- Crystals of CRESST size
- Unprecedented intrinsic radiopurity

Raimund Strauss, MPI Munich

TUM-40: Radiopurity

Average rate: ~3.5 counts / [kg keV day]

Gamma-lines from **cosmogenic** activation

Excellent resolution: $\sigma \approx 100 \text{eV}$

Raimund Strauss, MPI Munich

TUM-40: Radiopurity

Raimund Strauss, MPI Munich

TUM-40: Trigger Threshold

- Low trigger threshold of $E_{th} \approx 603 eV$
- Resolution of $\sigma \approx 107 \text{eV}$ in agreement with resolution of gamma lines
- Nuclear-recoil energy precisely known!

TUM-40: Performance

- No surface backgrounds
- **Best radiopurity** (≈ 3.5 / [kg keV day])
- Low trigger threshold (≈ 0.60 keV)

• **High resolution** ($\sigma \approx 100 \text{ eV}$)

→Low-threshold Dark Matter analysis possible

 \rightarrow Use non-blinded dataset of 29kg-days

Raimund Strauss, MPI Munich

TUM-40: Acceptance at Lowest Energies

Raimund Strauss, MPI Munich

Fraction of WIMP Scatters on O, Ca and W

WIMP-Acceptance Region

Events in Acceptance Region

All 79 events accepted are conservatively considered as WIMP scatters!

Analysis Details

- 3 independent analysis chains (from raw data to final results)
- 3 different software environments
- All events conservatively treated as WIMP scatters
- Yellin optimal-interval method used to derive an upper limit

2014 WIMP Landscape

Status 2014: Results from TUM-40

Recently Finished – CRESST-II Phase 2

Data-taking from July 2013 to August 2015

2014 Results: "TUM-40"

- Efficient surface-event rejection
- Best intrinsic background level
- Best overall performance

2015 Results: "Lise"

- Incomplete surface rejection
- Lowest threshold
- Factor ~2 higher background

Final Data: Total exposure

- About 500 kg-days acquired
- Data release end of 2015

"Lise": Trigger Threshold

Direct measurement of nuclear-recoil energy with calorimetric detector!

"Lise": Results 2015

Recently Finished – CRESST-II Phase 2

Data-taking from July 2013 to August 2015

2014 Results: "TUM-40"

- Efficient surface-event rejection
- Best intrinsic background level
- Best overall performance

2015 Results: "Lise"

- No surface rejection
- Lowest threshold
- Factor ~2 more higher background

Final Data: Total exposure

- About 500 kg-days acquired
- Data release 2016

Final Data Release: Projections

Raimund Strauss, MPI Munich

A Remark...

Search for standard (high-mass) WIMPs:

- background-free technology (above ~15keV)
- Ton scale feasible

Future of Dark Matter Searches

Future of Dark Matter Searches

NEAR FUTURE

CRESST III

CRESST-III: Low-Mass Dark Matter Search

Straight-forward approach for near future: **CRESST-III** Phase 1

Status quo

m = 250g V = 32x32x40 mm³

Phonon threshold: $E_{th} \lesssim 500 eV$ Light-detector res.: $\sigma \approx 5 eV$
CRESST-III: Low-Mass Dark Matter Search

Straight-forward approach for near future: CRESST-III Phase 1

CRESST-III Phase 1

CRESST-III Detector Prototype

CRESST-III Detector Prototype

First modules ready

TES Design: Crucial for Energy Threshold

New TES design for 24g crystals:

- calorimetric operation
- Similar to CRESST light detector
- W film: 8 times smaller
- weak thermal coupling to bath
- large-area Al phonon collectors

First Results of CRESST-III Detector

Gamma event of ≈40keV in stick 0.8 Preliminary Stick signal 0.6 amplitude (V) 0.2 (light signal) 0 - Water and the second second 10 20 -20 -10 0 30 40 Absorber signal time (ms) TES

Raimund Strauss, MPI Munich

Assembly in Progress...

New dedicated cleanroom for CRESST-III at MPI Munich

Very recently: first 5 module for CRESST-III phase 1 ready

Mounting at Gran Sasso – First Step Done

4 modules mounted in CRESST cryostat (last week!)

Mounting at Gran Sasso – First Step Done

New cabling scheme successfully tested!

Final mounting: end of February

Start of measurement: mid of March

Future

CRESST-III PHASE 2

CRESST-III Phase 2

Reduce intrinsic background level of crystals!

- Growth of CaWO₄ crystals in-house (TUM)
- All production steps under control
- Improvement by factor 10 already achieved
- Cleaning procedure e.g. by re-crystallization, chemical purification of raw materials

REALISTIC GOAL (in 2 years):

Reduction of background level to 10^{-2} counts /[kg keV day] (2 orders of magnitude compared to present CaWO₄ crystals)

100 x 24g detectors of improved quality operated for 2 year \approx 1000 kg-days (net)

Recent Exciting Progress at TUM

First steps in chemical purification of CaCO₃ powder:

- Measurements indicate purification
 - Th contamination decreased by factor 2-7
 - ➤ U contamination decreased by factor 15-35
- Crystal growth successful

Raw ingot enough for 3-4 CRESST-III detectors

• Two such crystals will be implemented already to CRESST-III phase 1 !!

work by H.H. Trinh Thi, A. Münster, A. Erb

Summary

- CRESST technology proved high potential for low-mass WIMP search
 - Lowest thresholds in the field: 300eV
 - Nuclear-recoil energy scale precisely known
 - Background discrimination down to low energies \checkmark
 - Efficient rejection of surface backgrounds \checkmark
 - Multi-element target \checkmark
- **CRESST-II** probed new region of parameter space for ٠ WIMP masses below $3GeV/c^2$
- **CRESST-III** has unique potential to explore low-mass start: March 2016 WIMP region
 - Threshold of <=100eV reached with prototype detector
 - iStick technology to reject holder-related events \checkmark
 - First crystals of improved quality already in phase 1 \checkmark