

Cryogenic Research for HTS Transmission Cables in Korea

•	Overview	10 min
•	10 kW Brayton Refrigerator	10 min
•	He-LN ₂ Heat Exchanger	15 min
•	Cryogenic Design for Future	15 min

April 22, 2016

Ho-Myung CHANG

Professor of Mechanical Engineering Hong Ik University, Seoul, KOREA (on leave at European Spallation Source, Lund, SWEDEN)

> Why Superconducting (HTS) Cables?

- Efficiency Less transmission loss
- Environment Less CO₂ emission
- Power density
- More energy per unit area

(Cryogenic Cooling?) (Cryogenic Cooling?) (Yes)

 LN_2

flow

LS Cable & System

> 15 Years of HTS Transmission Cables in KOREA

> Jeju Project (154 kV AC, 1 km) – Completed in March 2016

- Transmission Grid in Juju Island
- 3 Phase in 3 Cryostats (2 Go's + 1 Return)
- Started 6 month-operation (March-Sept, 2016)

Brayton Refrigerator (7 kW)

Stirling Coolers (3 kW x 2)

LN₂ Circulation System

Cryogenic Refrigeration of HTS Cables

Overview

- 10 kW Brayton Refrigerator
- He-LN₂ Heat Exchanger
- Cryogenic Design for Future

Cryogenic Refrigeration at 60-70 K

- Brayton Refrigerators (State-of-the-Art 2011)
- (1) Taiyo Nippon Sanso (CEC 2011)
 - Refrigerant
 Ne
 - Capacity 2 kW
 - FOM (%Carnot) ~ 17% (measured)
 - Ready for delivery

- (2) Air Liquide (IEEE TAS 2011)
 - Refrigerant He
 - Capacity 11~22 kW
 - FOM (%Carnot) ~ 24% (?)
 - Under development (over \$6M)

Plan for Domestic Development in KOREA (2011)

After Cooler 2 • Refrigeration Capacity 10 kW @ 65 K Comp REF $\dot{m}_{LN} = \frac{Q_L}{h - h} = 0.710 \text{ kg/s}$ • LN₂ Flow Rate 3 HX1 • Minimum Power Input 72 K HX2 ie $\dot{Q}_L = 10 \text{ kW}$ $\dot{W}_{\min} = \dot{m}_{LN} \left[(h_e - h_i) - T_H (s_e - s_i) \right] = 33.7 \text{ kW}$ 4 Exp • Figure of Merit (FOM, %Carnot) $FOM = \frac{W_{\min}}{\dot{W}_{\text{com}} - \dot{W}_{\text{orn}}} = \frac{W_{\min}}{\dot{m}_{P}C_{P} \left[(T_{2} - T_{1}) - (T_{4} - T_{5}) \right]} \ge 0.18$

$$\dot{W} = \dot{W}_{comp} - \dot{W}_{exp} \le 187.2 \text{ kW}$$

> Thermodynamic Structure

Modeling and Design Basis

Adiabatic	Comp	75%	
Efficiency	Ехр	75%	
Minimum	HX1	5 K	
Difference	HX2	1.5 K	
	HX1	50 kPa	
Pressure Drop	HX2	20 kPa	
	AC	20 kPa	

Properties of He and Ne

	Helium (He)		Neon (Ne)			
Specific Heat Ratio	1.667		1.667			
Molecular Weight [kg/kmol]	4			20.18		
	65K	200K	300K	65K	300K	200K
Thermal Conductivity [W/m K]	0.045	0.0926	0.1203	0.016	0.0489	0.0374
Viscosity [10 ⁻⁵ Pa-s]	0.62	1.52	2.11	1.07	3.5	2.51
Density [kg/m³]	0.751	0.244	0.163	3.802	0.819	1.229

Selection of Refrigerant (He or Ne)

- Nearly same FOM at low pressures
- ✓ He is superior to Ne as pressure increases over 1 MPa
- Select He and operate at P > 1.25 MPa

> Operating Pressure (He)

There exist an optimal pressure ratio to maximize FOM.

 \checkmark Temperature may drop below the freezing temperature of LN₂ at high P's.

✓ Design Condition ★ P_H = 1.25 MPa, P_L = 0.5 MPa (r_P = 2.5)

> Results: Designed Cycle

P ratio	FOM	Ref	Wall T (HX2)	P _{max}	Mass Flow	W _{in}	Comp
2.5	21.4%	He	> 64 K	1.25 MPa	0.209 kg/s	158 kW	2-Stage

2c 2a 2bT[K] *s* [kg/kJ-K]

> T-s Diagram and Properties

	Refrigerant: Helium				
	P (MPa)	<i>T</i> (K)	<i>h</i> (J/g)	s (J/g-K)	
1	0.506	295.0	-16.86	17.61	
2a	0.801	374.0	393.9	17.89	
2b	0.791	300.0	9.07	16.77	
2c	1.25	380.4	426.9	17.06	
3	1.24	300.0	8.78	15.84	
4	1.19	75.80	-1159.5	8.750	
5	0.576	61.38	-1232.9	9.165	
6	0.556	70.50	-1185.1	9.964	

Fabrication and Construction (Plan to Test in May 2016)

• Turbo-Expanders (ATEKO, CZECH)

Flow direction Bearing Output power Rotor diameter Rotor velocity Pressure ratio Radial Flow-in He Gas bearing Eddy Current Brake 30.5 mm 180,000 rpm 2.07 • Plate-Fin Heat Exchangers (DongHwa, KOREA)

	HX-A	НУ	K-B
Material	Aluminum 3003		
Number of	39 (Warm)	35 (W	Varm)
layers	65 (Cold)	45 (Cold)	
Height	425 mm	309 mm	309 mm
Length	1680 mm	970 mm	446 mm
Width	500 mm	500 mm	500 mm

Overview

• 10 kW Brayton Refrigerator

• He-LN₂ Heat Exchanger

- Plate-Fin Heat Exchangers (PFHX)
 - Widely Used in Cryogenic Systems
 - Brazed aluminum fins and plates
 - Compactness (Large surface area / volume)
 - Design flexibility
 - ⇒ Counter-flows, Cross-flows, Multi-streams etc.

Important Design Issue – Possibility of LN₂ Freeze-out

- ✓ Need for Long-Length HTS Cables (1~3 km)
 - \rightarrow Required Cold LN₂ Supply near Freezing Temperature (63.4 K)
- ✓ Practical Fluctuation of Thermal Load and/or Operating Condition
- \checkmark Stoppage of LN₂ Flow due to Freeze-out
 - → Hazard of Disastrous Accident followed by a Loss of HTS Cooling

- Existing Anti-Freezing Schemes (Taiyo Nippon Sanso, CEC, 2012)
 - Refrigeration Cycle with High-Pressure Cooling
 - ⇒ Penalty in thermodynamic efficiency
 - Tube-in-Bath HX ⇒ Low effectiveness

• Two-stage HX \Rightarrow Penalty of large ΔP

> New Proposal of Anti-Freezing Scheme (Chang et al., Cryogenics, 2013)

> Fabrication of PFHX's for Experiment

Counter-Flow HX

2-Pass Cross-Flow HX

> Experimental Set-up (Chang et al., Cryogenics, 2013)

- Counter-Flow vs. 2-Pass Cross-Flow
- Gas He
- LN Pool and GM Cooler (SHI 500B)
- Temperature Control by a Heater
- Generation of Freezing Condition
- Liquid N₂
- Compressed Liquid at ~ 0.4 MPa
- Constant Inlet Temperature (77.5 K)
- Silicon Diode T Sensors
- He Flowmeter
- Electronic Scale for LN₂ flow rate

Experimental Results (Chang et al., Cryogenics, 2013)

- Application of 2-Pass Cross-Flow HX
 - Based on the proven robustness to temporary freezing conditions
 - Effective reduction of the freeze-out risk of LN₂
 - Compact design for He-He HX (10 kW Brayton refrigerator) and He-LN₂ HX

> Modified HX Design (Chang et al., Physics Procedia, 2015)

> Fabrication and Leak Test Completed (2015)

DongHwa Entec Co. (KOREA)

Overview

- 10 kW Brayton Refrigerator
- He-LN₂ Heat Exchanger

Gas He Cooling System for HTS Motors

- U.S. Navy program
- Tested at CAPS (FL, USA, 2004)
- 5 MW shipboard motor and drive
- 4 units of single-stage GM coolers (AL330)
- Gas He circulation for cooling

Two Separate Cycles of GM Cooler and He Circulation

Integrated Cycle of GM Cooler and He Circulation

Integrated Cycle

- No cryogenic impeller or pump is needed.
- Use of compressor unit for supplying clean He gas to the circulation loop
- A larger capacity of He compressor is needed
- A recuperative HX is needed for thermal regeneration
- Practical design by Cryomech (USA), Hyundai HI + Hong Ik University (KOREA)

Existing	Design	Proposed (New) Design
Refrigeration	LN ₂ Circulation	Integration of Refrigeration and LN ₂ Circulation
Brayton Cycle Pumped Stirling Cycle Circulation		(Claude Cycle?)
Gas He (Ne) LN ₂		Gas N ₂ + LN ₂
He Comp + He Exp LN ₂ Pump		N ₂ Comp + N ₂ Exp (No LN ₂ Pump)
Gas Refr Use of (Limited) C Small Power Inp	igeration ommercial Coolers ut for Circulation	Proven Technology with N ₂ Liquefaction Easy Scale-up for Longer Cables No Danger of LN ₂ Freeze-out

Recuperative Refrigeration Cycles

JT Valve 2-Phase Refrigerant

Expander (Turbine) Gas Refrigerant JT Valve + Expander (Turbine) 2-Phase Refrigerant

Cooling Requirements of HTS Cables and N₂ Claude Cycle

Thermodynamics

FOM (Figure of Merit, %Carnot)

Irreversibility

(Entropy)

$$\dot{I} = \left(\dot{W}_{C} - \dot{W}_{E}\right) - \dot{Q}_{HTS} \left(\frac{T_{0}}{T_{HTS}} - 1\right)$$
$$= T_{0}\dot{S}_{gen} = T_{0}\sum_{i} \left(\dot{S}_{gen}\right)_{i}$$

Assumptions and Simulation Basis

Ambient •

•

- Maximum T **HTS Cable Thermal Load** Supply and Return
- **Heat Exchangers** ۰
- **Compressor & Expander**

$$T_{0} = 300 \text{ K}$$

$$T_{HTS} = 78 \text{ K}$$

$$Q_{HTS} = 10 \text{ kW}$$

$$T_{e} - T_{i} = (78 \text{ K}) - (69 \text{ K}) = 9 \text{ K}$$

$$P_{i} - P_{e} = (0.65 \text{ MPa}) - (0.5 \text{ MPa}) = 0.15 \text{ MPa}$$

$$\Delta T_{min} = 3 \text{ K} \quad \Delta P = 0$$

$$\eta_{C} = \eta_{E} = 80\%$$

Exp stream

JT stream

- Selection of Cycle
 - Cycle (I) Simplest and Most Compact

1.2

0.9

0.6

0.3

0.0

Mass flow rate [kg/s]

• Cycle (IV) – Most Efficient and Smallest Comp with Considerable improvement with additional HX due to reduced ∆T in HX's

Mass flow

Cycle I

Cycle II

Cycle III

Cycle IV

Vapor

Temperature [K]

80

90

100

70

• Final Recommendation – Cycle (IV) Modified Dual-Pressure Claude Cycle

0.01

50

60

- Satisfaction of cooling requirements
- Sub-atmospheric operation
- Patent application underway

- HTS Cable Projects in Korea
 - Great advantage of high power density
 - A world record of 154 kV 1 km Cable in Jeju
- > 10 kW Brayton Refrigerator
 - Viable option for 1 km Cables
 - Thermodynamic design and construction with He (refrigerant)
- He-LN₂ Heat Exchanger
 - 2-Pass Cross-Flow HX as anti-freezing scheme of LN₂
 - Detailed design and fabrication of plate-fin HX
- > Cryogenic Design for future
 - Integration of refrigerator and LN₂ circulation system
 - Proposal of modified Claude cycle for long-length (1~3 km) cables

