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1) Production 2) Oscillations 3) Detection

 3 neutrino generations in the SM
 Oscillations described by 6 parameters:

L = distance from 

 production point

Neutrino oscillations (I)
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1) Production 2) Oscillations 3) Detection

 3 neutrino generations in the SM
 Oscillations described by 6 parameters:

 Mixing angles θ
12

, θ
23

, θ
13

 

 Mass square difference ∆m2

21
, ∆m2

31

 CP violation 
CP 

(difference matter-antimatter) 

Neutrino oscillations (II)

● Need small uncertainties to measure 
precisely θ

23
, θ

13
  and 

CP 
 

● Systematics limited by the neutrino
    interaction model
● Need precise measurements of neutrino 

interaction cross section 

Mass eigenstate: ( 







)

Weak eigenstate: ( 
e






)

U = PMNS matrix

Accelerator experiment:Accelerator experiment:

T2KT2K



  

Neutrino interactions
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Charge Current (CC):
● CC Quasi Elastic (CCQE)
● CC RESonance or CC 1π
● Deep Inelastic DIS

 Neutrino interaction on nuclei (not on free nucleons!):
 

● Nuclear effects (correlation within nucleons)
● Difficult kinematic reconstruction of the final state
● Better theoretical models are needed!!! 
● Better cross section measurements in different nuclei

T2K's 
Energy Peak



  

The T2K experiment 
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TRACKER

● Far detector in Kamioka: 

Super-Kamiokande 50 kton water Cherenkov 

1 km undergrond 

● Beam line at J-Parc in Tokai:
Near detector ND280 fully magnetized 
with B = 0.2 T  

● ν
μ
, ν

e
 detection after oscillations

via CCQE interaction

T2K = long baseline neutrino oscillations experiment Tokai-to-Kamioka 



  

 Sub-detectors allow a fully reconstructed event

 Tracker optimize to detect CC interactions:

- 3 Time Projection Chambers (TPC):                    
  gas mixture, momentum measurement,               
  particle ID

- 2 Fine Grained Detectors: 

 

The Near Detector: ND280 

● Active (FGD1 + FGD2): 
CH scintillator bars arranged in alternating 
x-y oriented layers (supermodule)

● Passive (FGD2):
H

2
O water modules

TPC1TPC1

TPC2TPC2

TPC3TPC3

FGD1FGD1

FGD2FGD2

  2*1.2 ton target mass CH (active) and        
H

2
O (passive, same as Super-K )

 Constrains flux, cross section and background for oscillation analysis in the 
un-oscillated 


 –

e 
flux

 

 High statistics ~ 60k 

events in ~7x1020 Protons on Target (POT) recorded so far

 Neutrino cross-section measurements:

CHCH

CHCH  +  HH
22
OO  

FGD1: 15 x-y supermodules15 x-y supermodules

FGD2: 77 x-y supermodulesx-y supermodules + 
                        6 water modules6 water modules

x-layerx-layer

y-layery-layer

y-layery-layer

x-layerx-layer waterwater
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x-layer

NEUT:
96.9e+20 POT 

DATA:
5.70e+20 POT 

x-layer
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CC0Water/Scintillator ratio 

CC0 selection
● Muon produced in FGD2  
● Good track quality 
● Muon PID in the TPC
● No pion in the final state

 

TPC1TPC1 FGD1FGD1 TPC2TPC2 FGD2FGD2 TPC3TPC3

μμ--

pp
νν  μμ  

N
exp.

··  · T
=flux
= detector response
 =  cross section
T = # of target 

Vertex = most upstream hit



  

Vertex position 

Amount of backward tracks is not well known
→ Need to constraint it from control sample in data. 

Hybrid FGD1Hybrid FGD1
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x-layer

y-layerμ μ

N
x
 = x-layer + water                              N

y
 = y-layer 

μ

p

True vertex position

Track's 1st hit

● N
x
 = x-layer + water + y-layer (backwards)

● N
y
 = y-layer + water (backwards) + x-layer (forward)

 Migration: the neutrino interaction vertex is moved from a layer to another

 Backward: low energetic backward particles aligned with forward μ 



  

DATA:
5.70e+20 POT

Hybrid FGD1 control sample

● Scintillator:Scintillator: 8 xy-supermodules 
● Fake water:Fake water: 7 xy-supermodules 

RFakeWater/Scintillator   = 0.995  0.021 (~2.1% stat.)
                                        0.009 (~0.9% det.) 

Integrated DATA

Successful test RFW/S ~ 1 
with a total uncertainty ~ 2%

Integrated MC

RFakeWater/Scintillator  = 0.993  0.015 (~1.5% MC stat.)
                                       0.009 (~0.9% det.)
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True vertex 

Track's 1st hit

Masked in the FGD1 one x-y supermodule every two in order to properly simulate 
passive material 

=  1 (CH/CH), any deviation is due to systematics

  Fake water Fake water 
(xy switched off)(xy switched off)

y

x

y

x

FGD1FGD1 Hybrid FGD1Hybrid FGD1



  

MC

RW/S (NEUT)  = 0.996  0.015(~1.5% MC stat.)  0.009(~0.9% det.)  0.007(~0.7% mass.) 
                                  0.017(~1.7% bkw.)  0.009(~0.9% theo.) 

RW/S (GENIE)  = 0.994  0.016(~1.6% MC stat.)  0.012(~1.2% det.)  0.007(~0.7% mass.) 
                                   0.016(~1.6% bkw.)                                    

Integrated MC

Results FGD2
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● Full assessment of detector and theoretical systematics
● Analysis still at MC level in FGD2 (blind analysis)
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Next step...

● Precise knowledge of 


is crucial for present and future oscillation experiments  
● What can be further improved in T2K?

I)   Reduce the statistical errors –---> Take more DATA!!! 

II)  Bring the total uncertainty on the oscillation analysis at 3% -----> Cross section measurement

III) Improve P

 resolution  and reduce detector systematics –---> MicroMegas Alignment

 



  

TPCTPC
● Time Projection Chamber 
● Amplification via MicroMegas

● MM modules arranged in a 6x2 matrix

● Mechanical precision:   Cosmic rays collected with magnetic field off 

 Match straight tracks in the middle plane between 

adjacent MM modules and extract residuals ΔΔy, y, ΔΔφφ    

 Fit to the the residuals to extract corrections

central 
cathode

2 m

1 m

MMMM
2 m

= measured residual
f

= f(y, z, ) free 

parameters in the fit
y, z, alignment 
corrections 12/14

Δy = y
MMi

 – y
MMj 

Δφ = φ
MMi

 – φ
MMj 

MMMM
ii

MMMM
ii

MMMM
jj

MMMM
jj

Track

Projected 
track

MicroMegas Alignment    
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 Gaseous ionization 
detector

 High electron collection 
efficiency (~100%)

 High gain (~103)
 Fast signal 

Translation ~100 m y(z)

Rotation ~0.5 mrad (φ)



  

y y 
 = 23 m

φ φ 
 = 0.07 mrad

ΔzΔzz z 
 = 51 m

MM alignment results


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Simultaneous fit:
Translation + Rotation

33

99

6 MM pairs for each TPC read-out plane = 36 corrections for all the TPCs



  

● ND280 is essential to reduces the systematic uncertainties in the predicted event 
rate at Super-K

● FirstFirst T2K analysis of water/scintillator CCQE  cross section ratio 

R
W/S

 = 
water

/
Scint.

 with a total uncertainty of ~3%

  

● MM alignment performed with a precision of 
     
    

RW/S (NEUT)  = 0.996  0.015(~1.5% MC. stat.)  0.009(~0.9% det.) 
                                  0.007(~0.7% mass.)  0.017(~1.7% bkw.) 
                                  0.009(~0.9% theo.) 

Conclusion

 i)  ~20(50) ~20(50) mm for y(z) translation 

 ii) ~0.1 mrad0.1 mrad for rotations



BA
CK
UP

BA
CK
UP



  

Beam line

DATA taking Run1-7

● π, К production at target measured by NA61 experiment at CERN 
(see Matej talk)

● Beam direction stability < 1 mrad

● ν and ν mode changing horn current

● Off-axis beam allows a narrow peak in E
ν
 to maximize oscillation 

probability and reduce high energy background

POT = proton on target

➢ Neutrino mode: 7.57x1020 POT

➢ Antineutrino mode: 7.53x1020 POT

● Stable operation at ~420W achieved!

● Integrated POT up to 27th May 2016:

● T2K goal is 78x1020 POT



  

The near detectors (280 m)

TRACKER

ν

Beam 
direction
Designed 
center

INGRID

ND280

● On-axis detector

● 0°-0.9° coverage

● Iron/scintillator tracking calorimeters, 16 modules

● 1 all-scintillator proton module

● Monitors beam intensity, direction, profile and stability 

● Off-axis detector 2.5° (same SK direction)

● Sub-detectors allow a fully reconstructed event

● Fully magnetized detector B = 0.2 T 

● PØD: π0 detector

● 3 TPCs: momentum measurement, particle ID (dE/dx)

● 2 FGDs: active target mass (2*1.2 ton)

● ECal: electron, gamma identification

● SMRD: improve muon identification



  

TPCTPC

FGDFGD
● Fine Grained Detector of 2x2x0.3 m3

● Total mass 2x1.2 ton
● Fine segmentation to track low energy particles and tag 

CCQE events
● Active material: scintillator bars (1x1x200 cm3) arranged in 

alternating x-y oriented scintillator layers (supermodule)
● FGD1 = 15 x-y supermodules
● FGD2 = 7 x-y supermodules alternating with 6 water layers

FGD1FGD1

TPC2TPC2
TPC3TPC3

TPC1TPC1

FGD2FGD2

ν

Alignment improve particle Alignment improve particle 
momentum resolution momentum resolution 

FGD1FGD1

FGD2FGD2

central 
cathode

2 m

2 m

1 m

MMMM

● Tracker = 3TPCs + 2FGDs
● dE/dx capability separate e/μ
● σ(p)/p < 10% @ 1 GeV/c2

ND280 tracker

● Time Projection Chamber 
● Argon filled ~95%
● 2 Read-out Planes (RP)
● Amplification via MicroMegas 

modules (MM)
● Column staggered by 5 cm
● MM modules arranged in a 

6x2 matrix geometry 
● Total MM 3X2X6x2 = 72

  

FGD2 filled with plastic scintillators and water modulesFGD2 filled with plastic scintillators and water modules

A very precise detector calibration is A very precise detector calibration is 
needed to reduce detector systematicsneeded to reduce detector systematics



  

● 50 kton water cherenkov detector 1 km 
undergrond (Kamioka mine)

● 22 kton of Fiducial Volume
● ~11k PMTs in the inner detctor
● ~2k PMTs in the outer detector
● Veto entering background (cosmic rays, 

radioactivity) and rejects exiting events 
● Excellent muon-electron separation thanks 

to cherenkov light ring shape 
● Misidentification < 1%
● No magnetic field to distinguish particles 

from anti-particles

e-like:e-like: fuzzy ring μμ-like:-like: sharp ring

The far detector Super-K (295 km)



  

Neutrino Flux Neutrino Flux 
Beam line simulation 

External Hadron production data 
NA61/SHINE 

Beam monitor measurement      
INGRID

Neutrino InteractionsNeutrino Interactions
Interaction model tuned     

NEUT  

Constrained using external data 
MiniBooNe & Minerνa 

ND280 measurementND280 measurement
Measure ν interaction

ND280 predictionND280 prediction

Fit to ND280 data to 
reduce the flux and  cross 

section uncertainties

Super-K dataSuper-K data
ν

μ
 and ν

e
 candidatesSuper-K predictionSuper-K prediction Oscillation fit

Analysis strategy



  

● Cosmic rays collected with magnetic field off 

● Reconstruct straight track in each module separately 

● Match tracks in the middle plane between adjacent MM modules 
and extract residuals Δy, Δφ  

● Horizontal tracks constraint translational misalignment (vertical dy, 
horizontal dz) and rotation dφ

● Correction constants extracted via a fit to the residuals

● Total correction depends on dy, dz, dφ free parameters in the fit

Δy = yMMi – yMMj 

Δφ = φMMi – φMMj 

● Laser monitor system gives few hundred microns in translations and few mrad for rotations
● The fit has to be very sensitive
● Generated MC test geometries to test the fit

MM alignment strategy (I)



  

Strategy I

● Cosmic rays collected with magnetic field off 

● Reconstruct straight track in each module separately 

● Match tracks in the middle plane between adjacent MM modules and extract residuals Δy, Δφ  

● Horizontal tracks constraint translational misalignment (vertical dy, horizontal dz) and rotation dφ 

Δy = yMMi – yMMj 

Δφ = φMMi – φMMj 

ΔΔφφ

ΔΔyy

-0.470 μm

1.904 
mrad

MM alignment strategy (II)



  

● Correction extracted via a fit to the residuals

● Minimize χ2 function who depends from:

● Total correction depends on dy, dz, dφ

● Rotations and translations could be corrected separately running the minuit fit in two steps:

Δy = yMMi – yMMj 

Δφ = φMMi – φMMj 

First step: First step: 
    a) Rotation corrections extraction
Second step: Second step: 
    a) Translational corrections extraction, Once rotational ones are applied  
    b) Put together translational and rotational corrections and apply to the sample

MM alignment strategy (III)



  

● Few hundred microns in y and z direction and few mrad for rotation from laser 
monitor system (survey)

● Minuit fit has to be very sensitive
● Survey like geometry generation to test the fit

φφ φφ

yy yy

zz zz

EP0 EP1

MC test geometry



  

Cuts 

Track ~ 37k

Track ~ 18k

Track ~ 33k

Δy = yMMi – yMMj

Δφ = φMMi – φMMj

 | φ | < 1. rad

| Δφ | < 0.015 rad

| Δy | < 2.5 mm

Cuts

10  < χ /ndf < 0.5

20 < #hits < 50

-5
Tracks 2

Track quality 

Cosmic rays Data Run2-4



  

MicroMegas φ alignment



  

MicroMegas y alignment



  

MicroMegas z alignment



  

Before/After Alignment

dφdφdzdzdydy

Good precision in corrections extraction



  
TPC1TPC1 TPC2TPC2 TPC3TPC3

RP1

Alignment validation 
● Fit alignment validation comparing 3 different samples:

● Residuals btw track hits and fitted track

● Residuals extracted via bi-gaussian fit to Δy distribution

1)  NO MM Alignment 
2)  Survey Alignment
3)  Fit Alignment

Δy = y
track

 –  y
hit

. ..
. .

. . .....
..... .. .....



  

TPC1



  

TPC2



  

TPC3



  

● Scintillator: 15 xy-supermodules
● Layer #0-29 

±20%:    ~0.3% on the ratio Rx/y

±100%:  ~1.5% on the ratio Rx/y

FGD1FGD1

Switch off one xy-supermodule in 
succession every two in FGD1 to 
properly simulate reconstruction 
effect. 

Hybrid FGD1Hybrid FGD1

                               NX fx
CC0π  fx

x   +  NY fy
CC0π  fy

x                 

                                 NX fx
CC0π  fx

y    +  NY fy
CC0π  fy

y                  
    Rx/y  =

s

 w

Nn

S

WNn

(P, cosθ, E)TRUE

Ratio in FGD1 must be 1 (CH/CH)

Any difference from 1 can be used to constraint the systematics

NEUT: 
96.9e+20 POT 

x
y

xy
x
y

x
y

Out of FV
Layers 0,1

FGD1 control sample



CC0π Hybrid FGD1 sample 

MomentumMomentum

DirectionDirection

y-layerx-layer

NEUT:
14.5e+20 POT NEUT 

y-layerx-layer

NEUT NEUT 

In Hybrid FGD1
x,y-layer enhanced 
by “water”  



Backward systematics

Hack the FGD1 brings similar results as in FGD2 on backward systematics. 

NEUT:
14.5e+20 POT

MomentumMomentum DirectionDirection

  ~0.6%

  
  ~ 3.5%

FGD2FGD2

  ~1.0%

  
  ~ 3.9%

Hybrid FGD1Hybrid FGD1

  ±20%:    ~0.3%

  
  ±100%: ~1.5%

FGD1FGD1

±50%: ~2.1% ~1.7%
on the ratio Rx/y

on the ratio Rx/y

on the ratio Rx/y

NEUT:
14.5e+20 POT



Integrated

NEUT: ~2.3 % stat.
           ~0.9% syst.
GENIE: ~2.3% stat.
            ~1.2% syst.  

Systematic error: order of percent in 
each bin and less than 1% integrated

NEUT

Estimated from the number of neutron in the FV

Detector systematics



  

Theoretical systematics (I)

Reference sample: NEUT
Fake dataset: reweighted NEUT 

● Taken into account theoretical parameters in BANFF 2015

● Splitted parameters for C and O

● Reweighted sample to estimate the systematics

● 14 variation for each parameter around the nominal value and within its validity range 

● Response functions 

● Extraction of ratio systematics via 10k throws
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Nominal

Response functions



  

● 10k throws with proper correlation btw parameters
● Evaluation of R(W/S,Throw) from the response functions

Uncertainty on the integrated value < 1%

Theoretical systematics (II)
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