# Lecture #3

# Solenoidal; Dipole; Quadrupole, Racetrack Coils

Yukikazu lwasa

Francis Bitter Magnet Laboratory Plasma Science and Fusion Center Massachusetts Institute of Technology Cambridge MA 02139

**CEA Saclay** 

June 22, 2016

# Outline

- Generation of magnetic field
- Solenoid
- Ideal dipole
- Ideal quadrupole
- Ideal racetrack
- Self inductances

### Generation of Magnetic Field

Law of Biot-Savart

$$dec{H}=rac{I\,dec{s} imesec{r}}{4\pi r^3}$$



Straight Conductor of Finite Length  

$$d\vec{H} = \frac{I \, d\vec{s} \times \vec{r}}{4\pi r^3} \Rightarrow dH = \frac{I \, ds \sin\theta}{4\pi r^2}$$

$$\frac{r d\theta}{ds} = \sin\theta = \frac{a}{r} \qquad ds/r^2 = d\theta/a$$

$$H = \frac{I}{4\pi a} \int_{\theta_1}^{\theta_3} \sin\theta \, d\theta$$

$$H = \frac{I}{4\pi a} (-\cos\theta_3 + \cos\theta_1) = \frac{I}{4\pi a} (\cos\theta_2 + \cos\theta_1)$$
When length >> a  

$$\cos\theta_1 \to 1; \quad \cos\theta_2 \to 1$$

$$H = \frac{I}{2\pi a} \qquad H \text{ varies as } 1/r$$

#### **Current-Carrying Ring**

$$d\vec{H} = \frac{I \, d\vec{s} \times \vec{r}}{4\pi r^3}$$

$$H_z = \frac{I(2\pi a)r\cos\theta}{4\pi r^3} = \frac{Ia\cos\theta}{2r^2}$$

$$\cos\theta = \frac{a}{r} \qquad H_z = \frac{a^2I}{2r^3}$$

$$r^2 = a^2 + z^2$$

$$H_z(z,0) = \frac{a^2I}{2(a^2 + z^2)^{3/2}}$$

$$r = 0; \text{ Here the } r \text{ represents } (r; z, \theta) \text{ coordinates}$$

Η

 $H_z$ 

 $\overleftarrow{\mathbf{x}} z = 0$ 

H<sub>r</sub>

2a

Carrying-Current Ring (cont.)

$$H_{z}(z,0) = \frac{a^{2}I}{2(a^{2}+z^{2})^{3/2}}$$

$$H_{z}(z \gg a) = \frac{I}{2a} \left(\frac{a}{z}\right)^{3} = H(0) \left(\frac{a}{z}\right)^{3}$$

$$I = 2a$$

$$I = 2a$$

Far away from the source, even a solenoid field varies as  $1/r^3$ 

$$H_z(0) = rac{I}{2a}$$
  
 $H = rac{I}{2\pi a}$  for a straight conductor

*H* increased by  $\pi$  when a straight piece of wire is folded into a circle

$$B_z(0) = \mu_{\circ} rac{NI}{2a}$$
  $\mu_{\circ} = 4\pi imes 10^{-7} \, {
m H/m}$ 

Y lwasa (MIT) <iwasa@jokaku.mit.edu>

# Solenoid

Generates a uniform axial field; most common magnet configuration

• Important dimensionless coil constants

$$lpha=rac{a_2}{a_1}; \quad eta=rac{b}{a_1}$$

### Field Lines

- "Uniform" around the center
- Maximum at  $r = a_1$ , z = 0 (single coil)
- At  $r = a_2$ , z = 0,  $B_z \approx 1/10$  of  $-B_0 \equiv B_z(r = 0, z = 0) = B_z(0, 0)$



#### Solenoid: Filed Computation

**Uniform-Current Density Solenoid** 

$$dB_z(0,0) = \frac{\mu_{\circ} r^2 \lambda J \, dA}{2(r^2 + z^2)^{3/2}}$$





 $B_z(0,0) = \mu_o \lambda J a_1 F(\alpha,\beta)$   $F(\alpha,\beta)$ : Field factor; depends only on  $\alpha \& \beta$ 

$$F(\alpha,\beta) = \beta \ln \left( \frac{\alpha + \sqrt{\alpha^2 + \beta^2}}{1 + \sqrt{1 + \beta^2}} \right)$$

$$B_z(0,0)=rac{\mu_\circ NI}{2a_1(lpha-1)}\ln\left(rac{lpha+\sqrt{lpha^2+eta^2}}{1+\sqrt{1+eta^2}}
ight)$$

Y lwasa (MIT) <iwasa@jokaku.mit.edu>

#### $F(\alpha,\beta)$ vs. $\alpha$ for selected values of $\beta$



• "Short" coils ( $\beta \ll 1$ ): field ~independent of  $a_1(\alpha - 1)$ 

#### $F(\alpha,\beta)$ vs. $\beta$ for selected values of $\alpha$



- Field ~ independent of coil length  $\beta > \sim 2$  for  $\alpha$  up to  $\sim 2$ 
  - From stress consideration  $\alpha > 2$  rarely used
  - Field spatial homogeneity improves with  $\checkmark \beta$ 
    - → NMR & MRI magnets tend to be long

"Ring" Coil 
$$(\alpha = 1; \beta = 0)$$
  

$$B_{z}(0, 0) = \frac{\mu_{o}NI}{2a_{1}(\alpha - 1)} \ln \left(\frac{\alpha + \sqrt{\alpha^{2} + \beta^{2}}}{1 + \sqrt{1 + \beta^{2}}}\right)$$

$$\lim_{\beta \to 0} \ln \left(\frac{\alpha + \sqrt{\alpha^{2} + \beta^{2}}}{1 + \sqrt{1 + \beta^{2}}}\right) = \ln \alpha \qquad \ln \alpha = \alpha - 1$$

$$\mu_{o}NI$$

$$B_z(0,0) = rac{\mu_\circ NI}{2a_1(lpha-1)}(lpha-1) = rac{\mu_\circ NI}{2a_1}$$

This expression very useful to get a feel of what *NI* would be for a given set of  $B_z(0,0)$  and  $2a_1$  (and sometimes *I*)

#### ISEULT

#### **Parameters**

$$B_z(0) = 11.76 \text{ T}; 2a_1 = 1 \text{ m}; 2a_2 \approx 1.95 \text{ m}; 2b \approx 3.1 \text{ m}; I_{op} \approx 1500 \text{ A}$$

$$B_z(0) = \mu_o \frac{NI}{2a} \rightarrow 11.76 \text{ T} = [(4\pi \times 10^{-7} \text{ H/m}) (\text{NI A})] / 1 \text{ m}]$$
  
Solve for *NI* [A]

 $NI = (11.76 \text{ T} \times 1 \text{ m}) / (4\pi \times 10^{-7} \text{ H/m}) = 9.4 \text{ MA}$ 

 $I_{op} \approx 1500 \text{ A} \Rightarrow N \approx 6250 \text{ turns}$ 

- Because obviously all 6250 turns cannot be placed at a single center point, N must be spread out over a wider space, making real ISEULT N = 29920 > 6250
- Note that the *center ring* generates the highest field at the magnet center, the rest less







| Solenoid Type                                                                                                                                                                              | Center $(0,0,0)$ Field $B_{z0}$                                                                                                                                                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| General: $\alpha, \beta$<br>$- \underbrace{ \begin{array}{c} \uparrow \\ 2a_1\alpha \\ \downarrow \\ \neg \end{array} \begin{array}{c} z \\ 2a_1\beta \end{array}}_{2a_1\beta} \downarrow$ | $B_{z0} = \frac{\mu_{\circ} NI}{2a_1(\alpha - 1)} \ln\left(\frac{\alpha + \sqrt{\alpha^2 + \beta^2}}{1 + \sqrt{1 + \beta^2}}\right)$ $= \mu_{\circ} \lambda J a_1 F(\alpha, \beta)$ $F(\alpha, \beta) = \beta \ln\left(\frac{\alpha + \sqrt{\alpha^2 + \beta^2}}{1 + \sqrt{1 + \beta^2}}\right)$ |
| Ring: $\alpha = 1, \beta = 0$<br>$2a_1 \longrightarrow z$                                                                                                                                  | $B_{z0} = \frac{\mu_{\circ} NI}{2a_1}$                                                                                                                                                                                                                                                           |
| Thin-Walled: $\alpha \rightarrow 1, \beta$<br>$-\begin{array}{c} 2a_{1}\alpha & \downarrow \\ 2a_{1}\beta & \downarrow \\ 2a_{1}\beta & \downarrow \\ - \end{array}$                       | $B_{z0} = \frac{\mu_{\circ} NI}{2a_1} \left( \frac{1}{\sqrt{1+\beta^2}} \right)$ $= \mu_{\circ} \lambda J a_1 (\alpha - 1) \frac{\beta}{\sqrt{1+\beta^2}}$                                                                                                                                       |
| Long: $\beta \gg \alpha$<br>$-\begin{array}{cccc} \uparrow & & \\ 2a_1\alpha & 2a_1 \\ \downarrow & & \\ 2b & & \\ \hline & & \\ 2b & & \\ \hline \end{array} z_b$                         | $B_{z0} = \frac{\mu_{\circ} NI}{2b}$ $= \mu_{\circ} \lambda J a_1(\alpha - 1)$                                                                                                                                                                                                                   |
| Short (pancake): $\alpha, \beta \to 0$<br>$2a_1\alpha - 2a_1$<br>$\downarrow$ $\uparrow$                                                                                                   | $B_{z0} = \frac{\mu_{\circ} NI}{2a_1} \left(\frac{\ln \alpha}{\alpha - 1}\right)$                                                                                                                                                                                                                |

### Load Lines



# Dipole

#### **Ideal Dipole** Bending magnetic field Current • Circular cross section (radius *R*) of "zero" winding thickness Particle Infinitely long, i.e., no end effects • beam $\vec{H}_{d1} = H_0(\sin\theta\,\vec{\imath}_r + \cos\theta\,\vec{\imath}_\theta)$ (inside) $\vec{H}_{d2} = H_0 \left(\frac{R}{r}\right)^2 (\sin\theta \,\vec{\imath}_r - \cos\theta \,\vec{\imath}_\theta) \quad \text{(outside)}$ Uniform *H* inside $H \propto 1/r^2$ outside R

Y lwasa (MIT) <iwasa@jokaku.mit.edu>

Ideal Dipole (continuation)

• Surface current density at r = R sinusoidal:

 $ec{K}_f = -2H_0\cos heta\,ec{\imath}_z$ 

where  $H_0$  is the dipole field strength



Because surface current density varies as  $\cos\theta$ , this is called a "cosine dipole"

Although an ideal dipole different from the real-world dipole used in HEP devices, most ballpark numbers may be obtained from an ideal dipole

Ideal Dipole (continuation)

$$ec{K}_f = -2H_0\cos heta\,ec{\imath}_z$$

What should  $K_f$  be for  $\mu_o H_0$  = 8.33 T\*? (LHC)

\* Neglects field contribution of steel yoke (because yoke a bit "far" away)

$$|K_f| = 2H_0 = 2(8.33 \text{ T})/(4\pi \times 10^{-7} \text{ H/m}) = 13.3 \text{ MA/m}$$

For  $2R_i = 56 \text{ mm } \& 2R_o = 120.5 \text{ mm}, 2R_{av} = 88.25 \text{ mm}$ : Ampere-turns:  $\int_{-90^\circ}^{90^\circ} 2H_0 R_{av} \cos \theta \, d\theta$  $= (2H_0)(2R_{av}) = 1.17 \text{ MA}$ 



For  $I_{op}$ = 11.8 kA, the LHC dipole winding requires ~100 turns

- X

# Quadrupole

### Ideal Quadrupole

- Circular cross section (radius *R*) of "zero" winding thickness
- Infinitely long, i.e., no end effects



$$\vec{H}_{q1} = H_0 \left(\frac{r}{R}\right) (\sin 2\theta \, \vec{\imath}_r + \cos 2\theta \, \vec{\imath}_\theta) \quad (\text{Inside})$$

$$\vec{H}_{q2} = H_0 \left(\frac{R}{r}\right)^3 (\sin 2\theta \, \vec{\imath}_r - \cos 2\theta \, \vec{\imath}_\theta) \quad (\text{Outside})$$

$$(\text{At the center } (0,0)) \quad \text{At the center } (0,0) \quad \text{At the center } (0,0)$$

$$\vec{F}_{\text{Elds gradients}} \quad \text{Fields gradients}$$

Y lwasa (MIT) <iwasa@jokaku.mit.edu>

Ideal Quadrupole (continuation)

• Surface current density at r = R sinusoidal:

 $ec{K}_f = -2H_0\cos2 heta\,ec{\imath_z}$ 

where  $H_0$  is the dipole field strength

Magnetic spring constant in the x-direction,  $k_{Lx}$ 

$$egin{aligned} k_{Lx} &= -rac{\partial F_{Lx}}{\partial x} \ F_{Lx} &\simeq [q(c\,ec{\imath_z}) imes \mu_\circ H_{q1}\,ec{\imath_ heta}]_{ heta=0} \ &\simeq -qc\mu_\circ H_0\left(rac{r}{R}
ight)ec{\imath_x} \ k_{Lx} &\simeq rac{qc\mu_\circ H_0}{R} \end{aligned}$$



Focusing in the  $\pm x$  directions

# Racetrack Coil

A magnet resembling a racetrack, wound in a plane, each turn having two parallel sides, joined by a semi-circle at each end; Two or more such coils separated by a gap generate a field approximating that of a dipole magnet

• See the 2<sup>nd</sup> Edition of my textbook for analytical treatment of an ideal racetrack



[Arnaud Devred (CEA), 2002]

Y lwasa (MIT) <iwasa@jokaku.mit.edu>

### Self Inductance

Total flux linking a coil,  $\Phi$ ,  $\propto$  to the coil current, *I* 

 $\Phi = LI$ 

L the coil's self inductance; a circuit element that relates to a field quantity

L also related to the coil's magnetic energy,  $E_m$ :

$$E_m = \frac{1}{2}LI^2$$

Generally *L* computed from  $\Phi$ , then used to compute  $E_m$ 

### Inductance Matrix—An Example

### L500 (JASTEC)

500-MHz (11.7 T)/237-mm cold bore NMR magnet: LTS part of the MIT 1.3-GHz (30.5 T) LTS/HTS NMR magnet

- Composed of 13\* separate coils: 8 main (4 Nb<sub>3</sub>Sn; 4 Nb1 5 correction (NbTi; 2 pairs and a middle coil)
  - \* Actually 14 with the last middle coil split into a pair

#### L500 Inductance Matrix (Total L = 147.185 H)

|    | A           | В            | C           | D            | E            | F            | G           | Н            |              | J            | K            | L            | M           |
|----|-------------|--------------|-------------|--------------|--------------|--------------|-------------|--------------|--------------|--------------|--------------|--------------|-------------|
| 1  | 0.300075559 | 0.318608485  | 0.742363862 | 0.442794726  | 0.211890862  | 0.568950953  | 0.337059981 | 1.04646977   | 0.359747712  | 0.359747712  | -0.03297875  | -0.03297875  | 0.07939014  |
| 2  | 0.318608485 | 0.37343513   | 0.891376893 | 0.531338093  | 0.253985181  | 0.681936473  | 0.403966195 | 1.254075001  | 0.431246035  | 0.431246035  | -0.039502157 | -0.039502157 | 0.09504857  |
| 3  | 0.742363862 | 0.891376893  | 2.473219875 | 1.548955383  | 0.738604483  | 1.982915107  | 1.174497393 | 3.645502171  | 1.254362163  | 1.254362163  | -0.11472094  | -0.11472094  | 0.27580145  |
| 4  | 0.442794726 | 0.531338093  | 1.548955383 | 1.127351895  | 0.5485133    | 1.472451569  | 0.872039262 | 2.706210928  | 0.931895089  | 0.931895089  | -0.085062479 | -0.085062479 | 0.20430333  |
| 5  | 0.211890862 | 0.253985181  | 0.738604483 | 0.5485133    | 0.323703483  | 0.878933207  | 0.519804017 | 1.611459234  | 0.583535021  | 0.583535021  | -0.048195114 | -0.048195114 | 0.11468858  |
| 6  | 0.568950953 | 0.681936473  | 1.982915107 | 1.472451569  | 0.878933207  | 2.591051807  | 1.577043012 | 4.886075245  | 1.771063235  | 1.771063235  | -0.145778828 | -0.145778828 | 0.34676454  |
| 7  | 0.337059981 | 0.403966195  | 1.174497393 | 0.872039262  | 0.519804017  | 1.577043012  | 1.048792362 | 3.300478187  | 1.197637925  | 1.197637925  | -0.09815822  | -0.09815822  | 0.23341167  |
| 8  | 1.04646977  | 1.254075001  | 3.645502171 | 2.706210928  | 1.611459234  | 4.886075245  | 3.300478187 | 11.66980298  | 4.419823388  | 4.419823388  | -0.359131258 | -0.359131258 | 0.85527857  |
| 9  | 0.359747712 | 0.431246035  | 1.254362163 | 0.931895089  | 0.583535021  | 1.771063235  | 1.197637925 | 4.419823388  | 5.927316197  | 0.251466252  | -0.1623768   | -0.035340583 | 0.16433082  |
| 10 | 0.359747712 | 0.431246035  | 1.254362163 | 0.931895089  | 0.583535021  | 1.771063235  | 1.197637925 | 4.419823388  | 0.251466252  | 5.927316197  | -0.035340583 | -0.1623768   | 0.16433082  |
| 11 | -0.03297875 | -0.039502157 | -0.11472094 | -0.085062479 | -0.048195114 | -0.145778828 | -0.09815822 | -0.359131258 | -0.1623768   | -0.035340583 | 0.059391112  | 0.006239589  | -0.03513166 |
| 12 | -0.03297875 | -0.039502157 | -0.11472094 | -0.085062479 | -0.048195114 | -0.145778828 | -0.09815822 | -0.359131258 | -0.035340583 | -0.1623768   | 0.006239589  | 0.059391112  | -0.03513166 |
| 13 | 0.079390148 | 0.095048578  | 0.275801459 | 0.204303339  | 0.114688583  | 0.346764544  | 0.233411676 | 0.855278571  | 0.164330821  | 0.164330821  | -0.035131666 | -0.035131666 | 0.25416198  |
|    |             |              |             |              |              |              |             |              |              |              |              |              |             |

[Dongkeun Park (Former Postdocs, FBML)]

Correction NbTi (1 pair) Correction NbTi (1 pair & middle coil)

NbTi (4)

Nb<sub>3</sub>Sn (4)

400

300

200

100

-100

-200

-300

-400

-100

200

Y lwasa (MIT) <iwasa@jokaku.mit.edu>

#### Solenoid Self Inductance

$$L = \mu_{\circ} a_1 N^2 \mathcal{L}(\alpha, \beta)$$

 $\mathcal{L}(\alpha, \beta)$  a dimensionless parameter that depends on coil shape,  $\alpha, \beta$ 



Y Iwasa (MIT)

25

| Solenoid ( $a_1$ , $\alpha$ , $\beta$ , $N$ ) | $L = \mu_{\circ} a_1 N^2 \mathcal{L}(\alpha, \beta) \qquad $                                    |
|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| "Very Long" ( $eta$ >>1)                      | $L = \mu_{\circ} a_1 N^2 \left(\frac{\pi}{2\beta}\right) \qquad \qquad$                         |
| "Pancake" ( $eta << 1$ )                      | $L \simeq \mu_{\circ} a_1 N^2 \left(\frac{\alpha + 1}{2}\right) \times \qquad $                 |
|                                               | $\left\{ \ln \left[ \frac{4(\alpha+1)}{\alpha-1} \right] \left[ 1 + \frac{1}{24} \frac{(\alpha-1)^2}{(\alpha+1)^2} \right] - \frac{1}{2} \left[ 1 - \frac{43}{144} \frac{(\alpha-1)^2}{(\alpha+1)^2} \right] \right\}$ |
| "Ideal" Dipole                                | $L_{\ell} = \frac{1}{8} \mu_{\circ} \pi N^2$ [H/m] Independent of R                                                                                                                                                    |
| "Ideal" Quadrupole                            | $L_{\ell} = \frac{1}{16} \mu_{\circ} \pi N^2$ [H/m] Independent of R                                                                                                                                                   |
| "Ideal" circular shape toroid                 | $L = \mu_{\circ} R N^2 \left[ 1 - \sqrt{1 - \left(\frac{a}{R}\right)^2} \right] \simeq \frac{\mu_{\circ} a N^2}{(a \ll R)} \left(\frac{a}{2R}\right)$                                                                  |
| "Ideal" rectangular shape toroid              | $L = \mu_{\circ} b N^2 \left[ \frac{1}{\pi} \ln \left( \frac{R+a}{R-a} \right) \right] \simeq \frac{\mu_{\circ} b N^2}{(a \ll R)} \left( \frac{2a}{\pi R} \right)$                                                     |

# Selected Inductance Formulas

### Illustration

Compute *Iseult L* 

$$a_1 = 0.5 \text{ m}; \alpha = 1.9; \beta = 3.1; N = 29,920 \mathcal{L}(\alpha, \beta) = 0.575$$

$$L = \mu_{\circ} a_1 N^2 \mathcal{L}(\alpha, \beta) = 321.6 \text{ H}$$

[323 H (Thierry Schild)]

#### Computation with MIT Soldesign (through Internet Access to MIT)

| -                              | •                                                                                                                                        | •                         | Termina         |                  |       |      |       |                              |                  |              |  |
|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------------|------------------|-------|------|-------|------------------------------|------------------|--------------|--|
| X                              | Mar 12, 2007<br>!3-coil 600 MHz HTS insert based on Seungyong's Feb 12, 2007 design<br>!                                                 |                           |                 |                  |       |      |       |                              |                  |              |  |
|                                | !total                                                                                                                                   | inductance: 1             | 17.1 H          |                  |       |      |       |                              |                  |              |  |
| 3-                             | setup                                                                                                                                    |                           |                 |                  |       |      |       |                              |                  |              |  |
|                                | !solenoid, a1, –b, 1, (a2–a1), 2b, lambda J, N, 10<br>solenoid, 0.039, –0.27685, 1, 0.01536, 0.5537, 192e6, 6144, 10                     |                           |                 |                  |       |      |       |                              |                  |              |  |
|                                | solenoid, 0.05736, -0.27685, 1, 0.02196, 0.5537, 170.6e6, 7808, 10<br>solenoid, 0.08232, -0.3461, 1, 0.03081, 0.6922, 157.5e6, 12640, 10 |                           |                 |                  |       |      |       |                              |                  |              |  |
| :                              | end<br>terminal                                                                                                                          |                           |                 |                  |       |      |       |                              |                  |              |  |
| or                             |                                                                                                                                          |                           |                 |                  |       |      |       |                              |                  |              |  |
|                                | Soldesign input data for                                                                                                                 |                           |                 |                  |       |      |       |                              |                  |              |  |
| a 600-MHz (14.07 T) HTS magnet |                                                                                                                                          |                           |                 |                  |       |      |       | anco forr                    | nula             |              |  |
|                                |                                                                                                                                          |                           |                 |                  |       |      |       | and figure given in Slide 25 |                  |              |  |
|                                | anu nyure given in Silue 23,                                                                                                             |                           |                 |                  |       |      |       |                              | 20,<br>Coldonian |              |  |
|                                | For information about the GNU Project and its goals, type C-h C-p.                                                                       |                           |                 |                  |       |      |       |                              |                  |              |  |
| г                              |                                                                                                                                          |                           |                 |                  | Γ     | Γ    |       |                              |                  |              |  |
|                                | Coil                                                                                                                                     | <i>a</i> <sub>1</sub> [m] | 2 <i>b</i> [mm] | $a_2 - a_1$ [mm] | α     | β    | N     | $\mathcal{L}(\alpha,\beta)$  | <i>L</i> [H]     | <i>L</i> [H] |  |
|                                | 1                                                                                                                                        | 0.0390                    | 553.70          | 0.01536          | 1.394 | 7.10 | 6144  |                              |                  | 0.488        |  |
|                                | 2                                                                                                                                        | 0.05736                   | 553.70          | 0.02196          | 1.383 | 4.83 | 7808  |                              |                  | 1.636        |  |
|                                | 3                                                                                                                                        | 0.08232                   | 692.20          | 0.03001          | 1.374 | 4.20 | 12640 |                              |                  | 6.920        |  |

#### Rendez-vous le 5 Juillet!

Y lwasa (MIT) <iwasa@jokaku.mit.edu>