Lecture #5

Electromagnetic Forces and Stresses

Yukikazu Iwasa Francis Bitter Magnet Laboratory, Plasma Science and Fusion Center Massachusetts Institute of Technology Cambridge, MA 02139-4208

CEA Saclay

July 6, 2016

"Ballpark" Estimate

- "Ballpark" Estimate
- Force in Single Turn or Turns Acting Independently
- Stress analysis in *ideal* solenoid—analytical approach
- Forces in ideal dipole
- Forces in ideal quadrupole
- Axial Forces

"Ballpark" Estimate

Analytical technique to enable *any* specialist of a design team to compute *ballpark* values of *any* key magnet parameters

This aim identical to those of my textbooks, 1st Edition(1994) & 2nd Edition (2009)

Leave it to a *specialist,* armed with sophisticated codes, for an *exact* (hopefully *correct*) *value*

An Example of an Expert's Error (Stress Computation) Hoop Stress in an Infinite Solenoid

"Thin" and Infinite Coil:

 $2a_1 = 0.5 \text{ m};$ $2a_2 = 0.7 \text{ m};$ $\alpha \equiv a_2 / a_1 = 1.4;$ $\lambda J = 5 \times 10^7 \text{ A/m}^2$

Hoop Stress in an Infinite Solenoid (continuation)

"Thin" and Infinite Coil	CODE
$B_{\circ}\!=\!\mu_{\circ}\lambda Ja_{1}(\alpha\!-\!1)$	
$=(4\pi \times 10^{-7} \text{ H/m})(5 \times 10^{7} \text{ A})(0.25 \text{ m})(0.4)$	
$= 6.28 \mathrm{T}$	
$\tilde{\sigma}_{\theta} \simeq a_1 \left(\frac{\alpha+1}{2}\right) \lambda J \tilde{B_z}$	
$=(0.25 \text{ m})(1.2)(5 \times 10^7 \text{ A/m}^2)(3.14 \text{ T})$	
$= 0.47 \times 10^8 \text{ Pa}$ Average hoop stress $0.548 \times$:10 ⁷ Pa
Average: 0.703×10 ⁷ Pa	?????
0.857×	:10 ⁷ Pa

FEB 26 2003

NODAL SOLUTION

PowerGraphics

DMX =.323E-04 SMN =.548E+07 SMX =.857E+07

=-.203794

.548E+07 .582E+07 .617E+07 .651E+07

.685E+07 .754E+07 .788E+07 .823E+07 .857E+07

-.028194 --.151783

(AVG)

18:12:32

/EXPANDED

STEP=1 SUB =1 TIME=1

RSYS=0

EFACET=1 AVRES=Mat

> =1 =1

ZV =4 *DIST=.586095

Z-BUFFER

SZ.

 $\times v$

YV ZV

*×F *YF

*ZF

Hoop Stress in an Infinite Solenoid

Force

For a solenoid, energy stored in the magnetic field acts equivalent to an internal pressure:

$$\frac{E_m}{\text{Volume}} = \frac{B^2}{2\mu_o} = P_m$$

Undersea	P_m	В	f	Remarks	
Depth [m]	[atm]	[T]	[GHz]		
300	30	2.7	0.12	Maximum for submarines	
11,000	1,100	16.5	0.7	Deepest sea bottom: Challenger Deep	
22,100	2,210	23.5	1.0	High-strength stainless steel yields at	
400,000	40,000	100	4.26	14,000 atm	

Force can:

- Break the structure and destroy the magnet
- Damage insulation
- Damage superconductor, e.g., overstraining: brittle Nb₃Sn & HTS
- Degrade magnet performance:
 motion → release energy → quench → training (?)

Force Density

$$\vec{f} = \vec{J} \times \vec{B}$$
Compute $\vec{B}(x, y, z)$ throughout the winding volume
$$\begin{bmatrix} \frac{N}{m^3} \end{bmatrix} = \begin{bmatrix} \frac{A}{m^2} \end{bmatrix} \times [T]$$

$$= \begin{bmatrix} \frac{A}{m^2} \end{bmatrix} \times \begin{bmatrix} \frac{Vs}{m^2} \end{bmatrix} = \begin{bmatrix} \frac{J}{m^4} \end{bmatrix} = \begin{bmatrix} \frac{Nm}{m^4} \end{bmatrix} = \begin{bmatrix} \frac{N}{m^3} \end{bmatrix}$$

Combine computation & analysis with calculation of

- Usually done with a code
- Simple analytical figures ("ballpark") in early design stages.
- Must have knowledge of materials properties:
 - Mechanical
 - Thermal (coefficient of expansion for thermal stresses) from RT to 4 K

Forces and Stresses in Solenoids—General Consideration

- Radially expanding
 - σ_r shows up as hoop stress, σ_h , in the conductor
 - σ_r must be kept negative in the winding to keep the turns from separating
- Axially squeezing (compressive)

Force in Single Turn or Turns Acting Independently

- Tension: $T_r(r) = rI_\theta \times B_z(r)$
- Overall hoop stress: $\sigma_{\theta}(r) = rJ_{\theta} \times B_z(r)$

Both $J_{ heta}$ and $\sigma_{ heta}$ averaged over the winding pack

Stresses increase with B, J, and r (size) \Rightarrow R I B [N/m³]

To remember a force (density) formula RIB, think of

Caution

Note that $rJ \times B$ applicable only for single-turn coil. Many people still mistakenly use this for multi-turn solenoids: DO NOT! Stress Analysis in Ideal Solenoid*—Analytical Approach Equilibrium Equation

$$\frac{\partial \sigma_r}{\partial r} + \frac{\sigma_r - \sigma_{\theta}}{r} + \frac{\partial \tau_{rz}}{\partial z} = -\lambda J B_z(r, z)$$
$$\frac{\partial \tau_{rz}}{\partial r} - \frac{\tau_{rz}}{r} + \frac{\partial \sigma_z}{\partial z} = -\lambda J B_r(r, z)$$

 Ideal: *infinite length* Solenoid: *Turns no longer acting independently*

Boundary Conditions

$$\sigma_r(r = a_1, z) = 0; \quad \sigma_r(r = a_2, z) = 0; \quad \sigma_z(r, z = \pm b) = 0;$$

$$\tau_{rz}(r = a_1, z) = 0; \quad \tau_{rz}(r = a_2, z) = 0; \quad \tau_{rz}(r, z = \pm b) = 0$$

 \mathbf{n}

.

Strains

$$\begin{aligned} \epsilon_{r} &= \frac{1}{E_{r}} \sigma_{r} - \frac{\nu_{\theta_{r}}}{E_{\theta}} \sigma_{\theta} - \frac{\nu_{zr}}{E_{z}} \sigma_{z} + \epsilon_{T_{r}} & \text{Strains} \\ \epsilon_{\theta} &= -\frac{\nu_{r\theta}}{E_{r}} \sigma_{r} + \frac{1}{E_{\theta}} \sigma_{\theta} - \frac{\nu_{z\theta}}{E_{z}} \sigma_{z} + \epsilon_{T_{\theta}} & \epsilon_{T_{r}} = \int_{300 \text{ K}}^{T_{op}} \alpha_{T_{r}}(T) dT; \\ \epsilon_{z} &= -\frac{\nu_{rz}}{E_{r}} \sigma_{r} - \frac{\nu_{\theta z}}{E_{\theta}} \sigma_{\theta} + \frac{1}{E_{z}} \sigma_{z} + \epsilon_{T_{z}} & \epsilon_{T_{\theta}} = \int_{300 \text{ K}}^{T_{op}} \alpha_{T_{\theta}}(T) dT; \\ \gamma_{rz} &= \frac{1}{G_{rz}} \tau_{rz} & \epsilon_{T_{z}} = \int_{300 \text{ K}}^{T_{op}} \alpha_{T_{z}}(T) dT \end{aligned}$$

Y lwasa (MIT) <iwasa@jokaku.mit.edu>

Radial and Hoop Stresses

$$\begin{split} \sigma_{\rho} &= \frac{\lambda J B_{1} a_{1}}{\alpha - 1} \left[\frac{2 + \nu}{3} (\alpha - \kappa) \left(\frac{\alpha^{2} + \alpha + 1 - \alpha^{2}/\rho^{2}}{\alpha + 1} - \rho \right) \\ &\quad - \frac{3 + \nu}{8} (1 - \kappa) \left(\alpha^{2} + 1 - \frac{\alpha^{2}}{\rho^{2}} - \rho^{2} \right) \right] \\ \sigma_{\theta} &= \frac{\lambda J B_{1} a_{1}}{\alpha - 1} \left\{ (\alpha - \kappa) \left[\frac{2 + \nu}{3} \left(\frac{\alpha^{2} + \alpha + 1 + \alpha^{2}/\rho^{2}}{\alpha + 1} \right) - \frac{1 + 2\nu}{3} \rho \right] \\ &\quad - (1 - \kappa) \left[\frac{3 + \nu}{8} \left(\alpha^{2} + 1 + \frac{\alpha^{2}}{\rho^{2}} \right) - \frac{1 + 3\nu}{8} \rho^{2} \right] \right\} \\ &\quad \alpha = a_{2}/a_{1} \\ \rho = r/a_{1} \\ \kappa = B_{2}/B_{1} * \\ (*\kappa = 0 \text{ for } \infty \text{ long}) \\ \nu \sim 0.3 \end{split} \xrightarrow{B_{2}} \left[\begin{array}{c} B_{1} \\ B_{2} \\ \vdots \\ \vdots \\ 2a_{1} \end{array} \right] \xrightarrow{B_{1}} \\ \downarrow 2a_{1} \\ \vdots \\ 2a_{2} \end{array} \right]$$
Lecture #5 Electromagnetic Forces and Stresses CEA, Sackay (7/06/2016) \end{array}

Y lwasa (MIT) lwasa@jokaku.mit.edu

Y lwasa (MIT) lwasa@jokaku.mit.edu

Lecture #5 Electromagnetic Forces and Stresses CEA, Saclay (7/06/2016)

Maximum Hoop Stress, $\sigma_{\theta_{max'}}$ at $r = a_1$

For high-field coil: "thin" radial built, i.e., $\alpha \rightarrow 1$ $\sigma_{\theta_{max}} \rightarrow \lambda JB_1a_1$

• $\sigma_r < 0$ to keep the winding from separating, Coil, "thin" radial built, i.e., $\alpha \rightarrow 1$

Radial Stress ($\sigma_r / \lambda JB_1 a_1$) vs. Radial Distance (r/a_1)

"Medium" Coil (α = 1.8)

• Desirable to split this coil into two "thin-walled" coils

Radial Stress ($\sigma_r / \lambda JB_1 a_1$) vs. Radial Distance (r/a_1)

"Thick" Coil (α = 3.6)

• Yukikazu Iwasa and Seungyong Hahn "First-cut design of an all-superconducting 100-T direct current magnet," *App. Phys. Lett.* **103**, 253507 (2013).

Y lwasa (MIT) lwasa@jokaku.mit.edu Approaches to keep $\sigma_r < 0$ in the Winding

- Keep the winding "thin"
- A "thick" coil is often split into 2, 3, 4... "thin" coils:
 - To keep $\sigma_r < 0$
 - Equally importantly, for conductor "grading"
- Use a "bladder" (e.g., ATLAS) or "over-banding"
 - Effective only for "thin" winding
- Winding tension

Effects of Winding Tension, e.g. (α = 1.84)

Y lwasa (MIT) lwasa@jokaku.mit.edu

Overbanding

H800 (18.79 T): I_{op}=251 A

Coil 1 (6-mm RÉBCO: 26 NI-DP)

Coil 2 (6-mm REBCO: 32 NI-DP)

Coil 3 (6-mm REBCO: 38 NI-DP)

Overbanding of H800

MIT 1.3-GHz LTS/HTS NMR Magnet (L500/H800)

121 turns; $a_2-a_1 = 9.1$ 185 turns; $a_2-a_1 = 13.9$ 7-mm thick Overband 5-mm thick Overband 91.0 216.15

Overbanding H800 Coils*

• Mingzhi Guan, Seungyong Hahn, Juan Bascuñán, Timing Qu, Xingzhe Wang, Peifeng Gao, and Yukikazu Iwasa, "A parametric study on overband radial build for a REBCO 800-MHz Insert of a 1.3-GHz LTS/HTS NMR magnet." presented at MT24.

Conclusions on Stresses

- σ_r is beneficial in reducing σ_{θ} in solenoids *if* it is *compressive*
- σ_r makes matters worse if it is *tensile*
- Tensile stress bad for insulation—film and epoxy resins cannot take much tension before cracking or separating
 - Could cause winding delamination
 - Could lead to energy release and quenching
- Often pre-stress is applied at RT during coil fabrication to maintain only radial compression under all conditions of cool-down and operation

Other Considerations

- For thick windings, divide the coil into several thinner, mechanically separate, concentric sections to keep $\sigma_r < 0$
- The assumption of isotropic properties (elastic) is often invalid: $E_{metal} >> E_{insulation}$, making windings "spongy" in the radial direction

Axial forces always cause compressive stresses; no coupling with σ_r and σ_{θ}

- Compute independently and sum them up
- Insulating materials often strong (or at least adequate) in compression
- Special case: a *split pair coil* requires extra structure to bridge the gap

Forces in Ideal Dipole

Forces in Ideal Quadrupole

Axial Forces

1. Axial Force Between Two "Ring" Coils

$$F_{zA}(\rho) = \frac{\mu_{\circ}}{2} (N_{A}I_{A})(N_{B}I_{B}) \frac{\rho\sqrt{(a_{A}+a_{B})^{2}+\rho^{2}}}{(a_{A}-a_{B})^{2}+\rho^{2}} \\ \times \left\{ k^{2}K(k) + (k^{2}-2)[K(k)-E(k)] \right\}$$

K(k) and E(k) the complete Elliptic Integrals, respectively, of the 1st and 2nd kinds

$$k^{2} = \frac{4a_{\rm A}a_{\rm B}}{(a_{\rm A} + a_{\rm B})^{2} + \rho^{2}}$$

Complete Elliptic Integrals of the 1st and 2nd Kinds

$$K(k) = \int_0^{\pi/2} \frac{d\theta}{\sqrt{1 - k^2 \sin^2 \theta}}$$
$$E(k) = \int_0^{\pi/2} \sqrt{1 - k^2 \sin^2 \theta} \, d\theta$$

k^2	k	K(k)	E(k)	k^2	k	K(k)	E(k)
0	0	$\pi/2$	$\pi/2$	0.7	0.8367	2.0754	1.2417
0.1	0.3162	1.6124	1.5308	0.8	0.8944	2.2572	1.1785
0.2	0.4472	1.6596	1.4890	0.90	0.9487	2.5781	1.1048
0.3	0.5477	1.7139	1.4454	0.95	0.9747	2.9083	1.0605
0.4	0.6325	1.7775	1.3994	0.98	0.9899	3.3541	1.0286
0.5	0.7071	1.8541	1.3506	0.99	0.9950	3.6956	1.0160
0.6	0.7746	1.9496	1.2984	1	1	∞	1

K(k) & E(k)

$$\begin{split} K(k) &= \frac{\pi}{2} \left[1 + \left(\frac{1}{2}\right)^2 k^2 + \left(\frac{1\cdot3}{2\cdot4}\right)^2 k^4 + \left(\frac{1\cdot3\cdot5}{2\cdot4\cdot6}\right)^2 k^6 + \left(\frac{1\cdot3\cdot5\cdot7}{2\cdot4\cdot6\cdot8}\right)^2 k^8 + \cdots \right] \\ E(k) &= \frac{\pi}{2} \left[1 - \left(\frac{1}{2}\right)^2 k^2 - \left(\frac{1\cdot3}{2\cdot4}\right)^2 \frac{k^4}{3} - \left(\frac{1\cdot3\cdot5}{2\cdot4\cdot6}\right)^2 \frac{k^6}{5} - \left(\frac{1\cdot3\cdot5\cdot7}{2\cdot4\cdot6\cdot8}\right)^2 \frac{k^8}{7} - \cdots \right] \end{split}$$

$$K(k) \simeq \frac{\pi}{2} \left(1 + \frac{1}{4}k^2 + \frac{9}{64}k^4 + \frac{25}{256}k^6 + \frac{1225}{16384}k^8 \right)$$
$$E(k) \simeq \frac{\pi}{2} \left(1 - \frac{1}{4}k^2 - \frac{3}{64}k^4 - \frac{5}{256}k^6 - \frac{175}{16384}k^8 \right)$$
$$K(k) - E(k) \simeq \frac{\pi}{4} \left(k^2 + \frac{3}{8}k^4 + \frac{15}{64}k^6 + \frac{175}{1024}k^8 \right)$$

Y lwasa (MIT) lwasa@jokaku.mit.edu Axial Force Between Two "Ring" Coils

In the limit $\rho^2 >> (a_A + a_B)^2 \implies k^2 \rightarrow 0$, i.e. two rings far apart:

$$F_{zA}(\rho) = \frac{\mu_{o}}{2} (N_{A}I_{A})(N_{B}I_{B}) \underbrace{\frac{\rho\sqrt{(a_{A} + a_{B})^{2} + \rho^{2}}}{(a_{A} - a_{B})^{2} + \rho^{2}}} \longrightarrow 1$$

$$\times \left\{ k^{2}K(k) + (k^{2} - 2)[K(k) - E(k)] \right\}$$

$$F_{zA}(\rho) \simeq \frac{\mu_{o}}{2} (N_{A}I_{A})(N_{B}I_{B}) \underbrace{\left\{ k^{2}K(k) + (k^{2} - 2)[K(k) - E(k)] \right\}}_{\times} \left[k^{2} \left(\frac{\pi}{2} + \frac{\pi}{8}k^{2} \right) + (k^{2} - 2) \left(\frac{\pi}{4}k^{2} + \frac{3\pi}{32}k^{4} \right) \right]$$

$$\simeq \frac{\mu_{o}}{2} (N_{A}I_{A})(N_{B}I_{B}) \left(\frac{3\pi}{16}k^{4} \right)$$

Y lwasa (MIT) lwasa@jokaku.mit.edu

Axial Force Between Two "Ring" Coils

In the limit $\rho^2 >> (a_A + a_B)^2 \implies k^2 \rightarrow 0$, i.e. two rings far apart:

$$F_{zA}(\rho) = \frac{3\mu_o}{2\pi} \left(\frac{\pi a_A^2 N_A I_A}{\rho^2}\right) \left(\frac{\pi a_B^2 N_B I_B}{\rho^2}\right)$$

- $F_{\rm ZA}(
 ho\,) \propto$ to the product of each ring's "magnetic moment" but each reduced by ho^2
- Note that if both rings carry current in the same direction, $F_{\rm ZA}(\rho) > 0$: Attractive

Axial Forces

Axial Force Within a "Thin-Walled" Solenoid

$$F_{z}(z) = -\frac{\mu_{o}}{2} \left(\frac{NI}{2b}\right)^{2} \left\{ (b-z)\sqrt{4a^{2} + (b-z)^{2}} \left[K(k_{b_{-}}) - E(k_{b_{-}})\right] + (b+z)\sqrt{4a^{2} + (b+z)^{2}} \left[K(k_{b_{+}}) - E(k_{b_{+}})\right] - 2b\sqrt{4a^{2} + 4b^{2}} \left[K(k_{2b}) - E(k_{2b})\right] \right\}$$

$$k_{b_{-}}^{2} = \frac{4a^{2}}{4a^{2} + (b - z)^{2}}; \qquad k_{b_{+}}^{2} = \frac{4a^{2}}{4a^{2} + (b + z)^{2}}; \qquad k_{2b}^{2} = \frac{4a^{2}}{4a^{2} + (2b)^{2}}$$

End Force: Zero because at z = b, $k_{b+} = k_{2b}$ This is expected

Y lwasa (MIT) lwasa@jokaku.mit.edu

Axial Force Within a "Thin-Walled" Solenoid

Midplane (z = 0) Force

$$\begin{split} F_z(0) = &-\frac{\mu_o}{2} \left(\frac{NI}{2b}\right)^2 \! \left\{ 2b\sqrt{4a^2 + b^2} \left[K(k_b) - E(k_b)\right] \\ &- 2b\sqrt{4a^2 + 4b^2} \left[K(k_{2b}) - E(k_{2b})\right] \right\} \end{split}$$

$$k_b^2 = \frac{4a^2}{4a^2 + b^2} \qquad k_{2b}^2 = \frac{4a^2}{4a^2 + (2b)^2}$$

Axial Force Within a "Thin-Walled" Solenoid

Midplane (z = 0) Force in a "Long" Solenoid ($\beta >> 1$ or $k^2 <<1$)

$$\begin{aligned} k_{b_{-}}^{2} &= \frac{4a^{2}}{4a^{2} + (b - z)^{2}}; \qquad k_{b_{+}}^{2} = \frac{4a^{2}}{4a^{2} + (b + z)^{2}}; \qquad k_{2b}^{2} = \frac{4a^{2}}{4a^{2} + (2b)^{2}} \\ k_{b_{-}}^{2} &= k_{b_{+}}^{2} = k_{b}^{2} \Longrightarrow \frac{4a^{2}}{b^{2}}; \qquad k_{2b}^{2} \Longrightarrow \frac{4a^{2}}{4b^{2}} \text{ two terms identical } (z = 0) \\ \downarrow \\ F_{z}(z) &= -\frac{\mu_{o}}{2} \left(\frac{NI}{2b}\right)^{2} \left\{ (b - z)\sqrt{4a^{2} + (b - z)^{2}} \left[K(k_{b_{-}}) - E(k_{b_{-}})\right] \\ &+ (b + z)\sqrt{4a^{2} + (b + z)^{2}} \left[K(k_{b_{+}}) - E(k_{b_{+}})\right] \\ &- 2b\sqrt{4a^{2} + 4b^{2}} \left[K(k_{2b}) - E(k_{2b})\right] \right\} \\ \hline \\ F_{z}(0) &= -\frac{\mu_{o}}{2} \left(\frac{NI}{2b}\right)^{2} \left\{ 2b\sqrt{4a^{2} + b^{2}} \left[K(k_{b}) - E(k_{b})\right] \\ &- 2b\sqrt{4a^{2} + 4b^{2}} \left[K(k_{b}) - E(k_{b})\right] \\ &- 2b\sqrt{4a^{2} + 4b^{2}} \left[K(k_{b}) - E(k_{b})\right] \right\} \end{aligned}$$

Y lwasa (MIT) lwasa@jokaku.mit.edu

Midplane Force in a "Long" Solenoid ($\beta >> 1$ or $k^2 <<1$)

$$\begin{split} F_z(0) = &-\frac{\mu_o}{2} \left(\frac{NI}{2b}\right)^2 \Big\{ 2b\sqrt{4a^2 + b^2} \left[K(k_b) - E(k_b)\right] \\ &- 2b\sqrt{4a^2 + 4b^2} \left[K(k_{2b}) - E(k_{2b})\right] \Big\} \end{split}$$

$$K(k_b) - E(k_b) \Longrightarrow \frac{\pi}{4} k_b^2 = \frac{\pi a^2}{b^2}$$
$$K(k_{2b}) - E(k_{2b}) \Longrightarrow \frac{\pi}{4} k_{2b}^2 = \frac{\pi a^2}{4b^2}$$

$$F_z(0) \simeq -\frac{\mu_o}{2} \left(\frac{NI}{2b}\right)^2 \pi a^2 \implies F_z(0) \simeq -\frac{1}{2}\mu_o H_z^2(0,0) \times \pi a^2$$

Midplane force: ~ magnetic pressure *times* bore area

An Illustration

Superconducting Magnet

Conclusions

"Sometimes there is as much magic as science in the explanations of the force. Yet what is a magician but a practicing theorist?" —Obi Wan Kenobi

I hope this lecture has given you a basic understanding of force and analytical tools in dealing with forces, stresses, and strains

> Bonnes vacances sous le soleil Reposez vous bien!