

Fission dynamics at high excitation energy investigated with the SOFIA setup at GSI: Results and future perspectives at FAIR

José Luis Rodríguez-Sánchez University of Santiago de Compostela, Spain SPhN, IRFU, CEA, France

Why are we investigating the fission process?

78 years after its discovery, nuclear fission still represents an important challenge for nuclear physics

Fission has implications in many different domains:

- Nuclear structure at large deformation
- Dynamics of nuclear matter
- Nuclear astrophysics
- Production of Radioactive Ion Beams and medical radio-tracers
- Energy production
- Neutron spallation source

Otto Hahn

Fritz Strassmann

J.L. Rodríguez-Sánchez

Layout

- Basic concepts
 - What we know about fission
 - Open questions
- Experimental approaches
 - Direct kinematics
 - Inverse kinematics
- Fission experiments at GSI
 - Fragment separator FRS
 - SOFIA setup: Complete identification of both fission fragments
- Fission dynamics from the SOFIA experiment
 - Ground-to-saddle dynamics
 - Saddle to scission dynamics
- Conclusions and future fission experiments at FAIR (Facility for Antiproton and Ion Research)

Static properties

- Governed by the potential energy landscape according to two main degrees of freedom:

elongation: when fission takes place

mass asymmetry: how fission occurs

Static properties

Structural effects manifest in the mass/charge asymmetry degree of freedom:

- Shell closures Z=50 and N=82 were proposed to explain the mass asymmetry in the actinide region

Static properties

Structural effects manifest in the mass/charge asymmetry degree of freedom:

- Shell closures Z=50 and N=82 were proposed to explain the mass asymmetry in the actinide region

Dynamical properties

- Time evolution of the fissioning nucleus from the ground state to the scission point
- Governed by the coupling between intrinsic (excitation energy) and collective (motion) degrees of freedom

Ground-to-scission dynamics can be described as a diffusion process of the fission degree of freedom over the fission barrier using transport models:

Fokker-Planck equation

The dissipation parameter β quantifies the exchange rate between intrinsic and collective energy and defines the average time (transient time) that the fission system needs to reach the saddle-point deformation

- Observables

Pre-scission neutron, light charged particles and γ -ray emission are used to prove total fission times, while fission probabilities give access to ground-to-saddle transient effects and the corresponding value of β

Dynamical properties

Last experimental results of the dissipation parameter

The magnitude and the temperature and deformation dependencies of the dissipation parameter are still under debate

Experimental approaches

Main facilities:

- n_ToF, ILL, Geel, ...

Observables:

- Fission cross sections
- Mass identification of both fragments
- Neutrons and light-charged particles

Limitations:

- Only stable nuclei
- Identification of one of the two fission fragments
- Poor resolution in atomic number

Experimental approaches

Experiments at GSI

Experiments at GSI: Fragment separator (FRS)

- In-flight identification of fission fragments

- Fission reactions of stable nuclei: ²³⁸U, ²⁰⁸Pb, ¹⁹⁷Au.
- Full identification in mass and atomic number but only for one of the two fission fragments

M. Bernas et al. PLB 331, 19 (1994)

- Important data to improve the prediction power of model calculations used for the production of exotic nuclei in radioactive-beam facilities
- Characterization of spallation neutron targets

Experiments at GSI: Fragment separator (FRS)

Experiments at GSI: SOFIA

SOFIA (Studies On Fission with Aladin) J. Taieb et al., CEA (France) Full identification in A, Z of both fission fragments and light-charged particles

0

*`*60

80

100

Mass number [A]

140

120

- Spallation induced fission (dynamical properties)

SOFIA: Coulomb-induced fission

Static properties

SOFIA: Coulomb-induced fission

Static properties

Dynamical properties

- Fission competes with other deexcitation channels
 like the evaporation of particles and γ-ray
- Dinamical effects only appear at high excitation energies

Ground-to-saddle: The time needed by the fissioning system to reach the saddle point (transient time) must be longer than the statistical time for the evaporation of particles

Saddle-to-scission: We need that the fissioning system evaporates particles beyond the saddle point

Dynamical properties

Why spallation reactions on lead

Spallation reactions induced by relativistic protons on nuclei of ²⁰⁸**Pb** led to compound systems with:

- High excitation energy (E* > 100 MeV)
- Low angular momentum (L ~ 5 h)
- Small initial deformations

Dynamical properties

Presaddle dynamics

Fssion cross sections as a function of the proton kinetic energy

- Sensitivity to nuclear dissipation $\beta = 4.5 \times 10^{21} s^{-1}$

The width of the charge distributions is sensitive to the temperature of the fissioning system at saddle

- The calculation for the charge distributions is consistent with a no dependence on temperature

Conclusions in agreement with previous works

B. Jurado et al. PRL 93, 072501 (2004) C. Schmitt et al. PRL 99, 042701 (2007)

Systematic investigation of proton- and neutron-induced fission

Systematic investigation of proton- and neutron-induced fission

Dynamical properties

 $N_{fiss}, Z_{fiss}, E^*, J$

Postsaddle dynamics

Neutron excess of the fission fragments as a function of the fissioning system

The neutron excess allows us to constrain the dissipation parameter with more precision

β between 4.5 and 6.5 × 10²¹s⁻¹

Dynamical properties

 $N_{fiss}, Z_{fiss}, E^*, J$

Dynamical properties

(p,2p) quasi-free scattering (~ 500A MeV)

High-energy induced fission under well defined initial conditions

Relatively large cross sections -10-50 mb

Possibility to use unstable nuclei - inverse kinematics

Well defined conditions of the fissioning systems
Angular momentum around zero
Excitation energy of the fissioning nucleus obtained from the mass invariant

Large range in excitation energy - up to 70 MeV (maybe more)

(p,2p) quasi-free scattering (~ 500A MeV): Experimental requirements

≜Χ

- Large acceptance for protons and fission fragments
- Good kinetic-energy resolution for protons
- ✓ Silicon tracker
 - Angular resolution $\sim 1 \text{ mrad}$
 - Proton detection efficiency $\sim 95\%$

✓ CALIFA

- γ -ray energy resolution 5 % at 1 MeV
- photopeak efficiency: 40% for E_{χ} =15MeV
- energy range for protons: up to 700 MeV
- proton energy resolution < 1 % (stopped) < 7% (punch through)

Proposals:

- Mass asymmetry transitions in fission
- Temperature dependence of shell effects in fission

- Temperature dependence of collective effects in nuclear level densities
- Fission barries
- Dissipative effects

Conclusions

Many of the experimental limitations for investigating fission have been overcome by using the inverse kinematics, providing a complete characterization of the fission Fragments (A,Z,TKE) together with the light-charged particles

Partial fission cross sections and widths of the charge distributions were used to constrain the value of the **ground-to-saddle dissipation parameter**, obtaining a value of $4.5 \times 10^{21} s^{-1}$

Neutron excess of the fission fragments provides us a constraint for the value of the **saddle-to-scission dissipation parameter**, obtaining a value between **4.5 and 6.5 × 10²¹s⁻¹**

These results do not reveal any dependence of the dissipation parameter on deformation or temperature

Future experiments using (p,2p) quasi-free scattering could be used to investigate:

- fission barriers
- collective effects in nuclear level densities
- energy dependence of the structural effects observed in fission
- mass asymmetry transitions in fission

Thank you for your attention !!

SOFIA: Coulomb-induced fission

Active target

Stack of ionisation chambers

