SPhN seminar, Orme des Merisiers, 17th February, 2017

Penning-trap mass spectrometry of exotic radionuclides with ISOLTRAP

Vladimir Manea

CERN, Geneva, Switzerland

Thanks to ...

Andree Welker, Maxime Mougeot, Frank Wienholtz, Dinko Atanasov, Jonas Karthein, Anatoly Barzakh, Melanie Delonca, João Pedro Ramos, Sebastian Rothe, Jürgen Kluge

... for some of the materials shown here

Outline

- Principles of Penning-trap mass spectrometry
- ISOLDE and ISOLTRAP
- ➢ Results
- Perspectives

Morphology of the mass surface

M. Wang et al., Chinese Physics C 36, 1603 (2012).

Morphology of the mass surface

M. Wang et al., Chinese Physics C 36, 1603 (2012).

Principles of Penning-trap mass spectrometry

Principles of Penning-trap spectrometry

Principles of Penning-trap spectrometry

Principles of Penning-trap spectrometry

ISOLDE and ISOLTRAP

ISOLDE@CERN

ISOL beams

The Resonance Ionization Laser Ion Source (RILIS)

Slide courtesy of Sebastian Rothe

The Resonance Ionization Laser Ion Source (RILIS)

Slide courtesy of Sebastian Rothe

ISOLTRAP@ISOLDE

30 years of ISOLTRAP

August 1986

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

PHENOMENON OF SITE-CHANGING COLLISIONS

G. Bollen¹, H.-J. Kluge¹⁻², L. Schweikhard¹

¹Institut für Physik, Universität Mainz, D-6500 Mainz, Fed. Rep. Germany ²CERN/ISOLDE, CH-1211 Geneva 23, Switzerland

Abstract. We have observed the phenomenon of site-changing collissions by bombarding Re and Pt foils with 60 keV Ba ions. The foil was heated after implantation to temperatures sometimes higher than the melting point of Pt and the evaporating ions were detected and mass-separated by time of flight. Only potassium was observed irrespective of the Ba⁺ beam intensity. This phenomenon might be explained by site-changing collissions or by a new Barium-Snapper model.

> Submitted to Physics Tonight Section: Non-reproducible Results 28 August 1986

June 1987

50 years of ISOLDE Golden Jubilee talk of Jürgen Kluge

ISOLTRAP mass spectrometer

Nuclides measured by ISOLTRAP

What we're fighting on today

- The nuclides of unknown mass.

What we're fighting on today

ISOLTRAP spectrometer

MCP

Multi-reflection time-of-flight mass spectrometer

Yield studies

70

60

50

40 tunos 100 son 100 s

20

10 -

0 -

0

Mass measurements

R. Wolf et al., IJMS 349-350, 123 (2013). R. Wolf et al., NIMB 376, 275–280 (2016).

ISOLTRAP spectrometer

MCP

Effect of contamination

Effect of contamination

> lons of different masses mutually perturb their resonance frequency $\nu l + \nu l - \neq \nu l - \nu l = \nu l c$

Effect of contamination

> lons of different masses mutually perturb their resonance frequency $\nu l + \nu l - \neq \nu l - \nu l = \nu l c$

Neutron-rich cadmium isotopes

Proton Number (Z)

- The rapid neutron-capture process is one of the important mechanisms proposed to explain the nucleosynthesis of elements heavier than iron.
- Atomic masses are a crucial input for r-process simulations.
- The masses of >129Cd isotopes intervene in the description of the A = 130 peak of isotopic abundance.
- > $^{128-132}$ Cd masses reveal the strength of the N = 82 magic number below Z = 50.

N-rich cadmium beams from UC_x with neutron converter and cold quartz line.
 Masses of ¹²⁹⁻¹³⁰Cd were determined with the precision Penning trap, of ¹³¹Cd with the MR-TOF MS.

Because we are missing the mass of ¹³²Cd, we can only compute the one-neutron shell gap.

 $D \downarrow n(\mathsf{Z},\mathsf{N}) = 2B(\mathsf{Z},\mathsf{N}) - B(\mathsf{Z},\mathsf{N}-1) - B(\mathsf{Z},\mathsf{N}+1)$

Disagreement with the masses measured by ESR at GSI.

M. Wang *et al.*, Chinese Physics C 36, 1603 (2012).
D. Atanasov *et al.*, Phys. Rev. Lett. 115, 232501 (2015).
R. Knöbel et al., Phys. Lett. B 754, 288–293 (2016).

Disagreement with the masses measured by ESR at GSI.

 $D \downarrow n(\mathsf{Z},\mathsf{N}) = 2B(\mathsf{Z},\mathsf{N}) - B(\mathsf{Z},\mathsf{N}-1) - B(\mathsf{Z},\mathsf{N}+1)$

M. Wang *et al.*, Chinese Physics C **36**, 1603 (2012). D. Atanasov *et al.*, Phys. Rev. Lett. **115**, 232501 (2015).

R. Knöbel et al., Phys. Lett. B 754, 288–293 (2016).

$A \approx 100$ nuclides: onset of collectivity at N = 60

Masses: M. Wang *et al.*, Chinese Physics C **36**, 1603 (2012). Radii: Keim95; Thibault81; Buchinger90; Lievens91; Cheal07; Campbell97; Campbell02; Thayer03. Excitation energies: ENSDF 2016;

$A \approx 100$ nuclides: onset of collectivity at N = 60

-52

Gogny-D1S calculations: J. P. Delaroche et al., Phys. Rev. C 81, 014303 (2010). ⁹⁸Sr scheme: E. Clément et al., Phys. Rev. Lett. 116, 022701 (2016).

Masses of neutron-rich nuclides in the A \approx 100 region

- > Three campaigns in the $A \approx 100$ region during the last four years.
- ▶ ^{101,102}Sr, ⁹⁸⁻¹⁰⁰Rb, ⁹⁷Kr measured with Penning trap, ¹⁰⁰⁻¹⁰²Rb, ⁹⁸Kr with MR-TOF MS.

39

Two-neutron separation energies around $A \approx 100$

- New ISOLTRAP data continue the previous trends in the Sr and Rb chains. More precise measurements in the Kr chain are needed.
- Beyond-mean-field calculations show that the Kr configurations don't mix strongly in the ground state.

M. Wang *et al.*, Chinese Physics C **36**, 1603 (2012).
V. Manea, PhD thesis (2014).
A. de Roubin, article and thesis. *TITAN: R. Klawitter et al.*, *Phys. Rev. C 93*, 045807 (2016).
T. R. Rodriguez, Phys. Rev. C **90**, 034306 (2014)

Mass measurements of 75-79Cu

- ⁷⁸Ni region is (re-)becoming a hot topic with the emergence of new data and new calculations.
- The expectation is that ⁷⁸Ni is doubly-magic but that shell-model requires cross-shell excitations (proton and neutron) to describe the properties of neighbouring nuclides.

G. Hagen, G. R. Jansen, T. Papenbrock et al., Phys. Rev. Lett. 117, 172501 (2016).
F. Nowacki, A. Poves, E. Caurier, B. Bounthong, Phys. Rev. Lett. 117, 272501 (2016).
A. Welker *et al.*, paper in preparation.

Mass measurements of 75-79Cu

- \succ N-rich copper beams produced from UC_x with neutron converter.
- Masses of ⁷⁵⁻⁷⁸Cu were determined with the precision Penning trap, of ^{78,79}Cu with the MR-TOF MS.

Mass measurements of 75-79Cu

- \succ N-rich copper beams produced from UC_x with neutron converter.
- Masses of ⁷⁵⁻⁷⁸Cu were determined with the precision Penning trap, of ^{78,79}Cu with the MR-TOF MS.

What can't and what can we tell?

A. Welker *et al.*, paper in preparation.M. Wang *et al.*, Chinese Physics C **36**, 1603 (2012).

> Analysis of doubly-enhanced magicity across the nuclear chart.

The trend of S_{2N} in the copper chain before N = 50 behaves as if we are approaching a doubly-magic ⁷⁸Ni.

impact on the predicted properties of ⁷⁸Ni.

The *N* = 40 island of inversion

> Quick evolution from doubly-magic like ⁶⁸Ni to deformed-like ⁶⁴Cr.

S. M. Lenzi *et al.*, Phys. Rev. C 82, 054301 (2010).
ENSDF database (2015).
C. Santamaria *et al.*, PRL 115, 192501 (2015).

Neutron-rich chromium isotopes

Isotope	Measured with	Half life (ms)	Yield (ions/s)
⁵⁹ Cr	Penning Trap/MR-TOF	1050	3E5
⁶⁰ Cr	Penning Trap/MR-TOF	490	2E4
⁶¹ Cr	Penning Trap/MR-TOF	243	2E3
⁶² Cr	Penning Trap/MR-TOF	206	3E2
⁶³ Cr	MR-TOF	129	30

M. Mougeot et al., paper in preparation.

T.D Goodacre et al., Spectrochimica Acta B (in press).

Perspectives

HFS studies in the neutron-deficient lead region

HFS studies in the neutron-deficient lead region

HFS studies in the neutron-deficient lead region

Situation in 2011:

Charge radii of n-deficient gold isotopes

An end of the region of collectivity.

Tests of in-trap decay

- \succ ^{75g,m}Zn produced by in-trap decay of ⁷⁵Cu ions.
- > The two states were subsequently measured with the Penning trap.

Tests of in-trap decay

 \blacktriangleright Double in-trap decay from ³⁴Mg to ³⁴Si was tested.

Phase-imaging ion-cyclotron-resonance technique

Position-sensitive detector

- ✓ No excitation (center position)
- \checkmark On radial motion, wait for time t
- ✓ On radial motion, wait for time $t + \Delta t$

 $\omega = 2\pi n + \varphi/\Delta t$

- ✓ Has much higher resolving power and precision than TOF-ICR
- ✓ Requires some prior knowledge of the frequency
- ✓ Requires timing stability on ~ns level

High-resolution isomer separation

S. Eliseev, Phys. Rev. Lett. 110, 082501;

A. Kankainen et al. Phys. Rev. C 87, 024307 (2013)

High-resolution isomer separation

S. Eliseev, Phys. Rev. Lett. 110, 082501;

A. Kankainen et al. Phys. Rev. C 87, 024307 (2013)

Conclusions

- Ion traps offer a different approach to low-energy nuclear physics.
- ISOLDE is continuously developing techniques for improving the yields and purity of exotic beams.
- ISOLTRAP is in the possession of a wide range of techniques for beam purification, mass measurements and trap-assisted studies.
- There are many ideas to improve and extend the existing ion-trap techniques, as well as to increase their role in low-energy nuclear physics.
- The combination of ISOLDE and ISOLTRAP continues to offer a competitive environment for new physics results.

Acknowledgements

N. Althubiti, P. Ascher, G. Audi, D. Atanasov, D. Beck, K. Blaum, G. Bollen,
M. Breitenfeldt, R. B. Cakirli, T. Cocolios, S. Eliseev, S. George, F. Herfurth,
A. Herlert, J. Karthein, J. Kluge, M. Kowalska, S. Kreim, Yu. A. Litvinov, D. Lunney,
V. Manea, E. Minaya-Ramirez, M. Mougeot, D. Neidherr, Ryan Ringle,
M. Rosenbusch, A. de Roubin, L. Schweikhard, M. Wang, A. Welker, F.
Wienholtz, R. Wolf, K. Zuber

WINDMILL