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QCD Axions

e QCD axion: one of the best motivated BSM particles

» Solves the strong-CP problem by making the QCD 0 angle a
dynamical field
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* Pseudo-Goldstone boson with mass and couplings fixed by the
decay constant f,

1017 GeV
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g ~ 6 x 107 eV
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SBlack Holes

* Black holes can be used as axion detectors: BH size ~ axion Compton wavelength

M
30 km X 7 M
3x 10" km X
10M¢ 107 M,
Stellar black holes: Supermassive black holes:
e ~10%- 109 in our galaxy * Found at the center of galaxies

e Sensitive to axion masses ~10-13- 1011 eV e Sensitive to axion masses ~10°19- 1016 eV



Gravitational Atom

* |n analogy with the Hydrogen atom, axions gravitationally bind around a BH and occupy the
states characterised by the usual quantum number, n, | and m.

* Fine-structure constant * Energy level
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Probability density plots.
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Superradiance

e Superradiance is an ubiquitous kinematic/thermodynamic phenomenon.

Penrose ‘69

* A rotating BH possesses an ergosphere, inside which

* |[n a BH, it can be explained in terms of Penrose process. b T
no observer can be stationary. g
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e Superradiance is an ubiquitous kinematic/thermodynamic phenomenon.

Penrose ‘69

* |[n a BH, it can be explained in terms of Penrose process. b T

* A rotating BH possesses an ergosphere, inside which
no observer can be stationary.

e Particles passing through the ergosphere can extract
angular momentum and energy from the BH.

e Superradiant condition: w < mflg
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Superradiance

e Superradiance is an ubiquitous kinematic/thermodynamic phenomenon.

Penrose ‘69

* |[n a BH, it can be explained in terms of Penrose process. & ? _

* A rotating BH possesses an ergosphere, inside which
no observer can be stationary.

-

e Particles passing through the ergosphere can extract
angular momentum and energy from the BH.

e Superradiant condition: w < mflg
3
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2GMpu 14 /1 —a2’ '

 Very difficult to observe

* |f particles (bosons) are confined the process
repeats continuously, growing exponentially.
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Gravitational Atom

* |n analogy with the Hydrogen atom, axions gravitationally bind around a BH and occupy the
states characterised by the usual quantum number, n, | and m.

* Fine-structure constant * Energy level
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 Particle orbits that satisfy the SR condition are
coherently amplified
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* As long as SR condition is satisfied,
occupation number grows exponentially
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Superradiant rate

e Superradiance times for the levels |=1 to 4, for m=l and n=I+1, for a BH of mass 10 Me.

Arvanitaki, Baryakhtar and Huang ‘14
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Black Hole Spin a,
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Black hole spin decay

e Black hole spin-mass plane.
* Absence of rapidly rotating BH is signal that superradiance has taken place.
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Black Hole Spin a,
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e Black hole spin-mass plane.
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Black hole spin from X-ray

* BH measurements of spin and BH masse in X-ray binaries.
Arvanitaki, Baryakhtar and Huang ‘14
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Slack hole spin from X-ray

* High-spin measurements disfavor an axion with mass

6 X 10_13 eV to 2 X 10_11 eV Arvanitaki, Baryakhtar and Huang ‘14

1: M33 X-7 N

2: LMC X-1 I

3: GRO J1655-40 —

4: Cyg X-1 —

5: GRS 1915+105

10-13 10-12 10-1" 10-10 109 (eV)

* The exclusion of these parameter space has not been reached by other approaches.



LIGO and Virgo

* Expected detection of 40-1500 merger events per year and measure masses and spin.

LGO LabvWrgo

* Example: the final BH from GW150914 has a spin of 0.67100> and mass of 61.873 M,

LIGO ‘16



Black Hole Spin a,

Expected black hole spin

» Expected distribution of intrinsic spins and masses of merging BHs in the absence (right)
and presence (left) of an axion. Flat spin distribution and power-law BH mass. Normalized at

1000 events in LIGO.
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* The theoretical curve assume that BBHs take a Hubble time to merge into account



Measured black hole spin

* Measured distribution of intrinsic spins and masses of merging BHs, 10% measurement
error in the mass and 0.25 in the spin. Flat spin distribution and power-law BH mass.

Normalized at 1000 events in LIGO.
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Required events

 Number of observed events required to show (at 20) that the BH spin distribution varies with
the BH mass as predicted by superradiance.
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* |f merger time is long, few tens of events may be enough.



Gravitational waves signal

* Monochromatic gravitational waves can be produced due to:

1) Axion transition between levels:

\/\/\)' f ~ 15 Hz x (ug/107 eV)

2) Axion annihilation:

N
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N f=10kHz x (1,/107 eV)
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* These GW are expected to be monochromatic within a ~3% frequency range, thus
distinguishable from other GW of astrophysical sources. Unique signal.



Transition and annihilation

e Transitions: Uncertainty dominated by BH formation rate and spin distribution. Less sensitive
to mass distribution

e Annihilation: Uncertainty dominated by BH mass distribution for large BH masses.
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e Coherent integration time of 2 days, total integration time 1 year.



Correlating searches

o After a merger at LIGO one can follow-up with continuous wave search to look for
superradiant axion growth. More promising for future GW observatories

* Impossible for transition; very long time to populate the levels giving appreciable signal.

* Expected annihilation events by BBH or BH-NS merger products per year.
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Conclusions

¥ Ultra light axions can be probed by astrophysical BHs

#¥ Mechanism applies to other scalar (boson) particles: not necessarily QCD
axions, not necessarily DM.

#¥ Advanced LIGO may measure thousands of BH spins and provide evidence
of a new particle

*¥ Monochromatic GW signals may be observable from transition and
annihilation of axions

#¥ May observe the growth of gravitational atoms in real time after a BBH/ BH-
NS merger



Sensitivities
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