Constraints on Axions from Black Hole mergers and Binary Pulsars

Based on:

- Arvanitakis, Baryakhtar, Dimopoulos, Dubovsky, Lasenby, "Black Hole Mergers and the QCD Axion at Advanced LIGO" 1604.03958
- Blas, López Nacir, Sibiryakov, "Ultra-Light Dark Matter Resonates with Binary Pulsars", 1612.06789

Filippo Vernizzi - IPhT, CEA Saclay

24 Janvier 2017 - Cosmo Club IPhT/SAP/SPP

Constraints on Axions from Black Hole mergers and Binary Pulsars

Based on:

- Arvanitakis, Baryakhtar, Dimopoulos, Dubovsky, Lasenby, "Black Hole Mergers and the QCD Axion at Advanced LIGO" 1604.03958
- Blas, López Nacir, Sibiryakov, "Ultra-Light Dark Matter Resonates with Binary Pulsars", 1612.06789

Filippo Vernizzi - IPhT, CEA Saclay

24 Janvier 2017 - Cosmo Club IPhT/SAP/SPP

QCD Axions

- QCD axion: one of the best motivated BSM particles
- Solves the strong-CP problem by making the QCD $\boldsymbol{\theta}$ angle a dynamical field

$$\mathcal{L}_{\rm SM} \supset \frac{\alpha_s}{8\pi} \frac{a}{f_a} G_{\mu\nu} \tilde{G}^{\mu\nu}$$

 \bullet Pseudo-Goldstone boson with mass and couplings fixed by the decay constant f_a

$$\mu_a \sim 6 \times 10^{-11} \text{ eV} \frac{10^{17} \text{ GeV}}{f_a}$$

$$\lambda_a \sim 3 \,\mathrm{km} \, \frac{6 \times 10^{-11} \mathrm{eV}}{\mu_a}$$

 μu f_a 10⁻¹² eV 1018 10⁻⁹ eV **10**¹⁵ fA GeV Cold DM μeV **10**¹² ADMX meV 10⁹ urst duratio CAST eV ot DM (suc 106

QCD Axions

- QCD axion: one of the best motivated BSM particles
- Solves the strong-CP problem by making the QCD $\boldsymbol{\theta}$ angle a dynamical field

$$\mathcal{L}_{\rm SM} \supset \frac{\alpha_s}{8\pi} \frac{a}{f_a} G_{\mu\nu} \tilde{G}^{\mu\nu}$$

• Pseudo-Goldstone boson with mass and couplings fixed by the decay constant f_a

$$\mu_{\mu a} \sim 6 \otimes 100^{11} eV_V \frac{100^{17} GeV_V}{f_{of_a}}$$

- Very weakly interacting
- Large Compton wavelength

$$\lambda_a \sim 3 \,\mathrm{km} \, \frac{6 \times 10^{-11} \mathrm{eV}}{\mu_a}$$

- Small masses difficult to probe because have very long wavelength^{10%}
- Current bound only for large masses and model dependent

Black Holes

• Black holes can be used as axion detectors: BH size ~ axion Compton wavelength

Stellar black holes:

- $\sim 10^8 10^9$ in our galaxy
- Sensitive to axion masses ~10⁻¹³ 10⁻¹¹ eV

- Found at the center of galaxies
- Sensitive to axion masses $\sim 10^{-19} 10^{-16} \text{ eV}$

Gravitational Atom

- In analogy with the Hydrogen atom, axions gravitationally bind around a BH and occupy the states characterised by the usual quantum number, n, I and m.
- Fine-structure constant

• Energy level

$$\alpha = \frac{GM_{\rm BH}\mu_a}{\hbar c} = 0.22 \left(\frac{M_{\rm BH}}{30M_{\odot}}\right) \left(\frac{\mu_a}{10^{-12}\,\rm eV}\right) \qquad \hbar\omega = \mu_a c^2 \left(1 - \frac{\alpha^2}{2n^2}\right)$$

Superradiance

- Superradiance is an ubiquitous kinematic/thermodynamic phenomenon.
- In a BH, it can be explained in terms of Penrose process.
- A rotating BH possesses an ergosphere, inside which no observer can be stationary.

Superradiance

- Superradiance is an ubiquitous kinematic/thermodynamic phenomenon.
- In a BH, it can be explained in terms of Penrose process.
- A rotating BH possesses an ergosphere, inside which no observer can be stationary.
- Particles passing through the ergosphere can extract angular momentum and energy from the BH.
- Superradiant condition: $\omega < m \Omega_{
 m H}$

$$\Omega_{\rm H} = \frac{c^3}{2GM_{\rm BH}} \frac{a_*}{1 + \sqrt{1 - a_*^2}} , \qquad 0 \le a_* \le 1$$

Superradiance

- Superradiance is an ubiquitous kinematic/thermodynamic phenomenon.
- In a BH, it can be explained in terms of Penrose process.
- A rotating BH possesses an ergosphere, inside which no observer can be stationary.
- Particles passing through the ergosphere can extract angular momentum and energy from the BH.
- Superradiant condition: $\omega < m \Omega_{
 m H}$

$$\Omega_{\rm H} = \frac{c^3}{2GM_{\rm BH}} \frac{a_*}{1 + \sqrt{1 - a_*^2}} , \qquad 0 \le a_* \le 1$$

- Very difficult to observe
- If particles (bosons) are confined the process repeats continuously, growing exponentially.

Gravitational Atom

- In analogy with the Hydrogen atom, axions gravitationally bind around a BH and occupy the states characterised by the usual quantum number, n, I and m.
- Fine-structure constant

• Energy level

$$\alpha = \frac{GM_{\rm BH}\mu_a}{\hbar c} = 0.22 \left(\frac{M_{\rm BH}}{30M_{\odot}}\right) \left(\frac{\mu_a}{10^{-12}\,\rm eV}\right) \qquad \hbar\omega = \mu_a c^2 \left(1 - \frac{\alpha^2}{2n^2}\right) - i\Gamma_{\rm sr}$$

 Particle orbits that satisfy the SR condition are coherently amplified

$$\frac{\alpha}{\ell} \le \frac{1}{2}$$

• As long as SR condition is satisfied, occupation number grows exponentially

$$\frac{dN}{dt} = \Gamma_{\rm sr} N$$

$$\Gamma_{\rm sr} = \mathcal{O}(10^{-7} - 10^{-14})\mu_a$$

Superradiant rate

• Superradiance times for the levels I=1 to 4, for m=I and n=I+1, for a BH of mass 10 M_☉.

Arvanitaki, Baryakhtar and Huang '14

Black hole spin decay

- Black hole spin-mass plane.
- Absence of rapidly rotating BH is signal that superradiance has taken place.

Black hole spin decay

- Black hole spin-mass plane.
- Absence of rapidly rotating BH is signal that superradiance has taken place.

Black hole spin decay

- Black hole spin-mass plane.
- Absence of rapidly rotating BH is signal that superradiance has taken place.

Black hole spin from X-ray

• BH measurements of spin and BH masse in X-ray binaries.

Arvanitaki, Baryakhtar and Huang '14

Black hole spin from X-ray

• High-spin measurements disfavor an axion with mass

 $6 \times 10^{-13} \ {\rm eV} \ {\rm to} \ 2 \times 10^{-11} \ {\rm eV}$ Arvanitaki, Baryakhtar and Huang '14

• The exclusion of these parameter space has not been reached by other approaches.

LIGO and Virgo

• Expected detection of 40-1500 merger events per year and measure masses and spin.

LIGO Lab/Virgo

• Example: the final BH from GW150914 has a spin of $0.67^{+0.05}_{-0.07}$ and mass of $61.8^{+4.2}_{-3.5}M_{\odot}$

Expected black hole spin

 Expected distribution of intrinsic spins and masses of merging BHs in the absence (right) and presence (left) of an axion. Flat spin distribution and power-law BH mass. Normalized at 1000 events in LIGO.

Required events

 Number of observed events required to show (at 2σ) that the BH spin distribution varies with the BH mass as predicted by superradiance.

• If merger time is long, few tens of events may be enough.

Gravitational waves signal

• Monochromatic gravitational waves can be produced due to:

1) Axion transition between levels:

• These GW are expected to be monochromatic within a ~3% frequency range, thus distinguishable from other GW of astrophysical sources. Unique signal.

Transition and annihilation

- Transitions: Uncertainty dominated by BH formation rate and spin distribution. Less sensitive to mass distribution
- Annihilation: Uncertainty dominated by BH mass distribution for large BH masses.

• Coherent integration time of 2 days, total integration time 1 year.

Correlating searches

- After a merger at LIGO one can follow-up with continuous wave search to look for superradiant axion growth. More promising for future GW observatories
- Impossible for transition; very long time to populate the levels giving appreciable signal.
- Expected annihilation events by BBH or BH-NS merger products per year.

• Coherent integration time of 10 days for BBH and 1 year for BH-NS.

Conclusions

- * Ultra light axions can be probed by astrophysical BHs
- * Mechanism applies to other scalar (boson) particles: not necessarily QCD axions, not necessarily DM.
- * Advanced LIGO may measure thousands of BH spins and provide evidence of a new particle
- * Monochromatic GW signals may be observable from transition and annihilation of axions
- * May observe the growth of gravitational atoms in real time after a BBH/ BH-NS merger

Sensitivities

