

Résonateur micro-onde quasi sphérique: de la détermination de la constante de Boltzmann à la mesure primaire de la pression.

Laurent Pitre (LNE- Cnam)

Laboratoire commun de métrologie LNE-CNAM

Le LNE-Cnam

Cnam

LNE

Creation du CNAM 1794 Dépôt des étalons du système metrique 1848

Creation du LNE 1901

Une Equipe

Les unités de base du SI d'aujourd'hui et demain

Les déterminations de la Constant de Boltzmann au CODATA 2014

- La determination de la constant de Boltzmann au LNE-CNAM
- mesure primaire de la pression à l'aide de résonateur supraconducteur

k determination with speed of sound measurement

Relationship between the Boltzmann constant and acoustic/microwave measurements

NG TO

20 Instruments used at the state of the art

Ultra clean gas handling systems With a piston gage as pressure measurement

Adiabatic Cryostat (weak link to the thermal bath)

$$\frac{x^2}{(49.950)^2} + \frac{y^2}{(49.975)^2} + \frac{z^2}{(50.000)^2} = 1$$

LNE

le cnam

0.5 L diamond turned resonator

$$k = \left\langle \frac{3}{5} \frac{mc_0^2}{T_{tp,water}} \left(\frac{Z_{nl}^{EM}}{Z_{nl}^A} \right)^2 \lim_{p \to 0} \left(\frac{\langle f_{nl}^A + \Delta f_{nl}^A \rangle}{\langle f_{nl}^{EM} + \Delta f_{nl}^{EM} \rangle} \right)^2 \right\rangle$$

Inner shape: the difference between r, R and H is 0.025 mm: H = 50.000 mmR=49.975 mm r = 49.950 mm

$$\frac{\frac{2}{0}}{\frac{2}{nter}} \left(\frac{Z_{nl}^{EM}}{Z_{nl}^{A}} \right)^{2} \frac{1}{F}$$

A Non-Quite Spherical Cavity

3 over 3 resonances observed in a quasi sphere

Only 2 over 3 resonances observed in a "perfect" sphere

$$k_{B} = \left\langle \frac{3}{5} \frac{mc_{0}^{2}}{T_{tp,water}} \left(\frac{Z_{nl}^{EM}}{Z_{nl}^{A}} \right)^{2} \lim_{p \to 0} \left(\frac{\langle f_{nl}^{A} + \Delta f_{nl}^{A} \rangle}{\langle f_{nl}^{EM} + \Delta f_{nl}^{EM} \rangle} \right)^{2} \right\rangle$$

A Non-Quite Spherical Cavity

 The use of a slightly deformed spherical geometry, a triaxial ellipsoid, removes the degeneracy of resonator modes

Electromagnetic measurements in very good agreement with the theoretical model TM11 BCU3 Acoustic measurements in a good agreement with the theoretical model

Measurement of the Volume

Measurement of the Volume

- Comparison of the microwave technique to CMM measurements
- Use of a CMM as a comparator
- Cooperation between LNE-CNAM, NPL, INRiM, UWA, Jim Mehl

M. de Podesta, E. F. May, J. B. Mehl, L. Pitre, R. M. Gavioso, G. Benedetto, P. A. Giuliano Albo, D. Truong and D. Flack. Metrologia, 47, 588-604, (2010)

$$k_{B} = \left\langle \frac{3}{5} \frac{mc_{0}^{2}}{T_{tp,water}} \left(\frac{Z_{nl}^{EM}}{Z_{nl}^{A}} \right)^{2} \lim_{p \to 0} \left(\frac{\langle f_{nl}^{A} + \Delta f_{nl}^{A} \rangle}{\langle f_{nl}^{EM} + \Delta f_{nl}^{EM} \rangle} \right)^{2} \right\rangle$$

Holes and Antennas effect

Underwood R J, Mehl J B, Pitre L, Edwards G, Sutton G and de Podesta M 2010 Waveguide effects on quasispherical microwave cavity resonators *Meas. Sci. Technol.* **21** 075103

$$k_B = \left\langle \frac{3}{5} \frac{mc_0^2}{T_{tp,water}} \left(\frac{Z_{nl}^{EM}}{Z_{nl}^A} \right)^2 \lim_{p \to 0} \left(\frac{\langle f_{nl}^A + \Delta f_{nl}^A \rangle}{\langle f_{nl}^{EM} + \Delta f_{nl}^{EM} \rangle} \right)^2 \right\rangle$$

Comparison between measured half-width and calculated from thermal physical propriety of helium gas and acoustic model

Uncertainty budget on the Boltzmann constant with 3.1 liters cavity in helium

Uncertainty on k

	ppm of <i>k</i>	March 2017
Volume	0.19	Holes and antenna effect, Dispersion over mode-shape, Conductivity, Uncertainty in frequency measurements
Temperature	0.3	<u>Calibration</u> , Dispersion over thermometers, Uncertainty in resistance measurements
Molecular weight	0.3	Isotopic ratio, Cold trap experiment, Getter experiment, Impurity, Uncertainty in measurements
Zero- pressure limit of $(f_n + \Delta f_n)^2$	0.51	Thermophysical properties of argon, <u>Scatter</u> <u>among modes</u> , Accommodation coefficient dispersion,Flow, Tubing acoustic impedance, Shell
Repeatability	0.05	Two isotherms
Root of Sum of Squares	0.69	

Uncertainty budget on the Boltzmann constant

Isotope analysis by KRISS vs relative speed of sound by LNE LNE Ie cnam

20

Avoir confiance dans son incertitude

mesure primaire de la pression

En collaboration avec Roberto Gavioso (INRiM Italie)

État de l'art

Incertitude des références de pression au LNE sur le gamme 1 Pa 100000 Pa

État de l'art

manomètre à piston basse pression 200 Pa à 20kPa (U(P) LNE 2.5*10⁻⁵*P+2*10⁻²)

-Artefact, la surface effective du piston doit être déterminé (dimensionnel ou par comparaison).

- -Pression pseudo-statique.
- -Gaz dans deux régimes: visqueux et moléculaire.

Les opportunités

Cette nouvelle méthode va tirer parti de quatre avancées :

- La possibilité de réaliser des cavités micro-onde supraconductrices avec des très hautes performances à 7 K
- La possibilité de baser la mesure sur les propriétés de l'hélium, connues à ces températures par des calculs *ab initio*.
- La possibilité de réaliser de manière simple des systèmes fonctionnant à 7 K, grâce au développement des cryogénérateurs.
- Le changement du SI, qui permet de manière plus simple de réduire l'incertitude sur la détermination de la température absolue.

Le principe du changement d'indice

Si la cavité est sphérique et que le gaz soit de part et autres du résonateur, effet de la compressibilité simple a modélisé.

le cnam

6

 $\binom{8}{R}$ (bohr)

10

12

14

-10

2

Mesurer une résonance

time (s)

Microwave change

Propagation des incertitudes

Why we shall work at 7K

Uncertainty in Primary Pressure measurement due to an uncertainty of 0.05 *10⁻⁹ in a frequency measurement This uncertainty is 10 times better than could be obtained using a copper QSR.

This element is negligible except at low pressure. This is due to the low uncertainty of the measurement . If have 5ppb of uncertainty on the measurement of the frequency resonance This uncertainty is multiply by 100. this graphic show the needs of superconductor cavity

191

Propagation des incertitudes

Uncertainty in Primary Pressure measurement due to an uncertainty of B,C and b from the ab initio calculation

Uncertainty for B and C taken from Uncertainty for b_{ϵ} taken from

Shaul et al. J. Chem. Phys. 2012

ecnam

Rizzo et al. J. Chem. Phys. 2002

All the parameters used to get the pressure from the index have un uncertainty propagated to P much smaller than 1 ppm

Propagation des incertitudes

Expected uncertainty due to the model

Uncertainty propagation over the range 200 Pa to 20k Pa

It is clear from this calculation that the main uncertainty comes from the determination of the thermodynamic temperature (10 ppm)

Corrections à prendre en compte

Thermomolecular and hydrostatic pressure corrections

$$(p_{\rm H} - p_{\rm L})/p_{\rm L} = (2 \times 10^{-9}) (R p_{\rm L}/({\rm Pa} \cdot {\rm m}))^{-1.99} ((T_{\rm H}/{\rm K})^{2.27} - (T_{\rm L}/{\rm K})^{2.27})$$

This relation comes from :Guide to the Realization of the ITS-90 Interpolating Constant-Volume Gas from CCT WG1 Steur, Fellmuth and Tamura

By taking a tube of radius 1.8 cm and a design from F. Sparasci, L. Pitre, D. Truong, L. Risegari and Y. Hermier Realization of a 3He–4He Vapor-Pressure Thermometer for Temperatures between 0.65 K and 5 K at LNE-CNAM *Int. J. Thermophys* (2011) **32**,139–152.

Une sphère très stable

Thermal expansion of the QSR at very low temperature

At 7.8 K the thermal expansion coefficient is very small $< 0.0178*10^{-6} \text{ K}^{-1}$ or 950 times lower than at room temperature. This very small number will allow us to have a much (100 times) faster measurement. Because the needs to wait for the QSR to come back to the same temperature is reduced compared with room temperature.

Une sphère

Metrology for Meteorology

Possible design for QSR with radius of 2.5 cm

- New design
- •QSR with 2.5 **cm** radius With a possibility to install a microwave antenna with cone.
- this QSR had a Gold layer 10 µm thick
- the skin depth was in good agreement compared to the gold metal, gn~200 kHz

Frequency range:

At room temperature we have a Q of 26000 and A resolution of 5ppb o get 0.05ppb with a R=2.5. we will '2.6*10⁶ or an increase verconducto

Metrology for Meteorology

Comparaison des incertitudes en k=2 KLNE le cnam

En conclusion

Principaux avantages :

Aucun effet de la pollution (à 7 K) : c'est l'avantage le plus important.

Atténuation du bruit en pression car une partie du gaz se trouve à 7 K, ce qui lui confère une grande masse volumique.

Aucun besoin d'une bonne connaissance de la compressibilité mécanique de la cavité, 1.5% est suffisant. Calculs *ab initio* pour toutes les propriétés thermo physiques de l'hélium déjà réalisé avec une exactitude suffisante.

Les tubes peuvent être conçus de manière à réduire les effets thermomoléculaires de pression hydrostatique, de façon à les rendre faibles et calculables.

La mesure est rapide.

La gamme de mesure des microondes est facilement atteignable (moins de 10 GHz).

Possibilité de mesure différentielle rapide et précise.

Les difficultés à surmonter :

Le Nb a une température de transition supraconductrice T_c d'environ 9 K. La température thermodynamique doit être connue avec une incertitude relative de 10⁻⁵ à 7 K. Les thermomètres de type capsule doivent être stables au cours des cycles thermiques à mieux que 0,1 mK. Le gaz et les thermomètres doivent être à la même température, même avec le flux de chaleur venant des micro-ondes (effet de peau).