

The PRad Experiment

Maxime Levillain

September 1, 2017

The Proton Radius Puzzle

PRad Setup

Detectors Performance

Analysis

Summary

Outline

The Proton Radius Puzzle

Different Methods of Measurement Elastic *ep* Scattering New Experiment Needed

PRad Setup

Detectors Performance

Analysis

Summary

- First measurement at SLAC in 1961 through ep scattering
- ▶ 60 years of measurements, 4 possible different methods

Atomic Hydrogen Spectroscopy

Lamb shift measurements by MPQ and LKB

ep Scattering

Accelerator based experiments at Mainz, SLAC, JLab, etc

Muonic Hydrogen Spectroscopy Lamb shift measurements by CREMA

μp Scattering

Future experiment PSI/MUSE

Spectroscopy Results

Lamb shift measurements

- atomic hydrogen spectroscopy results compatible with *ep* scattering results
- muonic hydrogen spectroscopy results at 0.84 fm

SZISA

The Proton Radius Puzzle

Elastic ep Scattering

 Elastic cross-section in the limit of the first Born approximation:

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{Mott} \cdot \frac{E'}{E} \cdot \frac{1}{1+\tau} \cdot \left(G_E^{n2}(Q^2) + \frac{\tau}{\epsilon}G_M^{n2}(Q^2)\right)$$

with:

$$Q^2 = 4EE' \sin^2\theta/2$$
 $\tau = \frac{Q^2}{4M_p^2}$ $\epsilon = 1/(1 + 2(1 + \tau)tan^2\theta/2)$

Structureless proton:

$$\left(\frac{d\sigma}{d\Omega}\right)_{Mott} = \frac{\alpha^2(1-\beta^2 sin^2\theta/2)}{4k^2 sin^4\theta/2}$$

► G_E can be expressed using a Taylor expansion at low Q²:

$$G_E = 1 - \frac{Q^2}{6} < r^2 > + \frac{Q^4}{120} < r^4 > + \dots$$

which gives:

ENERGY

$$< r^2 > = -6 \cdot \frac{dG_E^p}{dQ^2} \Big|_{Q^2 = 0}$$

Phys. Rev. C 93, 065207

Jefferson Lab

Maxime Levillain

The Proton Radius Puzzle

 $r_p(e^-) = 0.8770 \pm 0.0045 fm$ $r_p(\mu^-) = 0.8409 \pm 0.0004 fm$

 Discrepancy between muonic hydrogen spectroscopy and atomic hydrogen (spectroscopy and scattering) measurements

Maxime Levillain

The PRad Experiment

- Previous measurements have large systematic uncertainties and a limited coverage at small Q^2
- Requirements for PRad Experiment:
 - ▶ large Q² range
 - extend to very low Q²
 - controlled systematics at sub-percent precision
- Choices:

ENERGY

- Non magnetic spectrometer method
- No target windows
- high resolution high acceptance spectrometer
- Normalization by Møller cross-section

Phys. Rev. C 93, 065207

PRad Timeline

- 2011 2012 Initial proposal
- 2012 Approved by JLab PAC39
- 2012 Funding proposal for windowless H_2 gas flow target
- 2012 2015 Development, construction of the target
- 2013 Funding proposals for the GEM detectors
- 2013 2015 Development, construction of the GEM detectors
- 2015, 2016 Experiment readiness reviews
- January/April 2016 Beam line installation
- May 2016 Beam commissioning
- May 24 May 31 Detectors calibration
- June 4 June 15 1.1 GeV data taking
- June 15 June 22 2.2 GeV data taking

Outline

The Proton Radius Puzzle

PRad Setup JLab Facility PRad Setup Windowless Gas Flow Target Hybrid Calorimeter GEM detectors

Detectors Performance

Analysis

Summary

JLab Facility

PRad was performed in Hall B at JLab

PRad Setup

JLab 12GeV Upgrade

 First experiment finished using 12 GeV accelerator (not at full beam energy)

PRad Setup

- \blacktriangleright Electron beam or tagged photon beam at $\sim 1 \text{ GeV}$ and $\sim 2 \text{ GeV}$
- Windowless H_2 gas flow target
- Vacuum box

< JSA

- GEM detectors
- Primex HyCal

Windowless H₂ Gas Flow Target

- gas target of cryogenically cooled hvdrogen at 19.5 K
- beam opening: 2 mm, length: 4 cm
- cell density: $\sim 2 \cdot 10^{18}$ H atoms/cm²
- pressures:

ENERGY

- cell pressure: 471 mTorr
- chamber pressure: 2.34 mTorr
- vacuum chamber pressure: 0.3 mTorr

Developed and build by JLab target group

Maxime Levillain

-axis Motion Mecha

PRad Setup

H2 gas IN

Vacuum Box

- 1.7 m diameter, 2 mm aluminum vacuum window
- \rightarrow Limited background

PRad Setup

Hybrid detector:

- Central part:
 - ▶ 34 x 34 matrix of PbWO₄ detectors
 - dimension of block: $2 \times 2 \times 18$ cm³
 - 2 x 2 blocks removed from the center for beam line to pass through
- Peripheral part:
 - 576 lead glass detectors
 - dimension of block: $4 \times 4 \times 45$ cm³
- Successfully used for Primex experiments

PRad Setup

GEM Detectors

- ► Two large area GEM detectors: 55 cm × 123 cm
- Purpose:
 - \blacktriangleright improve spatial resolution by a factor 20 to 40 \rightarrow 100 $\mu{\rm m}$
 - ightarrow to reduce uncertainties on heta and Q^2
- Central overlap between the 2 planes and central hole for the beam line

Developed and build by UVA

PRad Setup

The Proton Radius Puzzle

PRad Setup

Detectors Performance

HyCal Energy Resolution Trigger Efficiency GEM Matching Efficiency GEM Spatial Resolution

Analysis

Summary

Crystal energy resolution with statistical uncertainties

- Achieved expected energy resolution:
 - ▶ 2.5% at 1 GeV for crystal part
 - \blacktriangleright 6.1% at 1 GeV for lead glass part

Trigger Efficiency

Good uniformity

< JSA

U.S. DEPARTMENT OF

GEM Matching Efficiency

ENERGY

- GEM detection efficiency measured in both photon beam calibration (pair production) and production runs (ep and ee)
- Almost flat efficiency > 97% after removal of spacers and dead zones

GEM Spatial Resolution

U.S. DEPARTMENT OF

ALS

• Really good spatial resolution \sim 74 μm

Maxime Levillain

> 20 to 40 times better than HyCal spatial resolution

Detectors Performance

The Proton Radius Puzzle

PRad Setup

Detectors Performance

Analysis

Stability Yields Cross-sections

Summary

- Calibration with tagged photon beam
 - Every calorimeter module moved into the beam
 - Allows study of resolution, linearity, trigger efficiency
- ▶ 1.1 GeV electron beam
 - ▶ 4.2 mC
 - 604 M events with target
 - 53 M events with "empty target"
 - 25 M events with ¹²C target for calibration
- 2.2 GeV electron beam
 - ▶ 14.3 mC
 - 756 M events with target
 - 38 M events with "empty target"
 - 10.5 M events with ¹²C target for calibration

 Control of target properties (pressure, temperature, position) via EPICS

Weizhi Xiong


```
25 / 32
```


Phase space after background subtraction

 Separation of *ep* and Møller phase space (for θ > 0.85*deg* for 1 GeV)

ep Yields

 Stability of ratio ep/ee after background subtraction for different beam intensity

Good stability for the 2GeV period

► Normalization of *ep* cross-section by Møller cross-section:

$$\left(\frac{d\sigma}{d\Omega}\right)_{ep} = \frac{N_{exp}(ep \to ep \text{ in } \theta_i \pm \Delta\theta)}{N_{exp}(ee \to ee)} \cdot \frac{\epsilon_{geom}^{ee}}{\epsilon_{geom}^{ep}} \cdot \frac{\epsilon_{det}^{ee}}{\epsilon_{det}^{ep}} \cdot \left(\frac{d\sigma}{d\Omega}\right)_{ee}$$

- Several event generators have been developped for *ep* and Møller scattering taking into account complete calculations of radiative corrections beyond ultra relativistic approximations
 - ► A. V. Gramolin et al., J. Phys. G Nucl. Part. Phys. 41(2014)115001
 - ► I. Akushevich et al., Eur. Phys. J. A 51(2015)1
- Geant4 is used to take into account all external radiative effects

$$\sigma_{ep}^{Born} = \left(\frac{\sigma_{ep}}{\sigma_{ee}}\right)^{exp} / \left(\frac{\sigma_{ep}}{\sigma_{ee}}\right)^{sim} \cdot \sigma_{ee}^{Born}$$

Preliminary ep Cross-section

- PRadius
- Preliminary ep cross-section for the 2.2 GeV data set
- \blacktriangleright Statistical uncertainties at $\sim 0.2\%$ per point
- \blacktriangleright Conservative point-to-point systematic uncertainties at $\sim 2\%$

Preliminary *ep* **Cross-section**

Maxime Levillain

ENERGY

Jefferson Lab

- Preliminary ep cross-section for the 2.2 GeV data set
- Statistical uncertainties at $\sim 0.2\%$ per point
- Conservative point-to-point systematic uncertainties at $\sim 2\%$

Analysis

31 / 32

ep elastic scattering cross section

ENERGY

- The PRad experiment was uniquely designed to address the Proton Radius Puzzle
- ► The experiment was successfully performed in May-June 2016
- ► Wide range of Q² without normalization on more than two orders of magnitude (2 · 10⁻⁴ GeV² to 6 · 10⁻² GeV²)
- Lowest Q^2 data set of ep elastic scattering $(2 \cdot 10^{-4} \text{ GeV}^2)$
- First preliminary extraction of the proton radius expected at the end of October

Thanks to JLab, Hall B, Accelerator Division and Target Group

PRad is supported in part by NSF MRI award PHY-1229153, as well as DOE awards for GEM; my research work is supported by NSF awards: PHY-1506388 and PHY-0855543 $\,$

