The PRad Experiment

Maxime Levillain

September 1, 2017

Jefferson Lab

- Thomas Jefferson National Accelerator Facility

Outline

The Proton Radius Puzzle

PRad Setup

Detectors Performance

Analysis

Summary

Outline

The Proton Radius Puzzle
Different Methods of Measurement
Elastic ep Scattering
New Experiment Needed

PRad Setup

Detectors Performance

Analysis

Summary

Measurements of Form Factors

- First measurement at SLAC in 1961 through ep scattering
- 60 years of measurements, 4 possible different methods
Atomic Hydrogen
Spectroscopy
Lamb shift measurements by MPQ and LKB
ep Scattering
Accelerator based experiments at Mainz, SLAC, JLab, etc

Muonic Hydrogen
Spectroscopy
Lamb shift measurements by CREMA
μp Scattering
Future experiment PSI/MUSE

Spectroscopy Results

- Lamb shift measurements

- atomic hydrogen spectroscopy results compatible with ep scattering results
- muonic hydrogen spectroscopy results at 0.84 fm

Elastic ep Scattering

- Elastic cross-section in the limit of the first Born approximation:
$\frac{d \sigma}{d \Omega}=\left(\frac{d \sigma}{d \Omega}\right)_{M o t t} \cdot \frac{E^{\prime}}{E} \cdot \frac{1}{1+\tau} \cdot\left(G_{E}^{n^{2}}\left(Q^{2}\right)+\frac{\tau}{\epsilon} G_{M}^{n 2}\left(Q^{2}\right)\right)$
with:
$Q^{2}=4 E E^{\prime} \sin ^{2} \theta / 2 \quad \tau=\frac{Q^{2}}{4 M_{p}^{2}} \quad \epsilon=1 /\left(1+2(1+\tau) \tan ^{2} \theta / 2\right)$

- Structureless proton:

$$
\left(\frac{d \sigma}{d \Omega}\right)_{M o t t}=\frac{\alpha^{2}\left(1-\beta^{2} \sin ^{2} \theta / 2\right)}{4 k^{2} \sin ^{4} \theta / 2}
$$

- G_{E} can be expressed using a Taylor expansion at low Q^{2} :

$$
G_{E}=1-\frac{Q^{2}}{6}<r^{2}>+\frac{Q^{4}}{120}<r^{4}>+\ldots
$$

which gives:

$$
<r^{2}>=-\left.6 \cdot \frac{d G_{E}^{p}}{d Q^{2}}\right|_{Q^{2}=0}
$$

Phys. Rev. C 93, 065207

The Proton Radius Puzzle

$r_{p}\left(e^{-}\right)=0.8770 \pm 0.0045 f m \quad r_{p}\left(\mu^{-}\right)=0.8409 \pm 0.0004 f m$

- Discrepancy between muonic hydrogen spectroscopy and atomic hydrogen (spectroscopy and scattering) measurements

The PRad Experiment

- Previous measurements have large systematic uncertainties and a limited coverage at small Q^{2}
- Requirements for PRad Experiment:
- large Q^{2} range
- extend to very low Q^{2}
- controlled systematics at sub-percent precision
- Choices:
- Non magnetic spectrometer method
- No target windows

Phys. Rev. C 93, 065207

- high resolution high acceptance spectrometer
- Normalization by Møller cross-section

PRad Timeline

- 2011-2012
- 2012
- 2012
- 2012-2015
- 2013
- 2013-2015
- 2015, 2016
- January/April 2016
- May 2016
- May 24 - May 31
- June 4 - June 15
- June 15 - June 22

Initial proposal
Approved by JLab PAC39
Funding proposal for windowless H_{2} gas flow target
Development, construction of the target
Funding proposals for the GEM detectors
Development, construction of the GEM detectors
Experiment readiness reviews
Beam line installation
Beam commissioning
Detectors calibration
1.1 GeV data taking
2.2 GeV data taking

Outline

The Proton Radius Puzzle

PRad Setup

JLab Facility
PRad Setup
Windowless Gas Flow Target
Hybrid Calorimeter
GEM detectors

Detectors Performance

Analysis

Summary

JLab Facility

PRad was performed in Hall B at JLab

JLab 12GeV Upgrade

DROton Radius

- First experiment finished using 12 GeV accelerator (not at full beam energy)

PRad Setup

- Electron beam or tagged photon beam at $\sim 1 \mathrm{GeV}$ and $\sim 2 \mathrm{GeV}$
- Windowless H_{2} gas flow target
- Vacuum box
- GEM detectors
- Primex HyCal

Windowless H_{2} Gas Flow Target

- gas target of cryogenically cooled hydrogen at 19.5 K
- beam opening: 2 mm , length: 4 cm
- cell density: $\sim 2 \cdot 10^{18} \mathrm{H}$ atoms $/ \mathrm{cm}^{2}$

- pressures:
- cell pressure: 471 mTorr
- chamber pressure: 2.34 mTorr
- vacuum chamber pressure: 0.3 mTorr

Developed and build by JLab target group

Vacuum Box

PROton Radius

- 1.7 m diameter, 2 mm aluminum vacuum window
\rightarrow Limited background

Primex HyCal

Hybrid detector:

- Central part:
- 34×34 matrix of PbWO_{4} detectors
- dimension of block: $2 \times 2 \times 18 \mathrm{~cm}^{3}$
- 2×2 blocks removed from the center for beam line to pass through
- Peripheral part:
- 576 lead glass detectors
- dimension of block: $4 \times 4 \times 45 \mathrm{~cm}^{3}$
- Successfully used for Primex experiments

GEM Detectors

DROton Radius

- Two large area GEM detectors: $55 \mathrm{~cm} \times 123 \mathrm{~cm}$
- Purpose:
- improve spatial resolution by a factor 20 to $40 \rightarrow 100 \mu \mathrm{~m}$
\rightarrow to reduce uncertainties on θ and Q^{2}
- Central overlap between the 2 planes and central hole for the beam line

Developed and build by UVA

Outline

The Proton Radius Puzzle

PRad Setup

Detectors Performance
HyCal Energy Resolution
Trigger Efficiency
GEM Matching Efficiency
GEM Spatial Resolution

Analysis

Summary

HyCal Energy Resolution

- Crystal energy resolution with statistical uncertainties

- Achieved expected energy resolution:
- 2.5% at 1 GeV for crystal part
- 6.1% at 1 GeV for lead glass part

Trigger Efficiency

- Plateau from 500 MeV with an efficiency of 0.995
- Good uniformity

GEM Matching Efficiency

- GEM detection efficiency measured in both photon beam calibration (pair production) and production runs (ep and ee)
- Almost flat efficiency $>97 \%$ after removal of spacers and dead zones

GEM Spatial Resolution

X Resolution

Y Resolution

- Really good spatial resolution $\sim 74 \mu \mathrm{~m}$
- 20 to 40 times better than HyCal spatial resolution

Outline

The Proton Radius Puzzle

PRad Setup

Detectors Performance

Analysis
Stability
Yields
Cross-sections

Summary

Data Collected

- Calibration with tagged photon beam
- Every calorimeter module moved into the beam
- Allows study of resolution, linearity, trigger efficiency
- 1.1 GeV electron beam
- 4.2 mC
- 604 M events with target
- 53 M events with "empty target"
- 25 M events with ${ }^{12} \mathrm{C}$ target for calibration
- 2.2 GeV electron beam
- 14.3 mC
- 756 M events with target
- 38 M events with "empty target"
- 10.5 M events with ${ }^{12} \mathrm{C}$ target for calibration

Target Stability

- Control of target properties (pressure, temperature, position) via EPICS

Target Thickness

\rightarrow Less than 3\% deviation

Phase Space

- Phase space after background subtraction

- Separation of ep and Møller phase space (for $\theta>0.85 d e g$ for 1 GeV)

ep Yields

- 1.1 GeV data set: $Q^{2} \in\left[2 \cdot 10^{-4}, 1.3 \cdot 10^{-2}\right] \mathrm{GeV}^{2}$
- 2.2 GeV data set: $Q^{2} \in\left[8 \cdot 10^{-4}, 6 \cdot 10^{-2}\right] \mathrm{GeV}^{2}$

Yields Stability

- Stability of ratio ep/ee after background subtraction for different beam intensity

- Good stability for the 2 GeV period

Extraction of Cross-section

- Normalization of ep cross-section by Møller cross-section:

$$
\left(\frac{d \sigma}{d \Omega}\right)_{e p}=\frac{N_{\exp }\left(e p \rightarrow e p \operatorname{in} \theta_{i} \pm \Delta \theta\right)}{N_{\exp }(e e \rightarrow e e)} \cdot \frac{\epsilon_{g e o m}^{e e}}{\epsilon_{g e o m}^{e p}} \cdot \frac{\epsilon_{d e t}^{e e}}{\epsilon_{d e t}^{e p}} \cdot\left(\frac{d \sigma}{d \Omega}\right)_{e e}
$$

- Several event generators have been developped for ep and Møller scattering taking into account complete calculations of radiative corrections beyond ultra relativistic approximations
- A. V. Gramolin et al., J. Phys. G Nucl. Part. Phys. 41(2014)115001
- I. Akushevich et al., Eur. Phys. J. A 51(2015)1
- Geant4 is used to take into account all external radiative effects

$$
\sigma_{e p}^{\text {Born }}=\left(\frac{\sigma_{e p}}{\sigma_{e e}}\right)^{e x p} /\left(\frac{\sigma_{e p}}{\sigma_{e e}}\right)^{\text {sim }} \cdot \sigma_{e e}^{\text {Born }}
$$

Preliminary ep Cross-section

- Preliminary ep cross-section for the 2.2 GeV data set
- Statistical uncertainties at $\sim 0.2 \%$ per point
- Conservative point-to-point systematic uncertainties at $\sim 2 \%$

Preliminary ep Cross-section

- Preliminary ep cross-section for the 2.2 GeV data set
- Statistical uncertainties at $\sim 0.2 \%$ per point
- Conservative point-to-point systematic uncertainties at $\sim 2 \%$
$\boldsymbol{e p}$ elastic scattering cross section

Summary

DROton Radius

- The PRad experiment was uniquely designed to address the Proton Radius Puzzle
- The experiment was successfully performed in May-June 2016
- Wide range of Q^{2} without normalization on more than two orders of magnitude $\left(2 \cdot 10^{-4} \mathrm{GeV}^{2}\right.$ to $\left.6 \cdot 10^{-2} \mathrm{GeV}^{2}\right)$
- Lowest Q^{2} data set of ep elastic scattering $\left(2 \cdot 10^{-4} \mathrm{GeV}^{2}\right)$
- First preliminary extraction of the proton radius expected at the end of October

Thanks to JLab, Hall B, Accelerator Division and Target Group
PRad is supported in part by NSF MRI award PHY-1229153, as well as DOE awards for GEM;
my research work is supported by NSF awards: PHY-1506388 and PHY-0855543

