

Recent SRF development at FNAL

Martina Martinello

CEA Seminar, 26th Oct 2017

- N-doping R&D
- Trapped Flux in Nb cavities R&D
- LCLS-II Production Stage
- N-infusion for high-Q at high gradients
- Conclusion

The discovery of N-doping

🚰 Fermilab

A. Grassellino et al., Supercond. Sci. Technol. 26, 102001 (2013) – Rapid Communications

Linear Coherent Light Source-II (LCLS-II)

- 4 GeV, 0.3 mA CW SRF LINAC
- 35 CM, 8 cavities/CM + 1 quad
- TESLA-type 1.3 *GHz* 9-cells cavities
- Specs: $E_{acc} = 16 \ MV/m$ with $Q_0 = 2.7 \times 10^{10}$

N-doping treatment (example: the "2/6 recipe") 800C N₂ 800C UHV, 800C N₂ 2 800C UHV, UHV 5 um EP injection 3 hours minutes 6 minutes cooling p=25mTorr Y. Trenikhina et Al, Proc. of SRF 2015 20' @ 800 C with 25 mTorr N 10²¹ N atoms density [cm⁻³] - Sample Only Nb from TEM spectra: H3 -H7 C4 10²⁰ N must be interstitial -C5 10¹⁹ Contraction of the second **Final RF Surface** 40 45 50 10 15 20 25 30 5 0 depth [µm] N Interstitial Ν

🛟 Fermilab

Origin of the anti-Q-slope

Â. Romanenko and A. Grassellino, Appl. Phys. Lett. **102**, 252603 (2013)

Frequency dependence of R_{BCS}(Eacc): toward a better understanding

Trapped Flux in Nb Cavities R&D

SC transition in presence of external magnetic field H

$$R_s(T) = R_{BCS}(T) + R_{res}$$

- In the mixed state vortices are stable in the SC
- If pinned, vortices may survive in the Meissner state introducing dissipation (R_{fl})

$$R_{res} = R_0 + R_{fl}(B_{trap})$$

 R_0 : intrinsic residual resistance R_{fl} : trapped flux surface resistance

Trapped Flux Surface Resistance

$$R_{S} \left(2 K, B_{Trap} \right) = R_{BCS} \left(2 K \right) + R_{0} + R_{Fl}$$
$$R_{Fl} = B_{ext} \cdot \eta \cdot S$$

These losses can be reduced by minimizing these contributions:

Trapped Flux Surface Resistance

$$R_{S} \left(2 K, B_{Trap} \right) = R_{BCS} \left(2 K \right) + R_{0} + R_{Fl}$$
$$R_{Fl} = B_{ext} \cdot \eta \cdot S$$

These losses can be reduced by minimizing these contributions:

External magnetic field
B_{ext}
Magnetic shielding/hygiene improvement
Fast Cooling
Material Optimization
S
Optimizing mean free path

Minimization of remnant field in the cryomodule

12 Martina Martinello | LCWS 2017

Magnitude of magnetic field (mG)

ILLINOIS INSTITUTE OF TECHNOLOGY

Trapped Flux Surface Resistance

$$R_{S} \left(2 K, B_{Trap} \right) = R_{BCS} \left(2 K \right) + R_{0} + R_{Fl}$$
$$R_{Fl} = B_{ext} \cdot \eta \cdot S$$

These losses can be reduced by minimizing these contributions:

Fast cooldown helps flux expulsion

- Fast cool-down lead to <u>large thermal gradients</u> which promote efficient flux expulsion
- Slow cool-down → poor flux expulsion

High T baking for flux expulsion improvement

S. Posen et al., J. Appl. Phys. 119, 213903 (2016)), A. Palchewski in Proc. of LINAC 2016

• Not all materials show good flux expulsion even with large thermal gradient

High T baking for flux expulsion improvement

S. Posen et al., J. Appl. Phys. 119, 213903 (2016)), A. Palchewski in Proc. of LINAC 2016

- Not all materials show good flux expulsion even with large thermal gradient
- High T treatments are capable to improve (most of the times) materials flux expulsion properties

🛟 Fermilab

Trapped Flux Surface Resistance

$$R_{S} \left(2 K, B_{Trap} \right) = R_{BCS} \left(2 K \right) + R_{0} + R_{Fl}$$
$$R_{Fl} = B_{ext} \cdot \eta \cdot S$$

These losses can be reduced by minimizing these contributions:

Light doping to minimize trapped flux sensitivity

Trapped flux sensitivity:

 $S = \frac{R_{Fl}}{B_{Trap}}$

- Bell-shaped trend of S as a function of mean free path
- N-doping cavities present higher sensitivity than standard treated cavities
- Light doping is needed to minimize trapped flux sensitivity

M. Martinello et al., App. Phys. Lett. **109**, 062601 (2016)
M. Checchin et al., Supercond. Sci. Technol. 30, 034004 (2017)
D. Gonnella et al., J. Appl. Phys. **119**, 073904 (2016)

The advantage of N-doping in condition of full flux-trapping

Example with LCLS-II specifications

The path to the production Stage

Optimization of N-doping recipe in single-cell cavities

 \rightarrow 2/6 recipe best in terms of both Q and Eacc:

 $\langle Q \rangle = 3.6 \cdot 10^{10}$ (the lower sensitivity helps to avoid drastic deterioration) $\langle E_{acc} \rangle = 22.2 \ MV/m$

🛟 Fermilab

2/6 doping transferred on 9-cells

FNAL/JLAB 9-cell cavities with 2/6 doping recipe

Demonstration in a cryomodule-like environment

Q can be perfectly preserved from bare cavity test to fully jacketed state with RF ancillaries, in cryomodule environment

Horizontal dressed cavity tests at FNAL, Cornell, Jlab Meeting final LCLS-2 specs in cryomodule environment!

Prototype CM at JLab:

pCM cold mass

Prototype CM at Fermilab:

Transport

Staging Area

pCM in Fermilab Test Area

Burrill - The LCLS-II SRF Linac - LINAC 2016

TUPLR007 LCLS-II Cryomodules Production at Fermilab

FNAL prototype LCLS-II cryomodule results

Fermilab Prototype LCLS-II Cryomodule

Usable Gradient* [MV/m]	Q0 @16MV/m* 2K Fast Cool Down
18.2	2.6E+10
18.8	3.1E+10
19.8	3.6E+10
20.5	3.1E+10
14.2	2.6E+10
16.9	3.3E+10
19.4	3.3E+10
17.5	2.3E+10
18.2	3.0E+10
148.1 MV	\uparrow
	Usable Gradient* (MV/m] 18.2 18.8 19.8 20.5 14.2 14.2 16.9 19.4 19.4 17.5 18.2 148.1 MV

LCLS-II Production cavities

- 2 vendors for LCLS-II cavity production: Research Instruments (RI) and Ettore Zanon (EZ)
- <u>N-doping successfully transferred to industry (effort leads by JLAB)</u>
- More than 100 production cavities tested between FNAL and JLAB

N-infusion for high-Q at high gradients

Motivation behind experiments

Composition and mean free path in first nanometers of cavity surface have been shown to be crucial for both Q and gradient performance

Example of N-infusion processing sequence

- Bulk electro-polishing
- High T furnace (with caps to avoid furnace contamination):
 - 800C 3 hours HV
 - 120-160C 48 hours with N₂ (25 mTorr)
- NO chemistry post furnace
- HPR, VT assembly

Protective caps and foils are BCP'd prior <u>to every furnace cycle</u> and assembled in clean room, prior to transporting cavity to furnace area

A. Grassellino *et al.*, **arXiv:1305.2182**A. Grassellino et al 2017 Supercond. Sci. Technol. **30**094004

Cavity evolution- EP

Cavity evolution – 120C baking

Cavity evolution – 120C N-infusion

Cavity evolution – probing the parameter space

Cavity evolution – probing the parameter space

Cavity evolution – 120C N-infusion

What gives the Q improvement at high field with 120C infused?

Improvement stems from both lower residual and lower BCS surface resistance

A. Grassellino et al 2017 Supercond. Sci. Technol. 30 094004

Nitrogen role in 120C N-infusion

- Small ($\sim 10 15 nm$) N₂ enriched layer below native oxide
- SIMS data suggest that performances are related to the first nm from the RF surface
- Being investigated with subsequent HF rinsing experiment

No (clear) nitrides formation at the RF surface

Nitrogen role in 140/160C N-infusion

- Higher N₂ background than not infused samples, through the whole penetration depth
- Very similar to N₂ signal after EP in N-doped samples
- No (clear!) presence of nitrides at the surface
- Being investigated with subsequent HF rinsing experiment

🚰 Fermilab

120 C N-infusion: high Q_0 at high gradients

🛠 Fermilab

A. Grassellino et al 2017 Supercond. Sci. Technol. 30 094004

120 C N-infusion: high Q_0 at high gradients

Compared to this table values for E-XFEL, results of 9-cell N-infused cavities would lay in top 1%

⁴⁸*N-infusion cost reduction takes into account also the difference cost of the processing chain

Image from linearcollider.org. Tunnelflug video by European XFEL. Cost analysis by N. Solyak

N-infusion easily affected by furnace contamination

N-infusion easily affected by furnace contamination

Strategies to implement the N-infusion technology

1. Very clean furnace environment

2. R&D to investigate other regime that are less affected by contamination

- High-T N treatment that allows post chemistry and capable to create a thin Nenriched layer
- Probe the parameter space to find an optimal spot for N diffusion rather than C

• Etc..

Conclusions

- <u>N-doping</u> suitable for high-Q at medium gradient, production ready technology for SRF accelerators
- High Q preserved also in cryomodule applying lessons learned from R&D
- <u>N-infusion</u> suitable treatment to obtain high-Q at high gradient
- Modification of the superficial mean-free-path at the nanometer scale
- Successful results obtained also on 9-cell cavities, potentially useful for ILC cost reduction
- More R&D needed to increase reliability of the process

Team Effort

- Results shown here are due to many hardworking people
- Thanks to SRF department for contributions with graphs, slides, etc.

Thank you for your attention!

