

An experiment to measure BR($K_L \rightarrow \pi^0 \nu \bar{\nu}$) at the CERN SPS

IRFU, CEA Saclay 22 January 2018

Matthew Moulson – INFN Frascati For the KLEVER project

Precision physics and rare decays

How can we extend the search for new physics to high effective scales?

Energy frontier

Direct search

Create new degrees of freedom in lab Explore spectroscopy of new d.o.f.

 $\Lambda \sim 1-10 \text{ TeV}$

Intensity frontier

Indirect investigation

Evidence of new degrees of freedom as alteration of SM rates

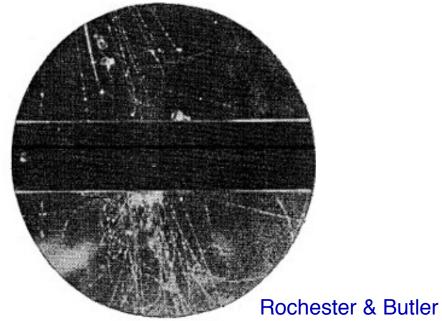
Evolute symmetry properties

Explore symmetry properties of new d.o.f

 $\Lambda \sim 1-1000 \text{ TeV}$

A rare decay is useful as an NP probe if:

- Process is (strongly) suppressed in the SM
- Parameter to be measured precisely calculated in SM
- There are specific predictions for NP contributions


Examples of what may be studied with rare decays:

- Explicit violations of the SM (e.g., lepton flavor violation)
- Tests of fundamental symmetries such as CP and CPT
- Search for new d.o.f. in the flavor sector, e.g., in FCNC processes
- Strong interaction dynamics at low energy using exclusive processes

What have kaons taught us?

Nature 160 (1947)

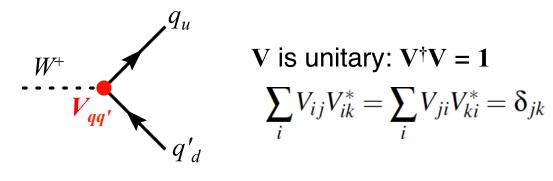
Strangeness, concept of flavor quark model

 τ - θ puzzle: hint of P violation, confirmation of weak V-A structure

CP violation in mixing of neutral kaons

Suppression of $K_L \to \mu^+ \mu^-$: GIM mechanism and the charm quark

Direct CP violation in $K \to \pi\pi$ and the CKM paradigm


Quiet successes of confirmation: conservation of lepton flavor, V_{us} , etc.

Kaons have been fundamental in the development of the SM flavor sector

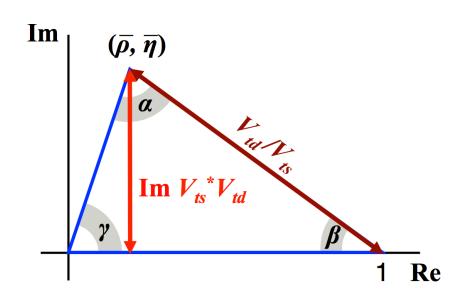
The CKM matrix

$$\begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$$

$$\sum_{i} V_{ij} V_{ik}^* = \sum_{i} V_{ji} V_{ki}^* = \delta_{jk}$$

B unitarity triangle

$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$$

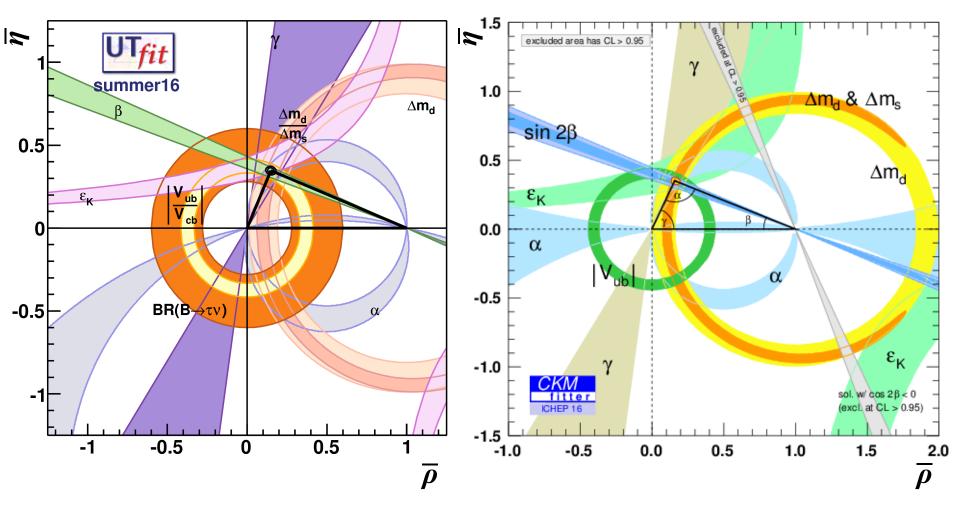

K unitarity triangle

$$V_{ud}V_{us}^* + V_{cd}V_{cs}^* + V_{td}V_{ts}^* = 0$$

Observable

Measurement

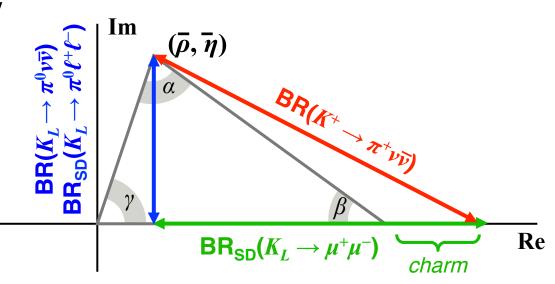
$$K^+ o \pi^+
u ar{
u} \qquad |V_{ts}^* V_{td}|$$
 $K_L o \pi^0
u ar{
u} \qquad Im V_{ts}^* V_{td} imes \eta$
 $B_d o J/\psi K_S \qquad \sin 2\beta$
 $\Delta m_{B_d} = \frac{B_d - ar{B}_d}{B_S - ar{B}_S} \qquad |V_{td}/V_{ts}|$



Unitarity triangles: state of the art

ckmfitter.in2p3.fr - ICHEP '16

Rare kaon decays

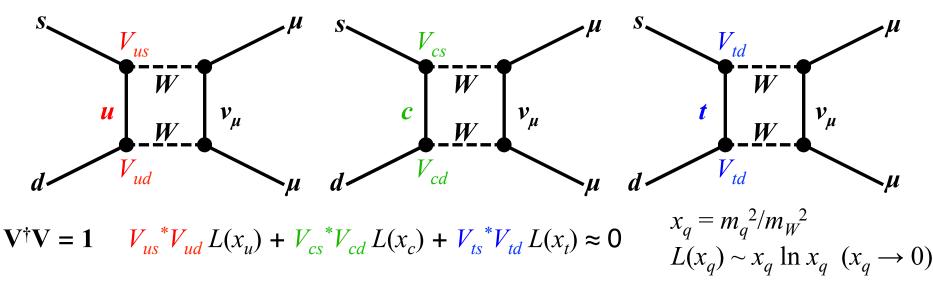

Decay	$\Gamma_{\rm SD}/\Gamma$	Theory err.*	SM BR × 10 ¹¹	Exp. BR × 10 ¹¹
$K_L \rightarrow \mu^+ \mu^-$	10%	30%	79 ± 12 (SD)	684 ± 11
$K_L ightarrow \pi^0 e^+ e^-$	40%	10%	35 ± 10	< 28 [†]
$K_L ightarrow \pi^0 \mu^+ \mu^-$	30%	15%	14 ± 3	< 38 [†]
$K^+ \to \pi^+ u \overline{ u}$	90%	4%	8.4 ± 1.0	17 ± 11
$K_L ightarrow \pi^0 v \overline{v}$	>99%	2%	3.4 ± 0.6	< 2600 [†]

^{*}Approx. error on LD-subtracted rate excluding parametric contributions †90% CL

FCNC processes dominated by Z-penguin and box diagrams

Rates related to V_{CKM} with minimal non-parametric uncertainty

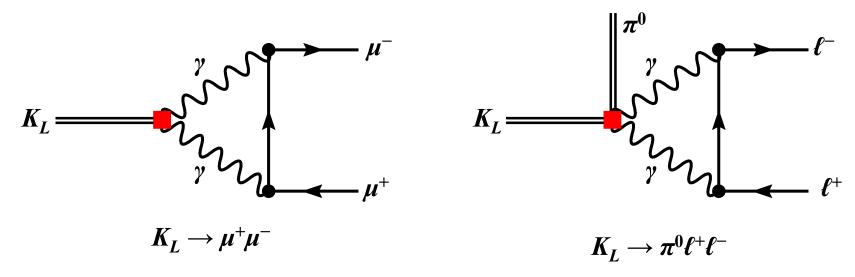
 \mathbf{V}_{CKM} overconstrained: look for NP in specific channels

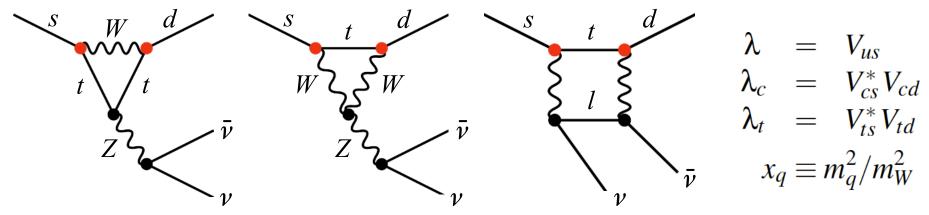

Rare kaon decays

Decay	$\Gamma_{\rm SD}/\Gamma$	Theory err.*	SM BR × 10 ¹¹	Exp. BR × 10 ¹¹
$K_L \rightarrow \mu^+ \mu^-$	10%	30%	79 ± 12 (SD)	684 ± 11
$K_L ightarrow \pi^0 e^+ e^-$	40%	10%	35 ± 10	< 28 [†]
$K_L o \pi^0 \mu^+ \mu^-$	30%	15%	14 ± 3	< 38 [†]
$K^+ \to \pi^+ v \overline{v}$	90%	4%	8.4 ± 1.0	17 ± 11
$K_L o \pi^0 v \overline{v}$	>99%	2%	3.4 ± 0.6	< 2600 [†]

^{*}Approx. error on LD-subtracted rate excluding parametric contributions †90% (

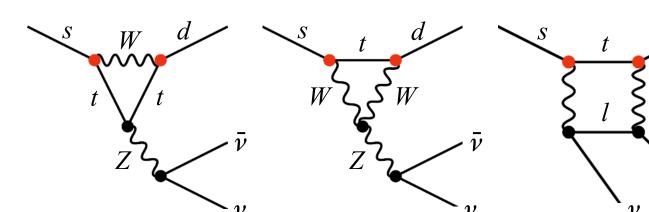
Rates for FCNC decays are suppressed by GIM mechanism:


Rare kaon decays


Decay	$\Gamma_{\rm SD}/\Gamma$	Theory err.*	SM BR × 10 ¹¹	Exp. BR × 10 ¹¹
$K_L o \mu^+ \mu^-$	10%	30%	79 ± 12 (SD)	684 ± 11
$K_L ightarrow \pi^0 e^+ e^-$	40%	10%	35 ± 10	< 28 [†]
$K_L ightarrow \pi^0 \mu^+ \mu^-$	30%	15%	14 ± 3	< 38 [†]
$K^+ \longrightarrow \pi^+ u \overline{ u}$	90%	4%	8.4 ± 1.0	17 ± 11
$K_L ightarrow \pi^0 v \overline{v}$	>99%	2%	3.4 ± 0.6	< 2600 [†]

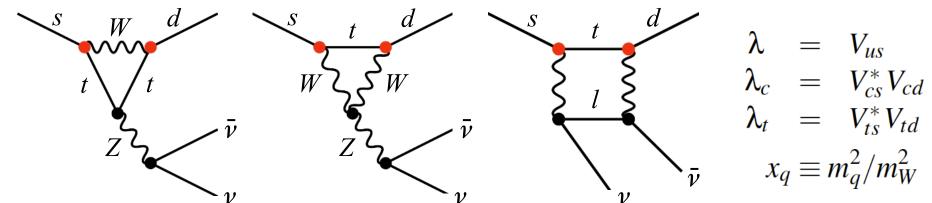
^{*}Approx. error on LD-subtracted rate excluding parametric contributions †90% CL

No LD contributions from states with intermediate γ s for $K \to \pi \nu \bar{\nu}$



$$BR(K^{+} \to \pi^{+} \nu \bar{\nu}) = \kappa_{+} \left[\left(\frac{\operatorname{Im} \lambda_{t}}{\lambda^{5}} X(x_{t}) \right)^{2} + \left(\frac{\operatorname{Re} \lambda_{t}}{\lambda^{5}} X(x_{t}) + \frac{\operatorname{Re} \lambda_{c}}{\lambda} P_{c}(X) \right)^{2} \right]$$

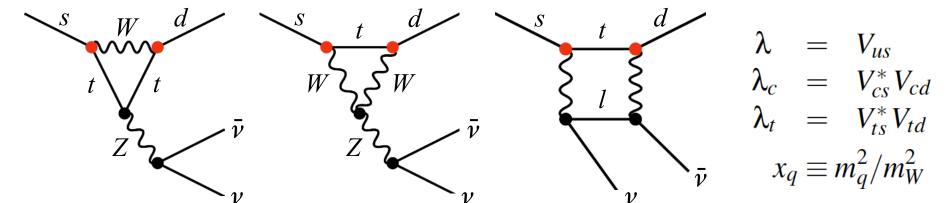
$$BR(K_{L} \to \pi^{0} \nu \bar{\nu}) = \kappa_{L} \left(\frac{\operatorname{Im} \lambda_{t}}{\lambda^{5}} X(x_{t}) \right)^{2}$$


$$\lambda = V_{us}$$
 $\lambda_c = V_{cs}^* V_{cd}$
 $\lambda_t = V_{ts}^* V_{td}$
 $x_q \equiv m_q^2 / m_W^2$

Loop functions favor top contribution

$$BR(K^{+} \to \pi^{+} \nu \bar{\nu}) = \kappa_{+} \left[\left(\frac{\operatorname{Im} \lambda_{t}}{\lambda^{5}} X(x_{t}) \right)^{2} + \left(\frac{\operatorname{Re} \lambda_{t}}{\lambda^{5}} X(x_{t}) \right) + \frac{\operatorname{Re} \lambda_{c}}{\lambda} P_{c}(X) \right)^{2} \right]$$

$$BR(K_{L} \to \pi^{0} \nu \bar{\nu}) = \kappa_{L} \left(\frac{\operatorname{Im} \lambda_{t}}{\lambda^{5}} X(x_{t}) \right)^{2} \longleftarrow \mathcal{CP}$$


Loop functions favor top contribution

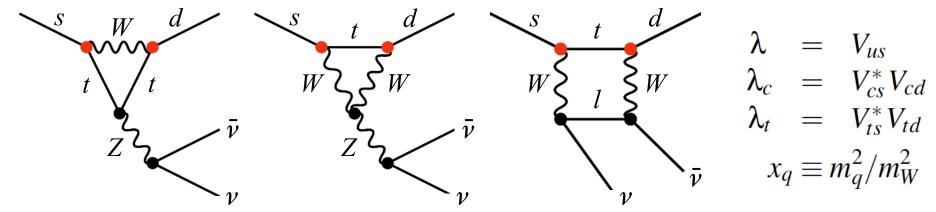
$$BR(K^{+} \to \pi^{+} \nu \bar{\nu}) = \kappa_{+} \left[\left(\frac{\operatorname{Im} \lambda_{t}}{\lambda^{5}} X(x_{t}) \right)^{2} + \left(\frac{\operatorname{Re} \lambda_{t}}{\lambda^{5}} X(x_{t}) \right) + \frac{\operatorname{Re} \lambda_{c}}{\lambda} P_{c}(X) \right]^{2}$$

$$BR(K_{L} \to \pi^{0} \nu \bar{\nu}) = \kappa_{L} \left(\frac{\operatorname{Im} \lambda_{t}}{\lambda^{5}} X(x_{t}) \right)^{2} \leftarrow \text{PP}$$

$$QCD \text{ corrections for charm diagrams contribute to uncertainty}$$

Loop functions favor top contribution

$$BR(K^{+} \to \pi^{+} \nu \bar{\nu}) = \kappa_{+} \underbrace{\left[\left(\frac{\operatorname{Im} \lambda_{t}}{\lambda^{5}} X(x_{t}) \right)^{2} + \left(\frac{\operatorname{Re} \lambda_{t}}{\lambda^{5}} X(x_{t}) \right) + \frac{\operatorname{Re} \lambda_{c}}{\lambda} P_{c}(X) \right]^{2}}_{BR(K_{L} \to \pi^{0} \nu \bar{\nu}) = \kappa_{L} \underbrace{\left(\frac{\operatorname{Im} \lambda_{t}}{\lambda^{5}} X(x_{t}) \right)^{2}}_{C} \leftarrow e \rho$$


$$\kappa_{+} = r_{K^{+}} \frac{3\alpha^{2} \operatorname{BR}(K^{+} \to \pi^{0} e^{+} \nu)}{2\pi^{2} \sin^{4} \theta_{W}} \lambda^{8} \qquad \text{QCD corrections for } Z$$

$$\operatorname{CCD corrections for } Z$$

Hadronic matrix element obtained from $BR(K_{e3})$ via isospin rotation

charm diagrams contribute to uncertainty

$$BR(K^{+} \to \pi^{+} \nu \bar{\nu}) = \kappa_{+} \left[\left(\frac{\operatorname{Im} \lambda_{t}}{\lambda^{5}} X(x_{t}) \right)^{2} + \left(\frac{\operatorname{Re} \lambda_{t}}{\lambda^{5}} X(x_{t}) + \frac{\operatorname{Re} \lambda_{c}}{\lambda} P_{c}(X) \right)^{2} \right]$$

$$BR(K_{L} \to \pi^{0} \nu \bar{\nu}) = \kappa_{L} \left(\frac{\operatorname{Im} \lambda_{t}}{\lambda^{5}} X(x_{t}) \right)^{2}$$

Grossman-Nir limit on BR($K_L \rightarrow \pi^0 \nu \nu$):

$$rac{\mathrm{BR}(K_L o \pi^0
u ar{
u})}{\mathrm{BR}(K^+ o \pi^+
u ar{
u})} imes rac{ au_+}{ au_L} \leq 1$$

Current experimental value
Brookhaven E787/949 '09 – Stopped K⁺

BR(
$$K^+ \to \pi^+ \nu \nu$$
) = (17.3^{+11.5}_{-10.5}) × 10⁻¹¹

 $BR(K_L \to \pi^0 vv) \le 1.4 \times 10^{-9}$

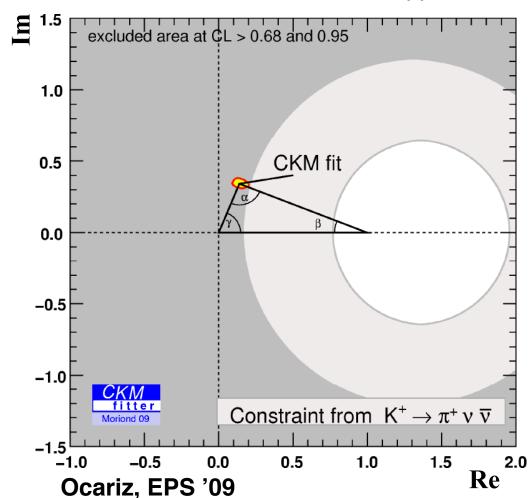
1.5%

Uncertainty on SM predictions for $K \to \pi v \bar{v}$ BRs mostly from V_{CKM}

$BR_{SM}(K_L \to \pi^0 \nu \bar{\nu}) \times 10^{11}$ 3.36 ± 0.59 _{par} ± 0.05 _{th}		
V_{ub}	0.50	15%
γ	0.24	7%
V_{cb}	0.24	7%

0.05

BR _{SM} $(K^+ \to \pi^+ \nu \bar{\nu}) \times 10^{11}$ 8.39 ± 0.95 _{par} ± 0.30 _{th}		
V_{cb}	0.83	10%
γ	0.56	7%
$P_c^{\mathrm{SD}} + \delta P_{c,u}$	0.39	5%
X_t + other	0.12	1.5%


Buras, et al. JHEP 1511

 X_t + other

CKM constraints from:

Current experimental value

BR(
$$K^+ \to \pi^+ \nu \bar{\nu}$$
) = (17.3^{+11.5}_{-10.5}) × 10⁻¹¹
Brookhaven E787/949 '09 – Stopped K^+

Uncertainty on SM predictions for $K \to \pi v \bar{v}$ BRs mostly from V_{CKM}

CKM constraints from: Hypothetical BR($K^+ \rightarrow \pi^+ \nu \bar{\nu}$) to ±10%

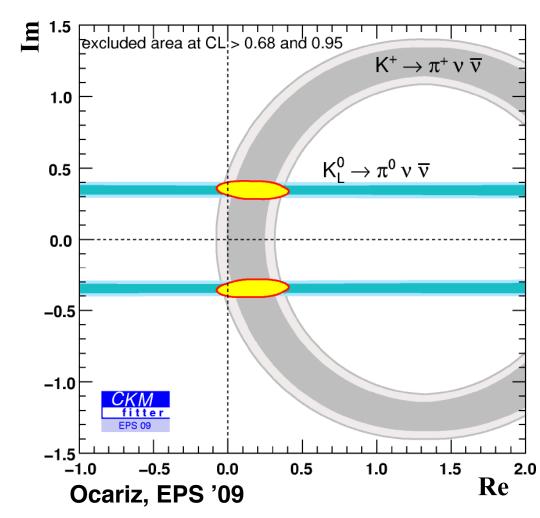
$BR_{SM}(K_L \to \pi^0 \nu \bar{\nu}) \times 10^{11}$ 3.36 ± 0.59 _{par} ± 0.05 _{th}		
V_{ub}	0.50	15%
γ	0.24	7%
V_{cb}	0.24	7%
X_t + other	0.05	1.5%

BR _{SM} ($K^+ \to \pi^+ \nu \bar{\nu}$) × 10 ¹¹ 8.39 ± 0.95 _{par} ± 0.30 _{th}		
V_{cb}	0.83	10%
γ	0.56	7%
$P_c^{\mathrm{SD}} + \delta P_{c,u}$	0.39	5%
X_t + other	0.12	1.5%

excluded area at CL > 0.68 and 0.95 1.0 CKM fit 0.5 0.0 -0.5 -1.0 $BR(K^+ \rightarrow \pi^+ \nu \ \overline{\nu}) \ @ \ 10\%$ 0.5 -0.50.0 1.0 1.5 Re Ocariz, EPS '09

Buras, et al. JHEP 1511

Uncertainty on SM predictions for $K \to \pi v \bar{v}$ BRs mostly from V_{CKM}


${\rm BR_{SM}}(K_L \to \pi^0 \nu \overline{\nu}) \times 10^{11}$ 3.36 ± 0.59 _{par} ± 0.05 _{th}		
V_{ub}	0.50	15%
γ	0.24	7%
V_{cb}	0.24	7%
X + other	0.05	1.5%

BR _{SM} ($K^+ \to \pi^+ \nu \bar{\nu}$) × 10 ¹¹ 8.39 ± 0.95 _{par} ± 0.30 _{th}		
V_{cb}	0.83	10%
γ	0.56	7%
$P_c^{\mathrm{SD}} + \delta P_{c,u}$	0.39	5%
X_t + other	0.12	1.5%

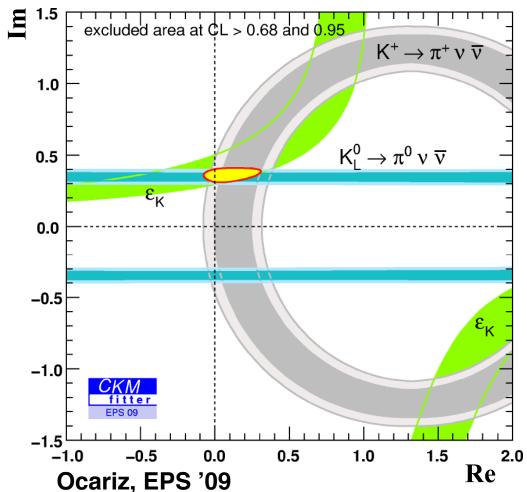
Buras, et al. JHEP 1511

CKM constraints from:

Hypothetical BR($K^+ \to \pi^+ \nu \bar{\nu}$) to ±10% Hypothetical BR($K_L \to \pi^0 \nu \bar{\nu}$) to ±15%

Uncertainty on SM predictions for $K \to \pi v \bar{v}$ BRs mostly from V_{CKM}

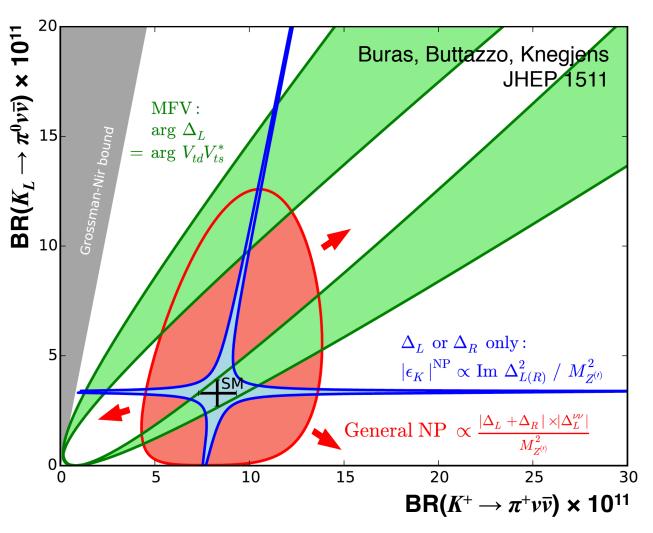
${\rm BR_{SM}}(K_L \to \pi^0 \nu \overline{\nu}) \times 10^{11} \ 3.36 \pm 0.59_{\rm par} \pm 0.05_{\rm th}$		
V_{ub}	0.50	15%
γ	0.24	7%
V_{cb}	0.24	7%
X_t + other	0.05	1.5%


BR _{SM} ($K^+ \to \pi^+ \nu \bar{\nu}$) × 10 ¹¹ 8.39 ± 0.95 _{par} ± 0.30 _{th}		
V_{cb}	0.83	10%
γ	0.56	7%
$P_c^{\mathrm{SD}} + \delta P_{c,u}$	0.39	5%
X_t + other	0.12	1.5%

Buras, et al. JHEP 1511

CKM constraints from:

Hypothetical BR($K^+ \to \pi^+ \nu \bar{\nu}$) to ±10% Hypothetical BR($K_L \to \pi^0 \nu \bar{\nu}$) to ±15%


Current $\varepsilon_{\it K}$ to resolve ambiguities

$K \rightarrow \pi \nu \overline{\nu}$ and new physics

New physics affects BRs differently for K^+ and K_L channels Measurements of both can discriminate among NP scenarios

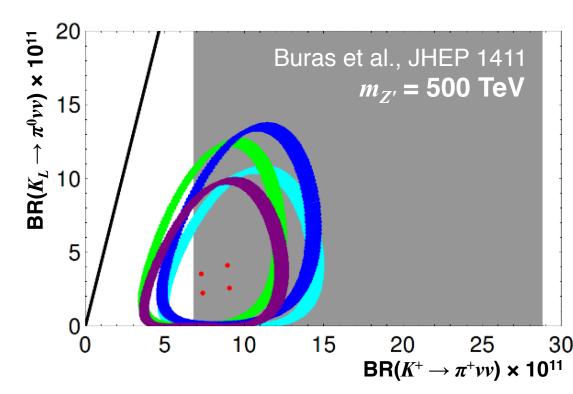
- Models with CKM-like flavor structure
 - -Models with MFV
- Models with new flavorviolating interactions in which either LH or RH couplings dominate
 - −*Z*/*Z*′ models with pure LH/RH couplings
 - Littlest Higgs withT parity
- Models without above constraints
 - -Randall-Sundrum

$K \rightarrow \pi \nu \overline{\nu}$ and new physics

General agreement of flavor observables with SM → invocation of MFV

Long before recent flavor results from LHC

But NP may simply occur at a higher mass scale


Null results from direct searches at LHC so far

Indirect probes to explore high mass scales become very interesting!

$K \to \pi \nu \bar{\nu}$ is uniquely sensitive to high mass scales

Tree-level flavor changing Z' LH+RH couplings

- Some fine-tuning around constraint from ε_{κ}
- $K \rightarrow \pi \nu \bar{\nu}$ sensitive to mass scales up to 2000 TeV
 - Up to tens of TeV even if LH couplings only
- Order of magnitude higher than for B decays

$K \to \pi \nu \overline{\nu}$ and other kaon observables **Keyer**

What about constraints from Re ε'/ε , ε_K , Δm_K , $K_L \to \mu\mu$?

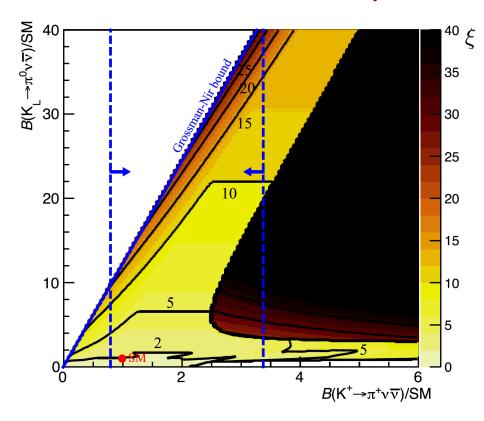
Particular interest in constraints from Re ε'/ε

- 2015 result demonstrates Re ε'/ε is accessible to lattice QCD
- Lattice QCD value 2.1 σ lower than experimental value

Endo et al. PLB771 (2017)

General Z scenario with modified couplings, $\Lambda = 1 \text{ TeV}$

Because of interference between SM and NP amplitudes, if all constraints satisfied including "discrepancy" in Re ε'/ε :


 $BR(K \rightarrow \pi \nu \nu) \sim 0.5 SM BR$

- Particularly in simplified scenarios: LH, RH, LRS
- With moderate tuning (cancellation of interference terms to 10%), large values for $BR(K \to \pi \nu \nu)$ are possible

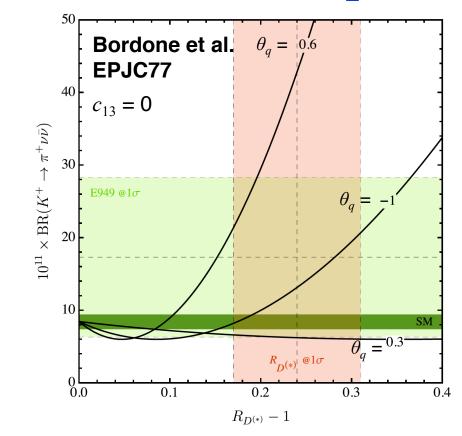
PDG average: NA48 + KTeV Re $\varepsilon'/\varepsilon = (16.6 \pm 2.3) \times 10^{-4}$

RBC/UKQCD PRL115 (2015)

Re $\varepsilon'/\varepsilon = 1.38(5.15_{st})(4.59_{sv}) \times 10^{-4}$

$K \to \pi \nu \overline{\nu}$ and other flavor observables **Keyer**

New ideas relating $K \rightarrow \pi vv$ to *B*-sector LFU anomalies:


$$R_K$$
, P_5 ': μ / e LFU in $B \to K\ell\ell$, $B \to K^*\ell\ell$
 $R_{D(*)}$: τ / (μ, e) LFU in $B \to D^{(*)}\ell\nu$

Coherent explanation from NP coupled predominantly to 3rd generation LH quarks and leptons, e.g., mediated by vector leptoquark

- Di Luzio et al. PRD 96 (2017)
- Buttazzo et al. JHEP 1711

EFT studies suggest large effect for $K \rightarrow \pi vv$

• Bordone et al. EPJC77 (2017)

$$\mathcal{B}(B \to D^{(*)} \tau \bar{\nu}) = \mathcal{B}(B \to D^{(*)} \tau \bar{\nu})_{\text{SM}} \left| 1 + R_0 \left(1 - \theta_q e^{-i\phi_q} \right) \right|^2$$

$$R_0 = \frac{1}{\Lambda^2} \frac{1}{\sqrt{2}G_F}$$

$$\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu}) = 2\mathcal{B}(K_L \to \pi^0 \nu_e \bar{\nu}_e)_{SM} + \mathcal{B}(K_L \to \pi^0 \nu_\tau \bar{\nu}_\tau)_{SM} \left| 1 - \frac{R_0 \,\theta_q^2 (1 - c_{13})}{(\alpha/\pi)(X_t/s_w^2)} \right|^2$$

The NA62 experiment at the CERN SPS

The NA62 experiment at the SPS

NA62 status and timeline

2014-2015 Pilot/commissioning runs
 2016 Commissioning + 1st physics run
 SM sensitivity reached: BR ~ O(10⁻¹⁰)

2017 Physics run Will improve on current knowledge of BR($K^+ \to \pi^+ \nu \nu$)

2018 30 weeks of data taking expected

2019-2020 LS2 (Long Shutdown 2)

- Assuming running is as smooth as in 2017, by the end of 2018 NA62 will reach a sensitivity of 20-30 SM $K^+ \to \pi^+ \nu \nu$ events
- Results from full 2016 data set will be presented in spring 2018
- Processing of 2017 data in progress

Fixed target runs at the SPS

- **2021 (Run 3):** Continue data taking for $K^+ \rightarrow \pi^+ vv$ O(100) SM events – measure BR to 10%
 - Searches for hidden particles in beam-dump mode Dark photons, ALPs, heavy neutrinos, scalars...

Turn focus to measurement of BR($K_L o \pi^0 vv$) \Rightarrow $K_L EVER$ 2026 (Run 4):

F. Bordry, presentation to HEPAP, Dec 2015

$K_L \to \pi^0 \nu \bar{\nu}$: Experimental issues

Essential signature: 2γ with unbalanced p_{\perp} + nothing else!

All other K_L decays have ≥ 2 extra γ s or ≥ 2 tracks to veto

Exception: $K_L \rightarrow \gamma \gamma$, but not a big problem since $p_{\perp} = 0$

K_L momentum generally is not known $M(\gamma\gamma) = m(\pi^0)$ is the only sharp kinematic constraint

Generally used to reconstruct vertex position

$m_{\pi^0}^2 = 2E_1 E_2 (1 - \cos \theta)$ $R_1 \approx R_2 \equiv R = \frac{d\sqrt{E_1 E_2}}{m_{\pi^0}}$

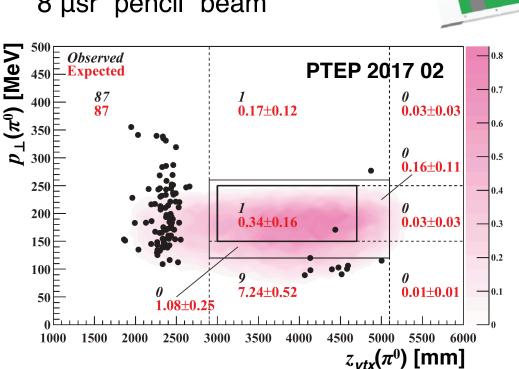
Main backgrounds:

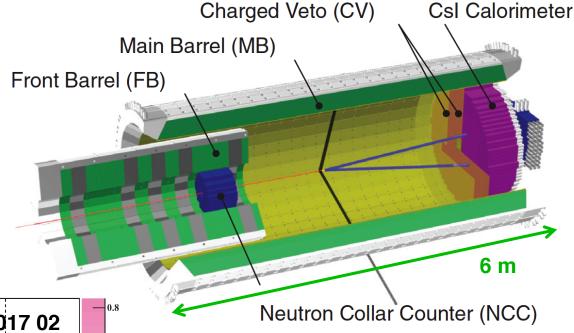
Mode	BR	Methods to suppress/reject
$K_L ightarrow \pi^0 \pi^0$	8.64×10^{-4}	γ vetoes, π^0 vertex, p_\perp
$K_L o \pi^0 \pi^0 \pi^0$	19.52%	γ vetoes, π^0 vertex, p_\perp
$K_L \to \pi e \nu(\gamma)$	40.55%	Charged particle vetoes, π ID, γ vetoes
$\Lambda \to \pi^0 n$		Beamline length, p_{\perp}
$n + gas \rightarrow X\pi^0$		High vacuum decay region

$K_L \rightarrow \pi^0 \nu \bar{\nu}$ at J-PARC

KOTO

Primary beam: 30 GeV p


 $100 \text{ kW} = 1.2 \times 10^{14} \text{ p/6 s}$


Neutral beam (16°)

$$\langle p(K_I) \rangle = 2.1 \text{ GeV}$$

50% of K_L have 0.7-2.4 GeV

8 µsr "pencil" beam

Based on KEK-391a:

Current experimental value

 $BR(K_L \to \pi^0 vv) \le 2.6 \times 10^{-8}$ (90%CL)

100-hour KOTO pilot run in 2013:

$$BR(K_L \to \pi^0 vv) \le 5.1 \times 10^{-8} (90\%CL)$$

Taking data since 2015

$K_L \rightarrow \pi^0 \nu \bar{\nu}$ at J-PARC

Current status:

- Reached 44 kW of slow-extracted beam power in 2017
- Preliminary results, all 2015 data:
 SES = 1.2 × 10⁻⁹

Expected bkg = 0.9 ± 0.2 events

Signal box not yet unblinded

Bkg estimate still under study

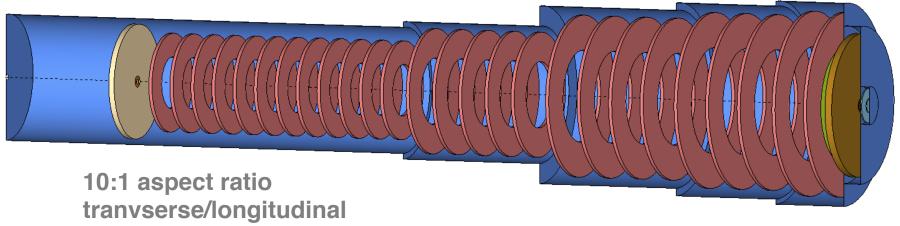
- With all 2015-2017 data, expected sensitivity below Grossman-Nir limit
- In 2018 beam power will increase to
 50 kW

- Continuing program of upgrades to reduce background:
 New barrel veto (2016), both-end readout for CsI crystals (2018)
- Expect to reach SM sensitivity by 2021

$K_L \rightarrow \pi^0 \nu \bar{\nu}$ at J-PARC

KOTO Step-2 upgrade:

- Increase beam power to >100 kW
- New neutral beamline at 5° $\langle p(K_L) \rangle = 5.2 \text{ GeV}$
- Increase FV from 2 m to 11 m
 Complete rebuild of detector
- Requires extension of hadron hall


Strong intention to upgrade to O(100) event sensitivity over long term:

- No official Step 2 proposal yet (plan outlined in 2006 KOTO proposal)
- Scaling from 2006 estimates: ~10 SM evts/yr per 100 kW beam power
- Exploring possibilities for machine & detector upgrades to further increase sensitivity
- Indicative timescale: data taking starting 2025?

A $K_L \rightarrow \pi^0 \nu \nu$ experiment at the SPS?

 K_L Experiment for VEry Rare events

Interesting features:

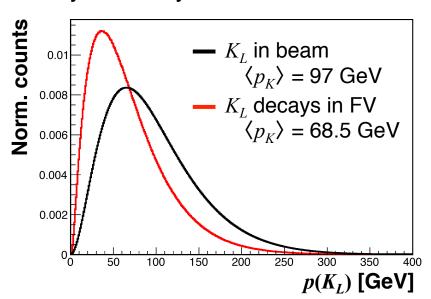
- High-energy experiment: Complementary approach to KOTO
- Photons from K_L decays boosted forward
 - Makes photon vetoing easier veto coverage only out to 100 mrad
- Roughly same vacuum tank layout and fiducial volume as NA62
- Possible to re-use LKr calorimeter, NA62 experimental infrastructure?

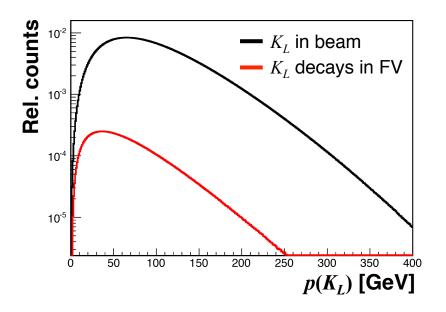
Required intensity for $K_L \rightarrow \pi^0 \nu \bar{\nu}$

Assumptions:

- BR $(K_L \to \pi^0 \nu \bar{\nu}) = 3.4 \times 10^{-11}$
- Acceptance for decays occurring in FV ~ 10%

 $3 \times 10^{13} K_L$ decay in FV for 100 signal evts


Beam parameters:


- 400 GeV p on 400 mm Be target
- Production at **2.4 mrad** to optimize $(K_L \text{ in FV})/n$

 $2.8 \times 10^{-5} K_L$ in beam/pot

Probability for decay inside FV ~ 2%

Required total proton flux = 5×10^{19} pot

10¹⁹ pot/year (= 100 eff. days) E.g.: 2×10^{13} ppp/16.8 s

Feasibility of intensity upgrade

 $2 \times 10^{13} p/16.8 s = 6 \times increase in intensity relative to NA62$

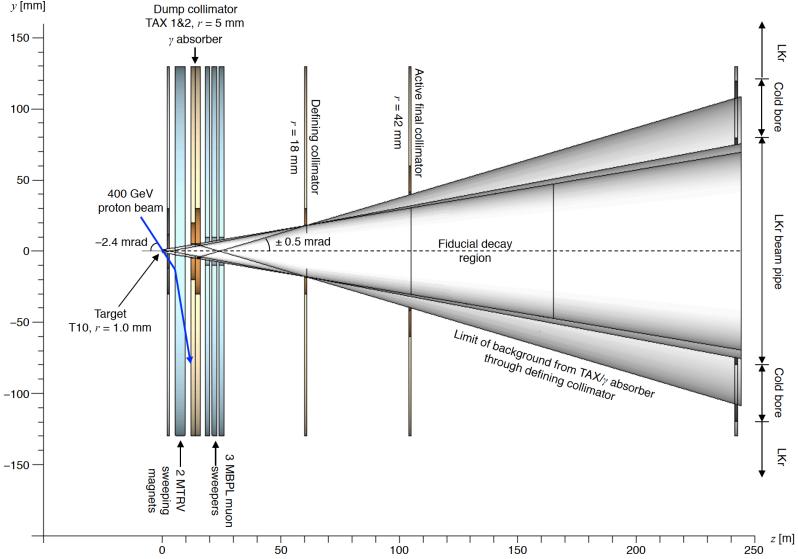
Tight neutral beam collimation Longer K_L lifetime $(\tau_L/\tau_+ \sim 5)$

Max. intensity from SPS to North Area (TT20): 4×10^{13} ppp Must be divided among users: T2 + T4 + T6

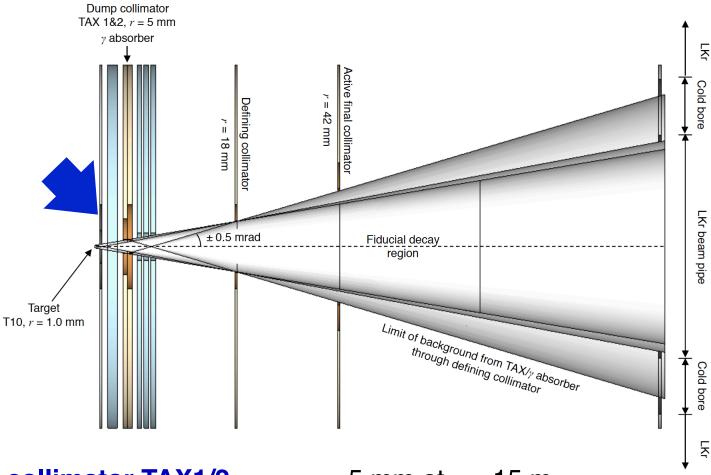
2×10^{13} ppp not currently available on North Area targets

Target area and transfer lines will require upgrades

- Minimization of consequences of beam loss
- Additional shielding against continuous small losses
- Study issues of equipment survival, e.g., TAX motors
- Ventilation, zone segmentation, etc.

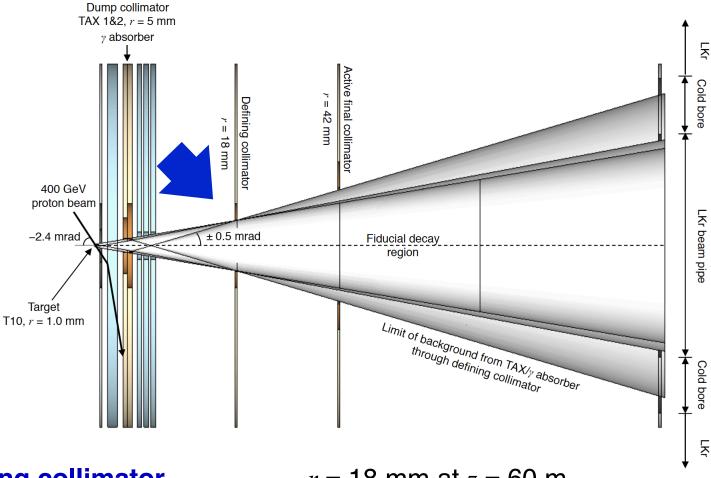

Detailed solutions and meaningful cost estimates are under study by the CERN Accelerator & Technology Sector

We are collaborating through the Physics Beyond Colliders Conventional Beam Working Group to better define available intensity & related issues



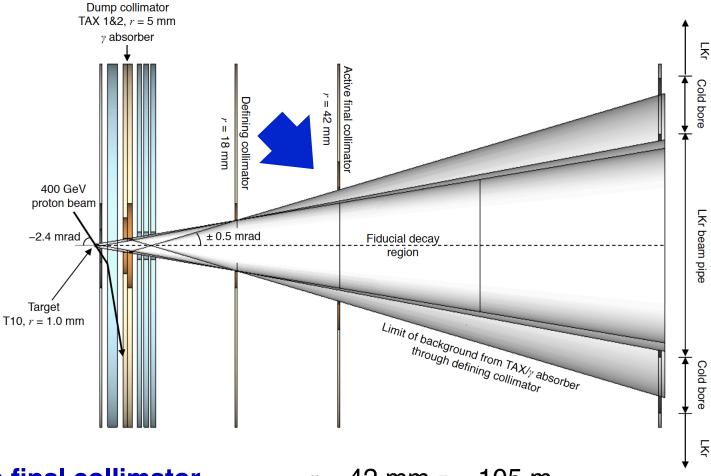
400-mm Be rod target, r = 1 mm Production at $\theta = 2.4$ mrad

3 collimation stages: $\Delta\theta$ = 0.3 mrad Total length of beamline + experiment = 250 m



Dump collimator TAX1/2 r = 5 mm at z = 15 m

- 2 vertical sweeping magnets upstream of TAX for beam particles
- Photon converter between TAX1/2 modules: e.g., 30 mm Ir = $10 X_0$
- 3 horizontal sweeping magnets downstream of TAX for muons and e^+e^- pairs



Defining collimator

r = 18 mm at z = 60 m

- Defines beam aperture: $\Delta\theta = 0.3 \text{ mrad } \rightarrow \Delta\Omega = 0.283 \text{ µsr}$
- Keep background from TAX/converter inside LKr bore (r < 120 mm)

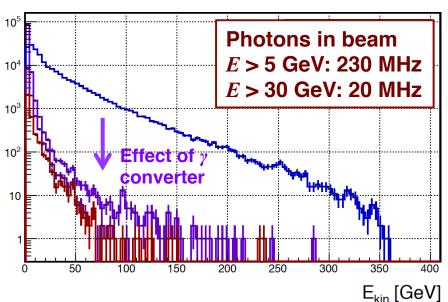
Active final collimator

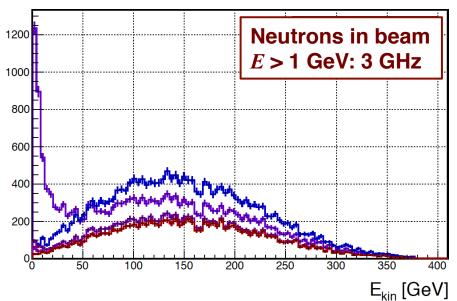
$$r = 42 \text{ mm } z = 105 \text{ m}$$

- Regenerated K_S reduced to 10⁻⁴ between defining and final collimators
- Integrated with UV (upstream veto) to reject decays upstream of FV

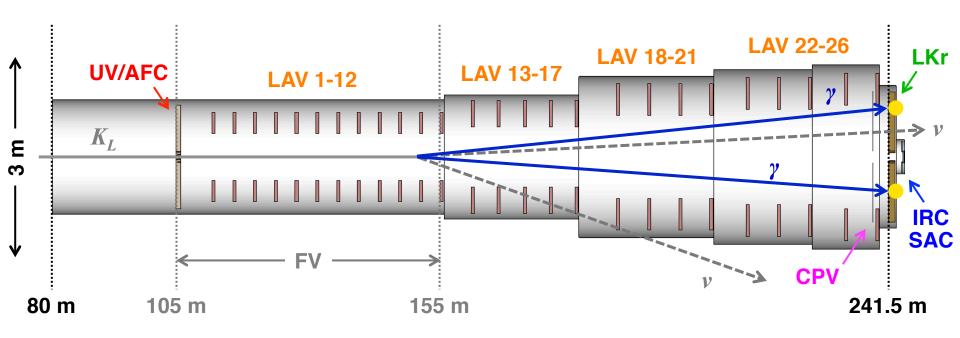
Neutral beam simulation

 K_I in beam: 280 MHz


35% scattered by converter


FLUKA simulation of 400 GeV *p* on 400-mm Be target Geant4 simulation of beamline

- 3 collimators, $\Delta\theta$ = 0.3 mrad
- 30-mm Ir photon converter in dump collimator


erter in

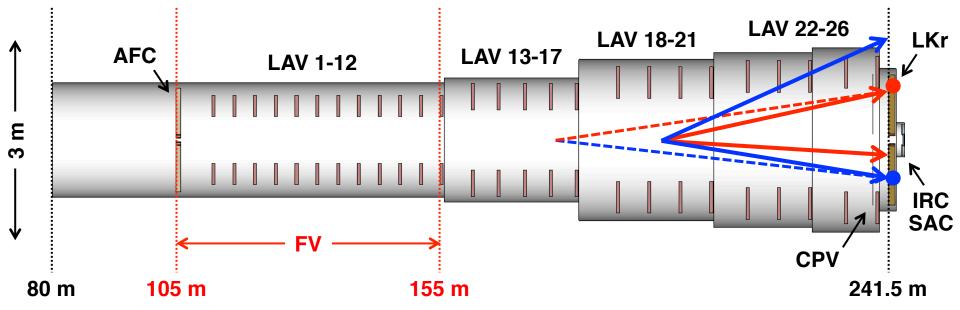
gen
After absorber
After defining collimator
After final collimator

An experiment to measure $K_L \to \pi^0 \nu \bar{\nu}$

Main detector/veto systems:

UV/AFC Upstream veto/active final collimator

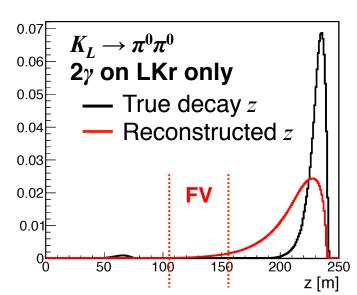
LAV1-26 Large-angle vetoes (26 stations)


LKr NA48 liquid krypton calorimeter

IRC/SAC Small-angle vetoes

CPV Charged particle veto

Detector layout for $K_L \rightarrow \pi^0 \nu \bar{\nu}$



Vacuum tank layout and FV similar to NA62

90-m distance from FV to LKr significantly helps background rejection

- Most $K_L \to \pi^0 \pi^0$ decays with lost photons occur just upstream of the LKr
- " π^0 s" from mispaired γ s are mainly reconstructed downstream of FV

NA48 liquid krypton calorimeter

Quasi-homogeneous ionization calorimeter

- 13248 channels
- Readout towers 2×2 cm²
- Depth 127 cm = 27 X_0

NA48 performance:

$$\frac{\sigma_E}{E} = \frac{3.2\%}{\sqrt{E}} \oplus \frac{9\%}{E} \oplus 0.42\%$$

$$\sigma_x = \sigma_y = \frac{4.2 \text{ mm}}{\sqrt{E}} \oplus 0.06 \text{ mm}$$

$$\sigma_t = \frac{2.5 \text{ ns}}{\sqrt{E}}$$

New readout electronics for NA62:

- 14-bit 40 MHz FADCs
- Large buffers to handle 1 MHz L0 rate

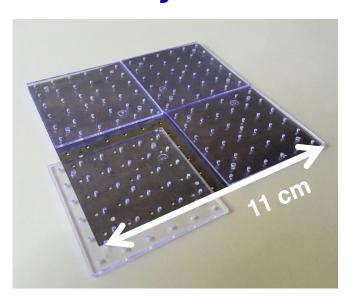
Suitability of LKr calorimeter

Study and confirm LKr performance with NA62 data

- Two-cluster resolution
- Photon detection efficiency
 - Effect of dead cells, etc.

In parallel with efforts by NA62

Explore possibilities to improve time resolution with faster readout

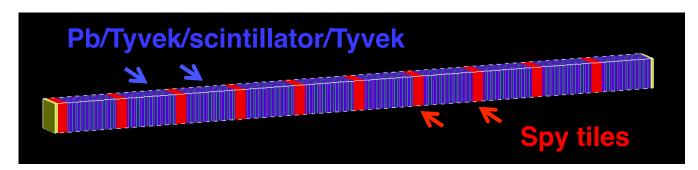

- Signal π^0 candidates all have $E_{\gamma\gamma} > 20$ GeV $\sigma_t = 2.5 \text{ ns/} \sqrt{E} \text{ (GeV)} \rightarrow 500 \text{ ps or better}$
- Needs improvement SAC may have ~100 MHz accidental rate
- Simulating readout upgrades to estimate effect on time resolution:
 - Shorter shaping time, faster FADCs

Evaluate long-term reliability of LKr (2018 → 2030):

- Identify support systems needing replacement or upgrade
- Catalog of dead cells, prospects for repair

Shashlyk-based alternatives to LKr

Fine-sampling shashlyk based on PANDA forward EM calorimeter produced at Protvino

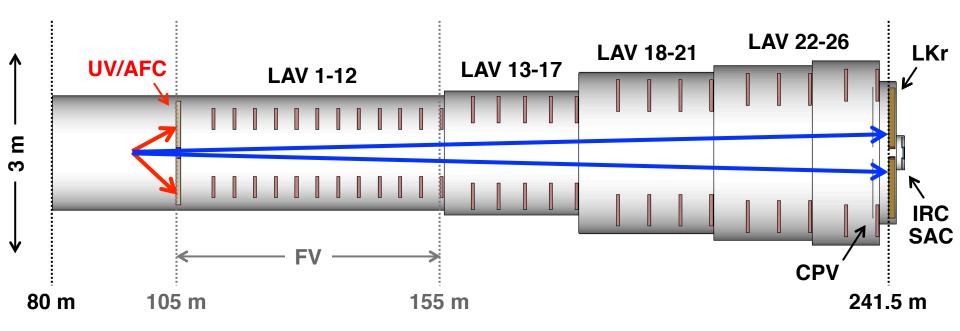

0.275 mm Pb + 1.5 mm scintillator

$$\sigma_E/\sqrt{E} \sim 3\% / \sqrt{E}$$
 (GeV)
 $\sigma_t \sim 72$ ps $/\sqrt{E}$ (GeV)
 $\sigma_x \sim 13$ mm $/\sqrt{E}$ (GeV)

PANDA, KOPIO prototypes

New for KLEVER: Longitudinal shower information from spy tiles

- PID information: identification of μ , π , n interactions
- Shower depth information: improved time resolution for EM showers



Thicker spy tiles (5-20 mm) with independent WLS fiber readout

Simulation studies in progress (e.g., to choose spy tile thickness)

Vetoes for upstream K_L decays

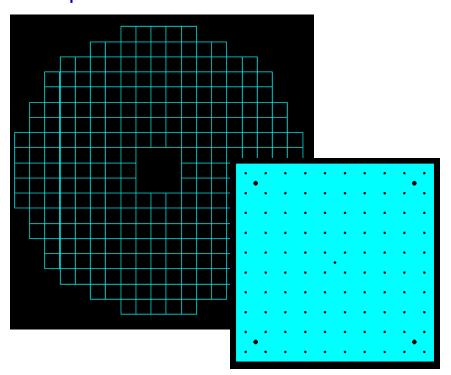
- 25 m of vacuum upstream of final collimator No obstruction for γ s from decays with 80 m < z < 105 m
- Upstream veto (UV):

Outer ring: Shashlyk calorimeter, Pb/scint in 1:5 ratio $10 \text{ cm} < r < 1 \text{ m} \rightarrow 1/3 \text{ of total rate}$

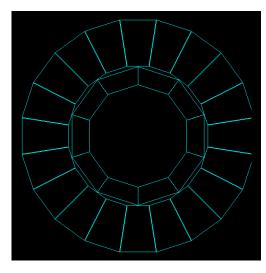
Active final collimator (AFC):

Inner ring: LYSO collar counter, 80 cm deep, shaped crystals $4.2 \text{ cm} < r < 10 \text{ cm} \rightarrow 2/3 \text{ of total rate}$

Vetoes for upstream K_L decays



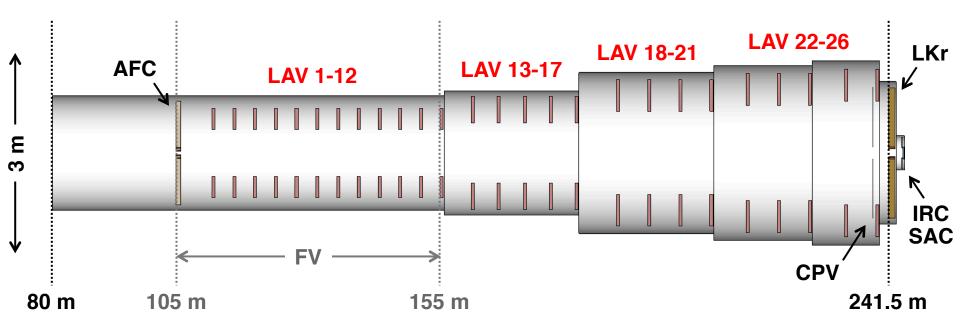
Rejects $K_L \to \pi^0 \pi^0$ from upstream of final collimator (80 m < z < 105 m)


Upstream veto (UV):

- 10 cm < r < 1 m:
- Shashlyk calorimeter modules à la PANDA/KOPIO

As implemented in MC:

Active final collimator:


- 4.2 < r < 10 cm
- LYSO collar counter
- 80 cm long
- Internal collimating surfaces
- Intercepts halo particles from scattering on defining collimator or γ absorber
- Active detector \rightarrow better rejection for π^0 from n interactions

Residual background from upstream $K_L \rightarrow \pi^0 \pi^0$:

15 events/5 years

Large-angle photon vetoes

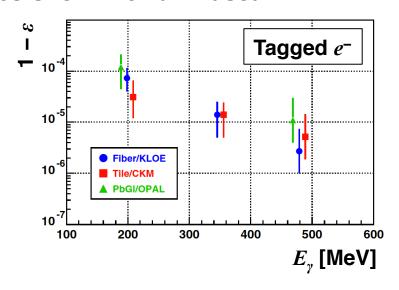
26 new large-angle photon veto stations (LAV)

- 5 sizes, sensitive radius 0.9 to 1.6 m, at intervals of 4 to 6 m
- Hermetic coverage out to 100 mrad for E_{γ} down to ~100 MeV
- Baseline technology: Lead/scintillator tile with WLS readout Based on design of CKM VVS
 Assumed efficiency based on E949 and CKM VVS experience

Large-angle photon vetoes

KOPIO Photonuclear KOPIO Sampling KOPIO Punchthrough

26 new LAV detectors providing hermetic coverage out to 100 mrad Need good detection efficiency at low energy (1 – ε ~ 0.5% at 20 MeV)


Baseline technology: CKM VVS Scintillating tile with WLS readout

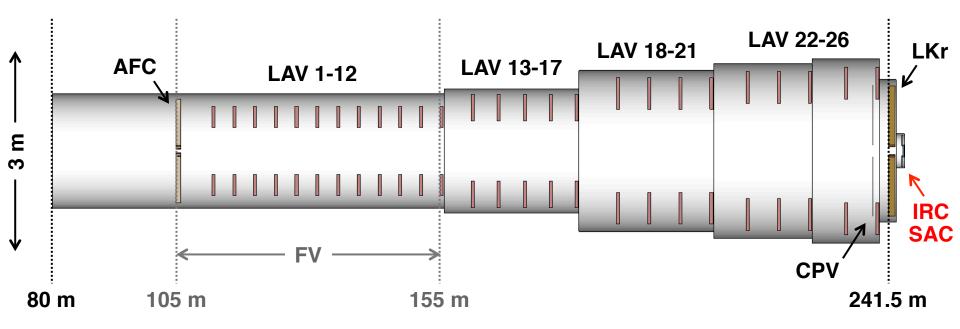
Good efficiency assumptions based on E949 and CKM VVS experience

E949 barrel veto efficienciesSame construction as CKM

Tests for NA62 at Frascati BTF

1-129 MeV: KOPIO (E949 barrel)

203-483 MeV: CKM VVS


10

Tests at JLAB for CKM:

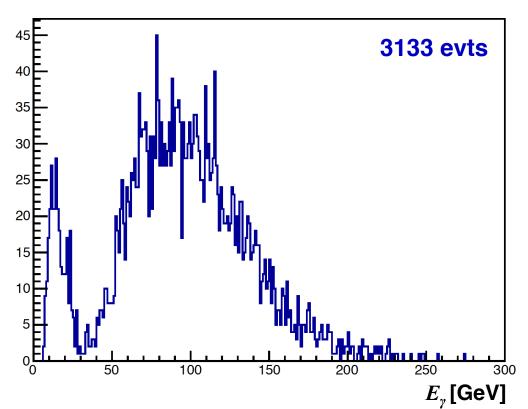
• $1 - \varepsilon \sim 3 \times 10^{-6}$ at 1200 MeV

Small-angle photon vetoes

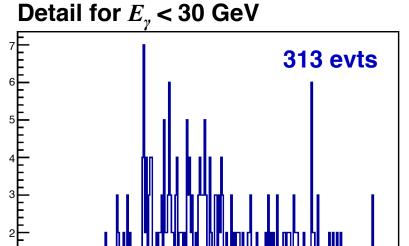
Small-angle photon veto systems (IRC, SAC)

- Reject high-energy γ s from $K_L \to \pi^0 \pi^0$ escaping through beam hole
- Must be insensitive as possible to 3 GHz of beam neutrons

Beam comp.	Rate (MHz)	Req. 1 − ε
$\gamma, E > 5 \text{ GeV}$	230	10-2
γ , $E > 30 \text{ GeV}$	20	10-4
n	3000	-


Baseline solution:

Tungsten/silicon-pad sampling calorimeter with crystal metal absorber


Small-angle calorimeter

Energy of photons from $K_L \to \pi^0 \pi^0$ on SAC after all cuts (5 years):

- 2γ on LKr
- No γ s on LAV or IRC
- Cuts on z_{FV} , $r_{\text{min}}(\text{LKr})$, p_{\perp}

90% of γ s from K_L on SAC have 30 < E_γ < 250 GeV

- Need inefficiency < 10⁻⁴ for E_γ > 30 GeV
- Can tolerate 1% inefficiency for E_{γ} < 30 GeV
- Can be blind for E_{γ} < 5 GeV

 E_{ν} [GeV]

Small-angle calorimeter

Proof-of-concept simulation for baseline solution:

- W-Si pad calorimeter, 14 layers \times 1 mm crystal absorber, θ_{inc} = 2 mrad
 - Depth = $14X_0$ for E_{γ} = 30 GeV, but only $4X_0$ for E_{γ} = 5 GeV
- Naïve simulation of pair-conversion enhancement with Geant4:
 - Increase overall density as function of E_{γ} , instead of X_0

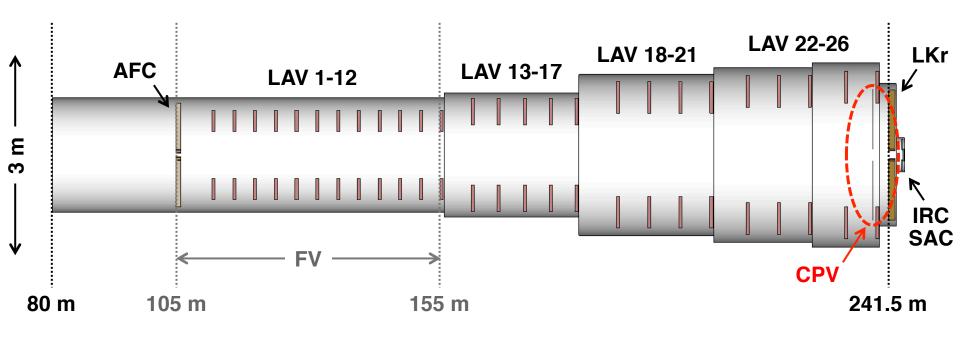
Ph	oto	ns
----	-----	----

E_{γ} (GeV)	$ ho/ ho_0$	1 – ε
350 GeV	3.5	5 × 10⁻⁵
30 GeV	3.5	1 × 10 ⁻⁴
10 GeV	1.5	4.5%
5 GeV	1.0	20%

Neutrons

50-300 GeV

 $1 - \varepsilon = 20\%$


- E_{vis} thr. = 16 MeV chosen for E_{ν} = 30 GeV
- Inefficiency at small E_{γ} from punch through
- Need better treatment of coherent effects
- Need additional handles for γ/n separation

Work in progress:

- Better simulation with X_0 for photons a function of E_{γ} and θ_{γ}
 - Benefit from effort by AXIAL collaborators to introduce into Geant4 detailed simulation of coherent effects in crystals
- Optimize transverse and longitudinal segmentation to increase γ/n separation

Charged particle rejection

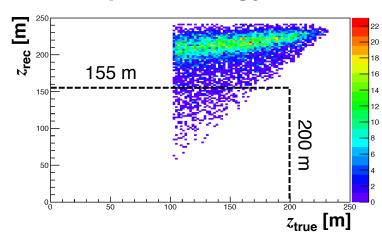
Most dangerous mode: K_{e3}

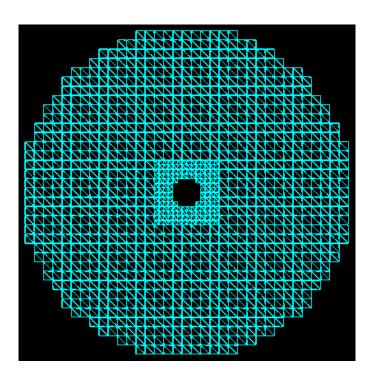
- BR = 40%
- Easy to mistake $e \leftrightarrow \gamma$ in LKr
- Acceptance $\pi^0 vv/K_{e3} = 30$
- → Need 10⁻⁹ suppression!

Charged particle veto (CPV)

Scintillating tiles, just upstream of LKr

Calorimetric ID for μ and π


- Shower profile in LKr
- Re-use NA62 hadronic calorimeters MUV1/2 (not shown), downstream of LKr


Charged particle veto

$K_L \to \pi e v$ can emulate signal when both π and e deposit energy in LKr

- Fake π^0 vertexes from πe all reconstructed downstream of true decay
 - $-\pi^+$ deposits only a fraction of its energy
- K_{e3} decays with " π^0 " reconstructed in FV have $z_{\rm rec}$ < 200 m
 - All within the acceptance of the CPV

Using MC to add detail to design of CPV

Square scintillator tiles, 5-mm thick, supported on carbon fiber membrane

2 planes → 3% X₀

Tile geometry: 4x4 cm² or 8x8 cm²

- Smaller tiles near beam line
- Cracks staggered between planes
- 4 chamfered corners (45°) for direct SiPM coupling

Charged particle rejection

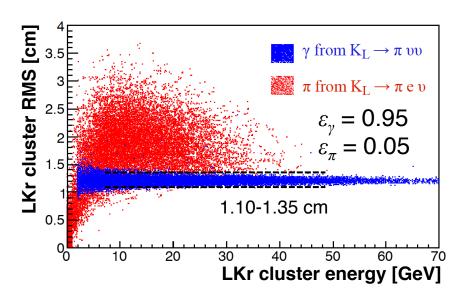
$K_L \to \pi e v$ can emulate signal when both π and e deposit energy in LKr

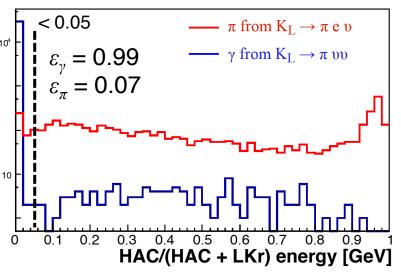
Use cluster RMS in LKr to identify and reject π interactions

 Geant4 confirmed by preliminary analysis of pp0 events in NA62 data:

$$\varepsilon_{\gamma} = 0.95$$
 $\varepsilon_{\pi} = 0.05$

If LKr replaced by shashlyk, longitudinal shower profile information also available


Ratio of hadronic/total energy effective to identify π showers

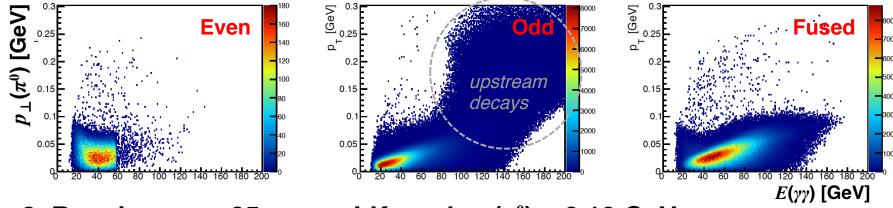

Preliminary results based on Geant4:

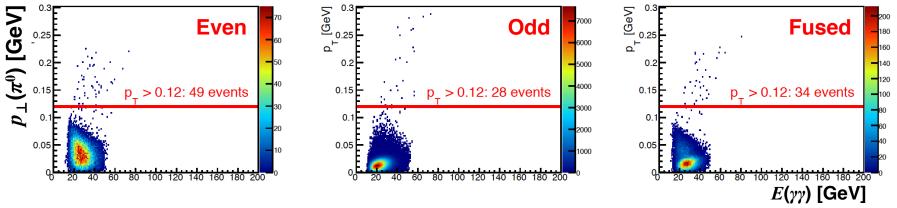
$$\varepsilon_{\gamma} = 0.99$$

 $\varepsilon_{\pi} = 0.07$

Study of HAC (MUV1/2) response in NA62 data in progress

 Parameterization of response for inclusion in fast simulation


$K_L \rightarrow \pi^0 \pi^0$ rejection


 $K_L \rightarrow \pi^0 \pi^0$ simulated with fast MC (5 yr equivalent statistics)

- Accept only events with 2 γ s in LKr and no hits in AFC, LAV, IRC/SAC
- Distinguish between even/odd pairs and events with fused clusters

1. Require $z_{\text{rec}}(m_{yy} = m_{\pi 0})$ in fiducial volume (105 m < z < 155 m)

2. Require $r_{\rm min}$ > 35 cm on LKr and $p_{\perp}(\pi^0)$ > 0.12 GeV

22 $\pi^0 \pi^0$ **evts/year** About 50% with 1 γ with 100 < θ < 400 mrad, E < 50 MeV

$K_L \rightarrow \pi^0 \nu \bar{\nu}$ acceptance

Cut stage	Cut eff.	Cuml. eff.
$K_L \rightarrow \pi^0 \nu \bar{\nu}$ evts with 2γ on LKr	2.0%	2.0%
$z_{ m rec}(m_{\gamma\gamma}=m_{\pi0})$ in FV	31%	0.62%
$r_{\rm min}$ > 35 cm on LKr	42%	0.26%
$p_{\perp}(\pi^0) > 0.12 \text{ GeV}$	78%	0.20%

Alternatively:

- 2.2% *K_L* decay in FV
- 27% $\pi^0 v \bar{v}$ with 2γ on LKr
- $\leftarrow \frac{\pi^0 \text{ in } \pi^0 v \overline{v} \text{ has large } E_{\text{kin}}}{V A \text{ matrix element}}$

With:

- 10¹⁹ pot/year
- $2.8 \times 10^{-5} K_L/\text{pot}$
- BR = 3.4×10^{-11}
- $\varepsilon_{\text{total}} = 0.20\%$

19.4 $\pi^0 v \bar{v}$ evts/year

excluding transmission losses from γ converter

$K_L \rightarrow \pi^0 \nu \bar{\nu}$ sensitivity summary

Channel	Simulated statistics	Events found	Expected in 5 yrs*
$K_L ightarrow \pi^0 u ar{ u}$	100k yr	1.94M	97
$K_L \! o \pi^0 \pi^0$	5 yr	111	111
$K_L ightarrow \pi^0 \pi^0 \pi^0$ All bkg evts from cluster fusion Upstream decays not yet included	1 yr	3	15
$m{K_L} \! o \! \gamma \gamma \ p_{\perp}$ cut very effective	3 yr	0	0
$K_L o$ charged	though	nt to be redu	cible

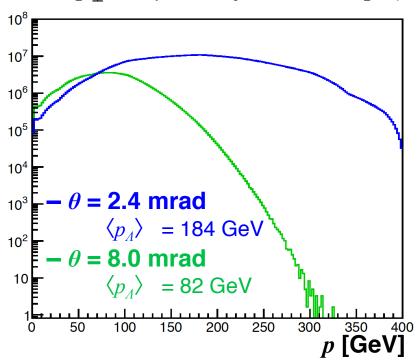
^{*}Must subtract 35% for K_L losses in dump γ converter

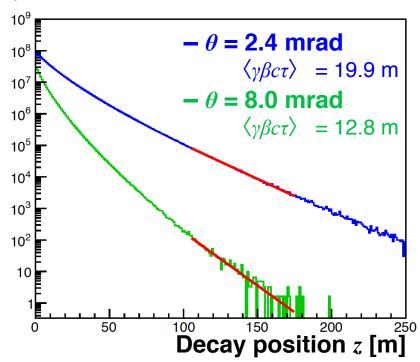
~ 60 SM $K_L \rightarrow \pi^0 v \bar{v}$ in 5 years with S/B ~ 1

Background study incomplete!

 π^0 from interactions of halo neutrons on residual gas, detector materials Radiative K_L decays, K_S /hyperon decays

Background from $\Lambda \to n\pi^0$

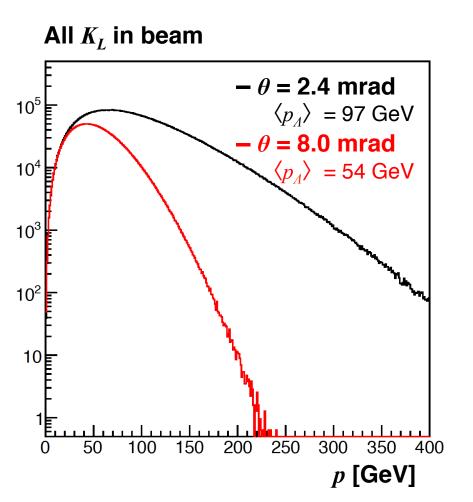



 Λ and K produced in similar numbers: O(10¹⁵) Λ in beam in 5 years Small but significant fraction of Λ decay in fiducial volume

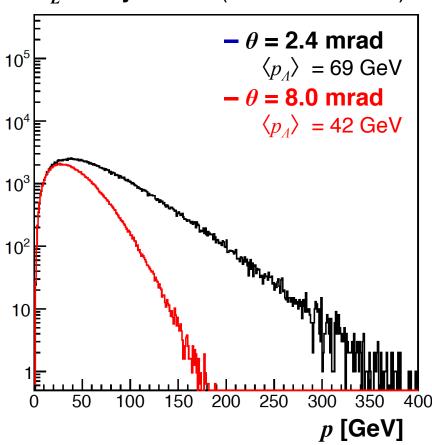
 $c\tau_{\Lambda}$ = 7.89 cm, but Λ is forward produced: hard momentum spectrum

 $\Lambda \rightarrow n\pi^0$ (BR = 35.8%) can mimic signal decay

 p_{\perp} cut partially effective: $p^*(\Lambda \rightarrow n\pi^0) = 105 \text{ MeV}$


Move from $\theta = 2.4 \rightarrow 8$ mrad production angle looks promising

→ Decrease / I flux in beam and soften / momentum spectrum


Background from $\Lambda \rightarrow n\pi^0$

Implications of changing production angle: $\theta = 2.4 \rightarrow 8$ mrad

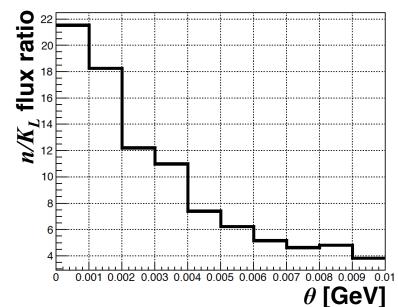
K_L decays in FV (105 < z < 155 m)

- $3\times$ decrease in K_L production, mainly for high-energy K_L
- $K_L \to \pi^0 vv$ acceptance and S/B ratio $\pi^0 vv/\pi^0\pi^0$ not significantly affected

Background from $\Lambda \to n\pi^0$

Implications of changing production angle and moving FV downstream:

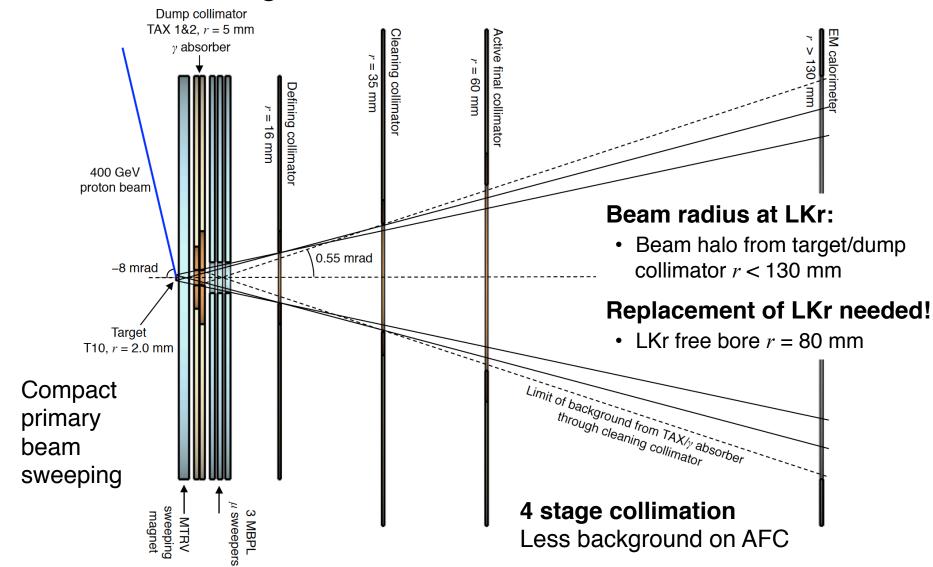
- $3 \times$ decrease in K_L production No net change in acceptance for K_L
- 15× decrease in Λ production 1000× decrease in Λ acceptance
- 2× increase in S/B ratio from $K_L \to \pi^0 \pi^0$


- θ : 2.4 mrad \rightarrow 8 mrad
- z FV min: 105 m \rightarrow 130 m
- z FV max: 155 m \rightarrow 170 m

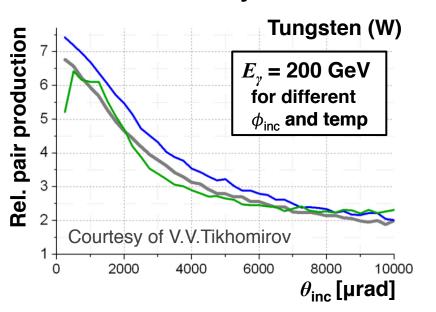
Advantages to moving to larger angle:

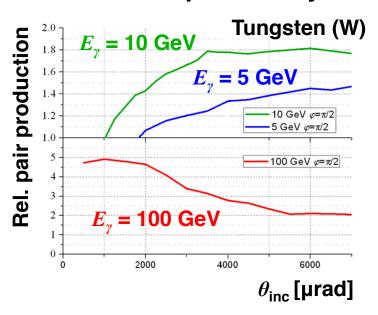
7× decrease in neutron flux
 Much less demanding rates on SAC
 Possible to use thinner absorber in beam?

Next steps:


- Finish optimization studies Better quantify \varLambda rejection from p_{\bot} cut
- New 8.0 mrad beamline design with increased solid angle to compensate for decreased K_L production

Neutral beamline layout (8.0 mrad)


Increase solid angle to compensate for decreased K_L production $\Delta\theta = 0.3 \rightarrow 0.4$ mrad gives 1.8× increase in beam flux



Efficient γ conversion with crystals

Coherent effects in crystals enhance pair-conversion probability

Use coherent effects to obtain a converter with large effective λ_{int}/X_0 :

1. Beam photon converter in dump collimator

Effective at converting beam γ s while relatively transparent to K_L

2. Absorber material for small-angle calorimeter (SAC)

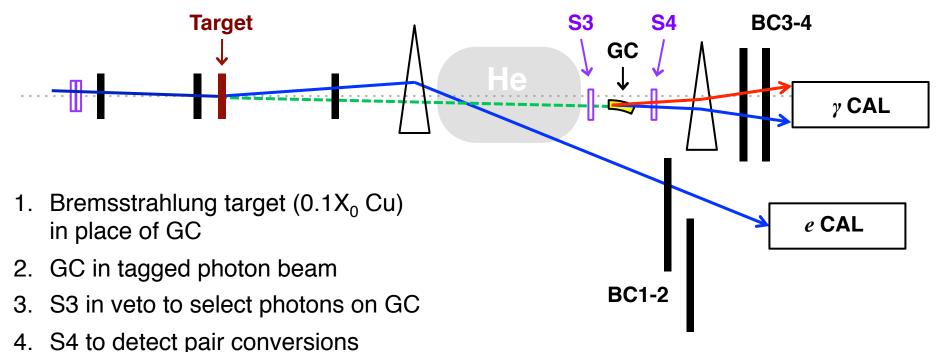
Must be insensitive as possible to \sim GHz of beam neutrons while efficiently vetoing high-energy γ s from K_L decays

Beam test of $\gamma \rightarrow e^+e^-$ in crystals

KLEVER is collaborating with INFN groups with experience with coherent phenomena in crystals for test beam measurement of pair-production enhancement

- E. Bagli, L. Bandiera, V. Guidi, A. Mazzolari,
- M. Romangnoni, A. Sytov (Ferrara);
- D. De Salvador (LNL);
- V. Mascagna, M. Prest (Milano Bicocca);
- E. Vallazza (Trieste).

July 2017 AXIAL data taking, H4 beamline Run Coordinator: L. Bandiera


Test goals:

- 1. Observe $\gamma \rightarrow e^+e^-$ enhancement with a commercially available tungsten crystal
- 2. Measure spectrum of transmitted γ energy for a thick (~10 mm) crystal
- 3. Measure pair conversion vs. E_{γ} , θ_{inc} for $5 < E_{\gamma} < 150$ GeV
- 4. Obtain information to assist MC development for beam photon converter and SAC

Beam test of $\gamma \rightarrow e^+e^-$ in crystals

Tagged photon beam setup for H4 (or H2) test beam:

- 5. BC1-2: 0.5 × 0.5 cm² Si dotocto
- 5. BC1-2: 9.5×9.5 cm² Si detectors to extend coverage of tagging system
- 6. Analysis magnet and BC3-4 to assist in reconstruction of e^+e^- pairs
- 7. He bag to reduce multiple scattering

- Nearly all detectors and DAQ system available for use from AXIAL
- INFN has approved funds for crystal samples, etc.
- 1 week of beam requested in 2018

Additional ideas to pursue

Add a tracking system for charged particles?

Advantages

- Expand physics scope of experiment: $K_L \to \pi^0 \ell^+ \ell^-, K_L \to \ell^+ \ell^- \ell^+ \ell^-, \text{ etc.}$
- Facilitate calibration and efficiency measurements

Issues

- Potential complications for $K_L \rightarrow \pi^0 vv$
 - Simulate impact of material budget on photon veto efficiency
 - Evaluate impact of magnet on photon veto coverage

Add a preshower detector in front of LKr?

Advantages

- Redundancy for rejection for $K_L \to \pi^0 \pi^0$
- Partial event reconstruction for calibration channels
- Sensitivity for exotics searches $K_L \to \pi^0 X, \, X \to \gamma \gamma$ with displaced vertex

Issues

- Require at least 1 conversion for signal events → cost in signal?
 - $0.5X_0$ converter \rightarrow 50% of pairs have at least 1 conversion
- Same complications as for adding tracking
 - As close as possible to main calorimeter, like CPV

Status and timeline

Project timeline – target dates:

2017-2018	Project consolidation and proposalBeam test of crystal pair enhancementConsolidate design
2019-2021	Detector R&D
2021-2025	Detector constructionPossible K12 beam test if compatible with NA62
2024-2026	Installation during LS3
2026-	Data taking beginning Run 4

- Most groups participating in NA62 have expressed interest in KLEVER
 We are actively seeking new collaborators!
- KLEVER is represented in the CERN Physics Beyond Colliders study
- An Expression of Interest to the CERN SPSC is in preparation and will also be submitted as input to the European Strategy for Particle Physics

Summary and outlook

Flavor will play an important role in identifying new physics, even if new physics is found at the LHC

- $K \rightarrow \pi v \bar{v}$ is a uniquely sensitive indirect probe for high mass scales
- Need precision measurements of both K^+ and K_L decays

Preliminary design studies indicate that an experiment to measure $BR(K_L \to \pi^0 \nu \bar{\nu})$ can be performed at the SPS in Run 4 (2026-2029)

- Many issues still to be addressed!
- Expected sensitivity: ~ 60 SM events with S/B ~ 1
- Comparable in precision to KOTO Step 2, with complementary technique (high vs. low energy) and different systematics

$K_L \rightarrow \pi^0 v \bar{v}$ is a difficult measurement

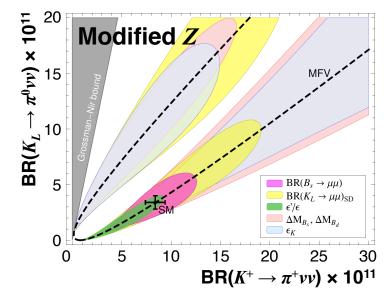
2 efforts are justified to ensure precision measurement of the BR!

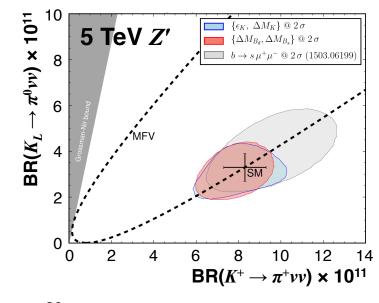
An Expression of Interest to the CERN SPSC is in preparation

- Many aspects of the experiment still need to be better defined
- The time to get involved in KLEVER is now!

Matthew Moulson – Frascati For the KLEVER project

$K \to \pi \nu \bar{\nu}$ and other flavor observables **KEVER**

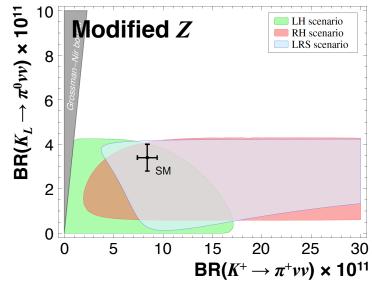


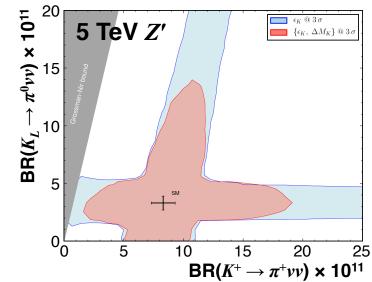

Simplified Z, Z' model used as paradigm

Buras, Buttazzo, Knegjens, JHEP 1511

CMFV hypothesis:

Constraints from B and Kobservables

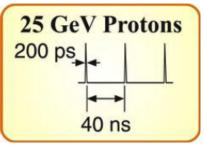


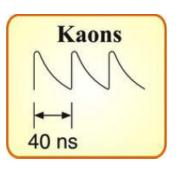


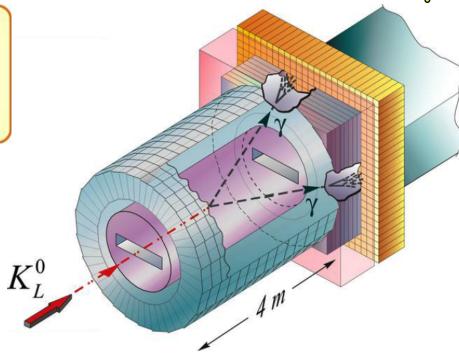
LH and RH couplings allowed:

Constraints from *K* observables:

- ε_K , ΔM_K
- ε'/ε , $K \to \mu\mu$ (for modfied Z)


Extra constraints for $K_L \rightarrow \pi^0 \nu \bar{\nu}$




Brookhaven AGS Cancelled 2005

Primary: 26 GeV p 10¹⁴ p/7.2 s

Neutral beam (43°) $\langle p(K_L) \rangle = 0.9 \text{ GeV}$ 50% of K_L have 0.5-1.2 GeV

Microbunched beam from AGS:

200 ps every 40 ns, 10^{-3} extinction

Flat beam to increase K_L flux Solid angle 360 µsr = 1 m wide!

Preradiator in front of calorimeterReconstruct angle of incidence for *γ*s

Sensitivity: 180 SM evts in ~4 yr

Advantages:

- $p(K_L)$ from time of flight
- Vertex position from preradiator
- Redundant constraints

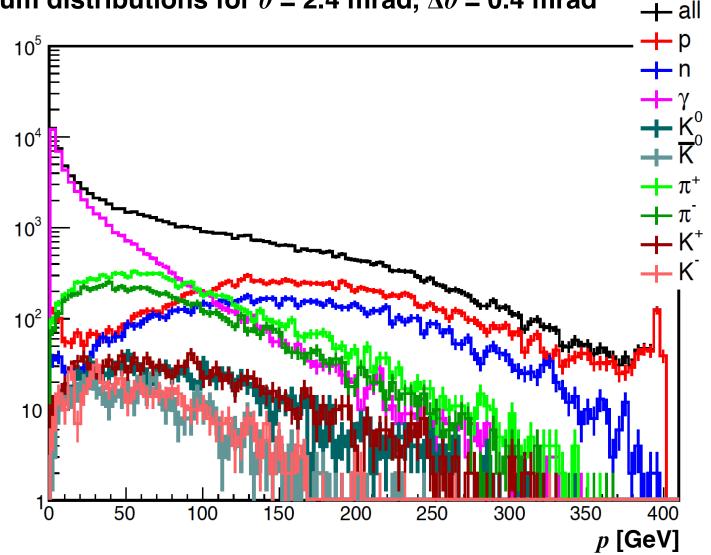
Disadvantages:

- Difficult to veto low-energy γs
- Much lower K_L flux at high angle

High-intensity neutral beam issues

 10^{19} pot/yr × 5 years \rightarrow 2 × 10^{13} ppp/16.8s = 6× increase relative to NA62

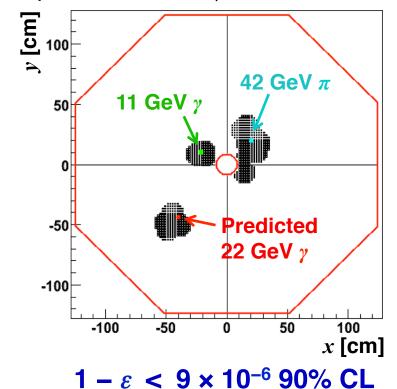
Feasibility/cost study a primary goal of our involvement in Conventional Beam WG


Preliminary analysis of critical issues by Secondary Beams & Areas group

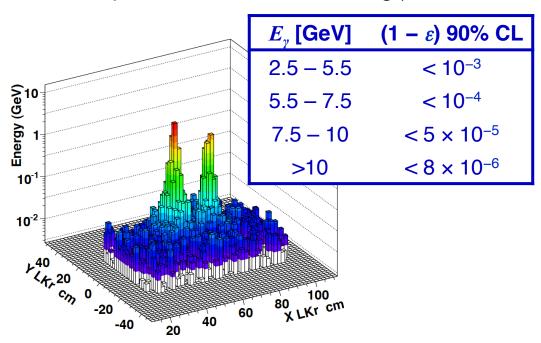
Issue	Approach
Extraction losses	Good results on ZS losses and spill quality from SPS Losses & Activation WG (SLAWG) Slow extraction workshop, 9-11 November: https://indico.cern.ch/event/639766/
Beam loss on T4	Vertical by-pass to increase transmission to T10
Equipment protection	Possibly use SIS interlock to stop extraction during PoSurvey reaction time
Ventilation in ECN3	Need to understand better current safety margin May need comprehensive ventilation system upgrade
ECN3 beam dump	Significantly improved for NA62 Need to understand better current safety margin
Background fluxes	Detailed simulations getting started

Neutral beam simulation

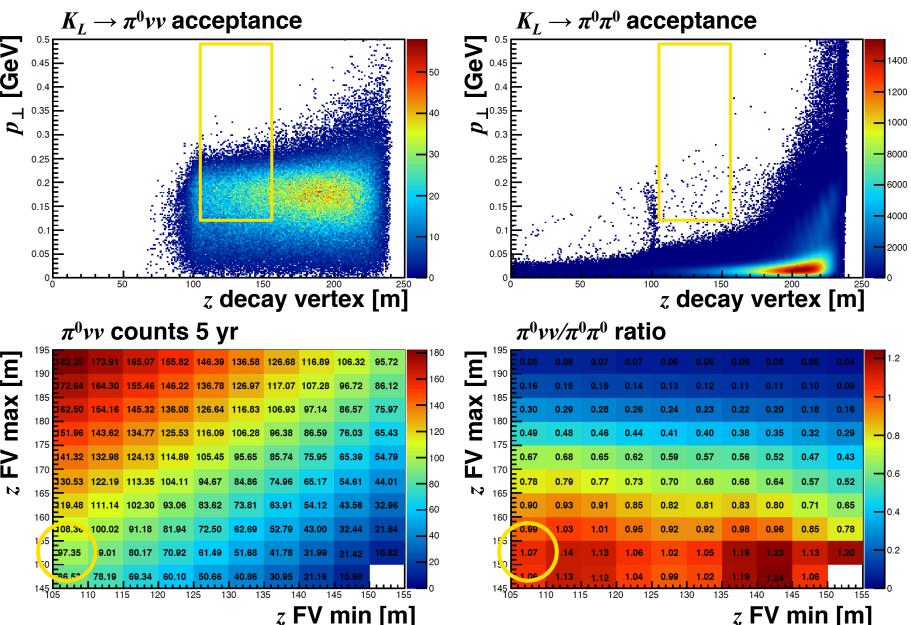
FLUKA simulation of 400 GeV p on 400-mm Be target Momentum distributions for θ = 2.4 mrad, $\Delta\theta$ = 0.4 mrad



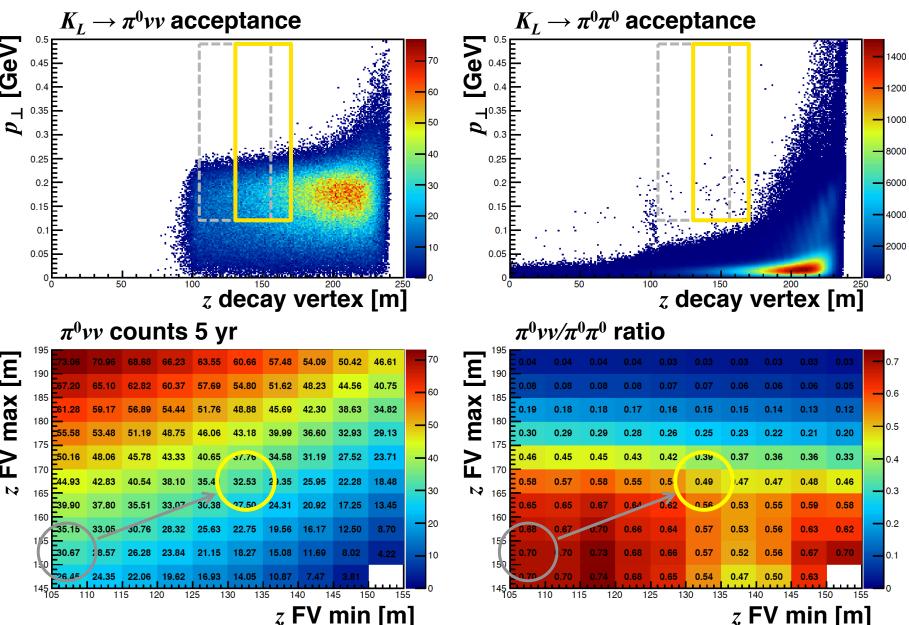
The NA48 LKr as a photon veto


Method 1: $K^+ \rightarrow \pi^+ \pi^0$

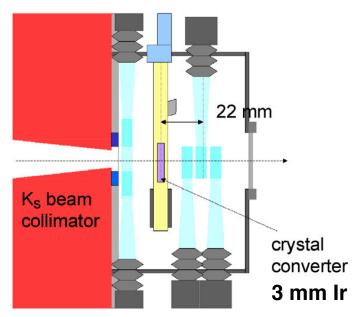
- Low-rate, *p* = 75 GeV run in 2004
- $K^+ \to \pi^+ \pi^0$ selected using kinematics only Tight topological and quality cuts E/p cut and muon veto for track ID
- π^+ and lower energy γ are used to predict position of other γ

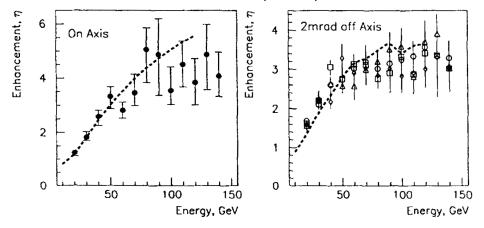

Method 2: Tagged γ

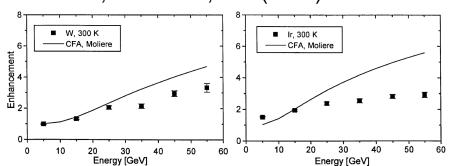
- Test beam with e^- in 2006
- 25 GeV beam aimed at LKr
- Bremsstrahlung on material upstream of MNP33
- Beam deflected 12 cm, reconstruct e⁻ in LKr
- Nominal beam position = position of bremsstrahlung γ


FV optimization (θ = 2.4 mrad)

FV optimization (θ = 8.0 mrad)




Crystal converter for the NA48 AKS


AKS used to define start of FV for $K_S \rightarrow \pi^0 \pi^0$ decays in NA48

Pair-production enhancement from coherent interaction with crystal lattice was studied for AKS development Pair prod. enhancement vs E_{γ} and θ_{γ} Moore et al., NIMB 119, 149 (1996)

On-axis pair prod. enhancement for W and Ir Kirsebom et al., NIMB 135, 248 (1998)

NA48 had use of high-quality crystals from MPI Stuttgart (mosaicity ~ 0.02 deg)

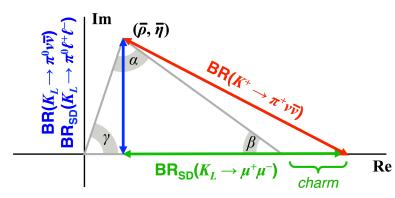
These crystals appear no longer to be commercially available!

$$K_L \longrightarrow \pi^0 \ell^+ \ell^-$$

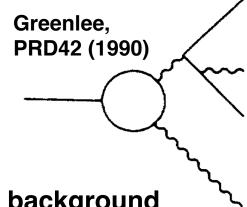
$$K_L \to \pi^0 \ell^+ \ell^-$$
 vs $K \to \pi \nu \nu$:

- Somewhat larger theoretical uncertainties from long-distance physics
 - SD CPV amplitude: γ/Z exchange
 - LD CPC amplitude from 2*γ* exchange
 - LD indirect CPV amplitude: $K_L \rightarrow K_S$
- $K_L \to \pi^0 \ell^+ \ell^-$ can be used to explore helicity suppression in FCNC decays

Main background: $K_L \rightarrow \ell^+ \ell^- \gamma \gamma$


• Like $K_L \to \ell^+ \ell^- \gamma$ with hard bremsstrahlung

$$BR(K_L \to e^+e^-\gamma\gamma) = (6.0 \pm 0.3) \times 10^{-7}$$


$$BR(K_L \to \mu^+ \mu^- \gamma \gamma) = 10^{+8}_{-6} \times 10^{-9}$$

$$E_{\gamma}^* > 5 \text{ MeV}$$

$$m_{\gamma\gamma} > 1 \text{ MeV}$$

 $K_L \rightarrow \pi^0 \ell^+ \ell^-$ CPV amplitude constrains UT in same way as BR $(K_I \rightarrow \pi^0 vv)$

 $K_L
ightarrow \pi^0 e^+ e^-$ channel is plagued by $K_L
ightarrow e^+ e^- \gamma \gamma$ background

- Small acceptance because of tight cuts on Dalitz plot

 $K_L \to \pi^0 \mu^+ \mu^-$ channel may be more tractable