Physical effects involved in the measurements of neutrino masses with future cosmological data

Maria Archidiacono,¹ Thejs Brinckmann,¹ Julien Lesgourgues¹ and Vivian Poulin^{1,2}

¹Institute for Theoretical Particle Physics and Cosmology (TTK), RWTH Aachen University, D-52056 Aachen, Germany.
²LAPTh, Université Savoie Mont Blanc & CNRS, BP 110, F-74941 Annecy-le-Vieux Cedex, France.

Abstract. Future Cosmic Microwave Background experiments together with upcoming galaxy and 21-cm surveys will provide extremely accurate measurements of different cosmological observables located at different epochs of the cosmic history. The new data will be able to constrain the neutrino mass sum with the best precision ever. In order to exploit the complementarity of the different redshift probes, a deep understanding of the physical effects driving the impact of massive neutrinos on CMB and large scale structures is required. The goal of this work is to describe these effects, assuming a summed neutrino mass close to its minimum allowed value. We find that parameter degeneracies can be removed by appropriate combinations, leading to robust and model independent constraints. A joint forecast of the sensitivity of Euclid and DESI surveys together with a CORE-like CMB experiment leads to a 1σ uncertainty of 14 meV on the summed neutrino mass. However this particular combination gives rise to a peculiar degeneracy between M_{ν} and the optical depth at reionization. Independent constraints from 21-cm surveys can break this degeneracy and decrease the 1σ uncertainty down to 12 meV.

Cosmo club, Saclay

December 19, 2017

Cosmic neutrino background

At early times (T $_{
m v}\gg m_{
m v}$), neutrinos contribute as radiation $ho_{
u}\propto T_{
u}^4$

At late times (T_v \ll m_v), neutrinos contribute as matter $\rho_{\nu} = m_{\nu}n_{\nu}$

Non-relativistic transition $m_{\nu} \sim \langle p \rangle = \frac{\int p f(p) d^3 p}{\int f(p) d^3 p} = 3.15 T_{\nu} \text{ with } f(p) = \frac{1}{e^{p/T_{\nu}} + 1}$

$$z_{nr} \sim 1900 \; \frac{m_{\nu}}{1 \,\mathrm{eV}} \quad \longrightarrow$$

At recombination $m_v < 0.6 \text{ eV} (\Sigma m_v < 1.7)$: relativistic $m_v > 0.6 \text{ eV} (\Sigma m_v > 1.7)$: matter-like

 $\Omega_{v} = \frac{\Sigma m_{v}}{93.1 \rho V}$

Impact on CMB

- $m_v > 0.6 \text{ eV} (\Sigma m_v > 1.7 \text{ eV})$
 - Non relativistic at CMB
 - Hot Dark Matter (HDM)
 - ⇒ Direct impact on CMB power spectrum:
 - ⇒ Éven with pre-WMAP (COBE...), in late 90s, the damping of C_ℓ on intermediate scales (100<l<1000) cannot be explained without relativistic neutrinos
 - ⇒ Fully excluded with WMAP including HCDM models (10% of HDM)

Impact on CMB

- $m_v < 0.6 \text{ eV} (\Sigma m_v < 1.7 \text{ eV})$ relativistic at CMB
 - \Rightarrow "No" impact on baryon-photon plasma
 - \Rightarrow Subtle changes in peak position & amplitude
 - \Rightarrow May effect is the early Integrated Sachs-Wolfe effect (ISW) after recombination (50<l<300) - position and amplitude of first peak.

5

Matter power spectrum

Matter power spectrum > Analogy with sound: higher at certain frequencies > Real space ⇒ k-space (Mpc⁻¹) > First observation of "total" power spectrum with different tracers of the matter

Finite velocity of light

- Causality "horizon" (7 with time)
- Small scales enter horizon early Large scales enter horizon late
- Relativistic neutrinos will affect small scales

Impact on matter power spectrum

Impact in CMB-alone only for nonrelativist neutrinos \Rightarrow ~1-2 eV limit

- Free-streaming:
 - Wash out the fluctuations
 - Suppression of small scales in P(k)
- Suppression factor $\Leftrightarrow \Sigma \mathbf{m}_v$
- Three probes directly sensitive to free-steaming
 - Galaxy Power spectrum
 - > Weak lensing
 - Ly-a absorption along the line of sight
 - CMB- lensing is similarly affected by free-steaming

Neutrino masses

Neutrino oscillations

Mass eigenstates $m_{1,2,3}$ and flavor eigenstates $m_{e,\mu,\tau}$ Solar $\delta m^2 = m_2^2 - m_1^2$ ~ 7.5 10^{-5} eV^2Atmospheric $\Delta m^2 = m_3^2 - (m_1^2 + m_2^2)/2$ ~ 2.4 10^{-3} eV^2

An answer with the cosmological neutrinos? 8

Forecast on neutrino masses with future cosmological projects

Probes - Projects

- 🛷 🔔 🛎 🚨	NPO 🗢 🛤
arera 🔛	. 63 mm 😳 🖌 💷 -
BAR " 🔼 🦘	🛛 😵 TROULDE Querren 🧕
🔛 é cres 🛐 🛞 🛤	@ \$100x
the B Charlase	540H (1)
🖬 🕅 🖉 💿 esa 🛐	Tables 🗠
market 👷 🕶	LAL Relaty Ottom
	CHICKED LUCK
🥶 🔅 (AS 🤆	
ICE	• mai . •
ICG INTEREC	
IFAE! Manual	D/ marrier / marrier / marrier
🗙 💿 🔜	• ****
o % 🚥	🖎 managana 🔮
ipni teirap 🎰 👳	
See 180 🐔	🛄 🗶 🛲 🚱 🛞
	Section Senn
IIII JPL Mil	uemc 🔤 🆄
LAW SE LINES	US iterati
	TEXAS () INCOMES
···· · · O	State Contracting (1) 2000 Pro-

- OC

Probes - Projects

Strategy and goals of the papers

Range for the neutrino masses

- > Many analyses in cosmology indicate that $\Sigma m_v < 0.15 \text{ eV}$ (even 0.12 eV)
- Lower limit 60meV (normal hierarchy)
- > Range used for the study 60 < Σm_v < 150 meV

Several scenarios

- > CMB-alone (but with lensing!) CORE-like
- CMB+BAO CORE+DESI
- CMB+BAO+WL+P(k) CORE+Euclid
- CMB+BAO+WL+P(k)+EoR CORE+Euclid+21cm

CMB-alone - CORE

- > In CMB strong correlation between H_0 and Σm_v
- > Origin: early ISW
- Impact on first CMB peak therefore acoustic scale and H₀
- > Correlation between ω_{CDM} and Σm_{ν} due to lensing of CMB

CMB+BAO - CORE+DESI

 BAO data alone can constrain Σm, but not with great accuracy
 See for instance in (ω_{CDM},Σm,) plane BAO breaks the (H₀,Σm_v) degeneracy by adding another measurement of the acoustic scale at a different redshift

CMB+BAO+WL+P(k) CORE+Euclid

- > As BAO, P(k) and WL prefers different directions of degeneracy in $(H_0, \Sigma m_v)$ plane.
- > Reduce uncertainty on both H_0 and Σm_v .

	$\sigma(M_{\nu})/[{ m meV}]$	$\sigma(au_{ m reio})$	$\sigma(10^9 A_s)$	$\sigma(n_s)$	$\sigma(\omega_{ m cdm})$	$\sigma(h)$
CORE	42	0.0020	0.0084	0.0018	0.00052	0.0052
CORE+DESI	19	0.0020	0.0080	0.0014	0.00026	0.0022
CORE+DESI+Euclid-lensing	16	0.0020	0.0078	0.0014	0.00023	0.0019
CORE+Euclid (lensing+pk)	14	0.0020	0.0079	0.0015	0.00025	0.0017
CORE+Euclid (lensing+pk)+21cm	12		0.0042	0.0014	0.00021	0.0017

to compare with DESI forecast

Data	$\sigma_{\Sigma m_{\nu}} [\mathrm{eV}]$	$\sigma_{N_{ u,\mathrm{eff}}}$
Planck	0.56	0.19
Planck + BAO	0.087	0.18
Gal $(k_{\rm max} = 0.1 h {\rm Mpc}^{-1})$	0.030	0.13
Gal $(k_{\rm max} = 0.2h {\rm Mpc}^{-1})$	0.021	0.083
Ly- α forest	0.041	0.11
Ly- α forest + Gal ($k_{\text{max}} = 0.2$)	0.020	0.062

Reasonable to think that we will measure neutrino masses at $\sigma\text{-}20\text{-}25$ meV in 2025 just with Planck+DESI

Additional Slides

Free-Streaming

Velocity dispersion large wrt size of potential well

