Micromegas R&D for muon imaging activities at Saclay

Christopher Filosa (CEA/DRF/IRFU/DPhN)

DE LA RECHERCHE À L'INDUSTRIE

Outline

- A Brief reminder about cosmic muons
- Micromegas R&D
 - \rightarrow improve spatial and time resolution
- Gas R&D
 - \rightarrow improve gas consumption
- Detection of faults in concrete slab
 - \rightarrow first step into tomography

Close encounters of the Third Kind

A permanent cosmic bombing raid

A cosmic shower !

Primaries : mainly protons

Muon flux at ground : $150/m^2/s \implies \cos(\Theta)^2$ distribution

Mean Energy ~ 4GeV ➡ Kinetic energy of grain of sand at 1m/s

Celerity ~ c

Lifetime ~ 2µs

Natural radiation, free and harmless !

MicroMegas detectors

Main principles

MicroMegas detector

MICROMEGAS = MICRO MEsh GAseous Structure

Gaseous Detector developed at CEA Saclay in 1996 by I. Giomataris, Ph. Rebourgeard et G. Charpak (Nobel prize 1992)

MicroMegas detector

Main idea : Separate the conversion and the amplification zone

Gas R&D

- Idea : Sealed detector to reduce drastically the leak of gas
 - → Leak < 30µL/h (Measure taking into account T variations)</p>
 - → Next step : stuck only PCB anode.
- Electronic control of gas consumption (2 to 3 times less).
 - → Make sure about gain stability

- PCB outgassing issue
 - → Humidity + gaseous pollutant through the outgassing of PCB
 - → Degradation of gas : Recirculation + purification system
 - → Heated process for PCB (à la HARPO) tested
 - → New vacuum chamber to make tests

• For sensors boxes, seems to be the good method

- For sensors boxes, seems to be the good method
- Other pollutants outgassed ? Humidity from outside ?
- No degradation of the boxe caused by pumping/heating
- The same for detector ? (PCB porosity, resistivity degradation ...)

Humidity 15 times lower in TB than other detectors (with gas circulation)

- ΔV between Bottom and Top detectors
- Slope in V/h to compensate the gas degradation
- Filled with T2K gas
- Less humidity, but same slope in V/h : (T variation)
 - → 0.67 V/h, 1.16 V/h, 0.93 V/h , 0.85 V/h

or outgassing

- BB Filled with Ar: 95% , iC_4H_{10}: 5% gas whereas TB and TT with T2K gas
- Different slopes in V/h with the two gas :
 - Ar-lso : 0.52V/h \rightarrow
 - T2K: 0.75V/h, 1.05V/h \rightarrow
- Capsula ON : Humidity divided by 2 in one hour. But only 3V lost
 - Other pollutant than humidity →

- Oxysorb ON flushed with Ar: 95% , iC_4H_{10} : 5% :
 - Oxysorb absorbs something else \rightarrow
 - Perhaps Oxygen →

Problem of stability

- Humidity could induce gas degradation
 - \rightarrow PCB porosity ?
 - \rightarrow Other sources ?

- Stronger effect with CF4 :
 - → HF production ? But no visible clues (Liquid under 20°C + aging)

- Other unknown pollutant
 - → Could it be Oxygen
 - → No major gas leak in our detector. Need to investigate.

Micromegas R&D

Diamond Like Carbon (DLC) Micromegas

- 50 x 50 cm² active surface
- Resistive DLC
 - → Chemical deposition technique
 - → No alignement needed
 - → More homogeneous than strips
 - → Pressed and glued by Rui de Oliveira at CERN
 - → Bulked at Saclay
- Integrated resistivity ~ 50MΩ
 - → higher than resistive strips
 - → Clusters' size are expected to be equal in X/Y readout

Characterization of DLC Micromegas Cluster size distribution

- Increasing of clusters' size due to the position of Y strips (Charge collection along the resistive strips)
- For cluster size >16
 - Ambiguities can appear
 - Spatial resolution degraded
 - Need to improve X coordinate

Characterization of DLC Micromegas Cluster size distribution

- Higher resistivity for DLC + no strips structure
 - → Less spreading
 - \rightarrow DLC Clusters' size are equal in X/Y readout

Characterization of DLC Micromegas 2D Map of amplitude

- → Unstuck pillars zone
- Nevertheless, the unstuck zone is still efficient when the HV increases

- No problem with pillars
- Inhomogeneous zone of gain
- Problem during cleaning process
 - → Development bath
 - → Remnant of photoresist film

23

Characterization of DLC Micromegas 2D Map of amplitude

• Nevertheless, the unstuck zone is still efficient when the HV increases

- Still Inhomogeneous zone of gain after alcool + karcher
- Deposit of photoresist film (change of mesh color observed)

Characterization of DLC Micromegas Amplitude distribution S041

- Charge mostly received by upper strips
 - → Factor 3 between Y (up) and X (down) strips
 - → Capacitance coupling

Characterization of DLC Micromegas Amplitude distribution S041

- Charge mostly received by upper strips
 - → Factor 3 between Y (up) and X (down) strips
 - → Capacitance coupling
 - → If strips on DLC, better coupling between X and Y

Stripped DLC

- Standard DLC with photoresist films above
- Abrasion done with harsh stones to eliminate the DLC between the strips
- Photolithography to eliminate the photoresist film
 - At the end, only DLC strips
 - Homogeneity + good capacitance coupling

Stripped DLC

- Map of hits position : zone of inefficiency
 - → Current due to remanent of photoresist
 - → laddered stripped on PCB
- Issue observed in CLAS12
- Factor 2 between X and Y strips

Discovery of a big void in a concrete slab by observation of cosmic-ray muons

nature

International weekly journal of science

Two modes of tomography $\mathcal{V}_{x,im}^{\theta_{x,im}}$

Transmission

 $- < \frac{dE}{\rho dx} > = K z^2 \frac{Z}{A} \frac{1}{\beta^2} \left(\frac{1}{2} \ln \frac{2m_e c^2 \beta^2 T_{max}}{I^2} - \beta^2 - \frac{\delta(\beta \gamma)}{2} \right)$

- Coulomb diffusion
 - → deflection angle depend of density
 - → 10 cm of lead ~ 1° of deflection
- 3D Imaging
- Use for homeland security
- Spatial resolution is drastic
- Faster than transmission

- Muon survival probability depends of the density
 - → A density map can be made from the muon flux
 - → Volcanoes
 - → Geological prospection
- Muon flux at ground : 1 muon/cm²/mn
 - → Tradeoff between sensitivity and acquisition time
 - → Better precision can extract the most information of each muon

Imaging faults in a concrete slab

Imaging faults in a concrete slab

→ Two mode tested : transmission and absorption (deviation not adapted. Not dense enough)

New mode in Tomomu : absorption

Relative muons excess in transmission = $S_1/S_2 \Rightarrow$ Object with high density (pyramids, volcanoes, buildings) Relative muons excess in absorption = $S_1/(S_1 + S_0) \Rightarrow$ Object with low/intermediate density

Simulations

- Better in absorption than transmission because of the sensibility
- Simulations also made with a 97% efficient Cerenkov detector

Help us Bayes

- H0 : M and N are distributed with the same poisson distribution with λ .
- H1 : M and N are distributed with differents poisson distribution (λ and μ)

$$P(m|n,\lambda) \propto \frac{\Gamma(m+1/2+n)}{m! \Gamma(n+1/2)} 2^{-(m+1/2+n)} \quad \text{avec } \Gamma \text{ la fonction } \Gamma(t) = \int_0^\infty u^{t-1} e^{-u} du$$

Help us Bayes

Once we found the probability, we have to take the cumulative to reject or accept the hypothesis H0

Simulations in absorption - results

N N N

سليسيل سليسان والمباسيل سيلسيل

CL 99,99994%

Imaging faults in a concrete slab

Two position allowed for the void
Symmetry by 180° rotation

- Analysis done between I vs II and I vs III
 - Detectors were moved by 15cm
 - No faults appeared after dividing the two histograms
 - Blurring due to acceptance (geometry and efficiency) and diffusion of muons in the concrete slab

Imaging faults in a concrete slab

Two position allowed for the void
Symmetry by 180° rotation

1000 mm

- Analysis done between I vs II and I vs III
 - Comparison shows a significant difference

VINCI

the fault moved by 15cm as we hoped

Other method

- Calculate the nb of muons in controlled size square in both 2D distribution : N1, N2
- Estimate the difference of these two numbers and normalised it : $(N1-N2) / \sqrt{(N1^2+N2^2)}$

Other method

2,7

 σ

6,7

7,2

5,1

3,8

Λ	1
-	1

7,9

Recap

• More R&D on Micromegas

- → Choose between two technologies (serigraphy or DLC)
- → Make sure the spatial and time resolution are improved to plan μ TPC algorithm
- \rightarrow Understand gain unstability

Reconstruction

- → Detection of faults in concrete slab with a new method
- → Next time : 3D reconstruction and tomography !?

THANKS

DE LA RECHERCHE À L'INDUSTRIE

Cez