Cosmological production of "Sterile" neutrinos featuring a Diatribe against neutrino oscillations

Jim Rich

SPP-IRFU CEA-Saclay 91191 Gif-sur-Yvette

james.rich@cea.fr

March, 2018

◆□>
◆□>
●

Outline

- Neutrino oscillations: the standard schpiel
- When oscillations are nearly irrelevant: Neutrino absorption
- Approaching thermal equilibrium
- Three examples of cosmological "sterile neutrinos" Reactor-anomaly neutrinos Dodelson-Widrow neutrinos Resonant neutrinos
- A diatribe against neutrino oscillations

diatribe: a bitter and abusive speech or piece of writing (Webster)

 ν_e - ν_s mixing $\Rightarrow \nu_e$ - ν_s oscillations

$$|\nu_e\rangle = \cos\theta |\nu_1\rangle + \sin\theta |\nu_2\rangle \qquad |\nu_s\rangle = -\sin\theta |\nu_1\rangle + \cos\theta |\nu_2\rangle$$

 ν_1 and ν_2 have masses m_1 and m_2 . Oscillation probability at a distance *L* from production:

$$P(\nu_e \rightarrow \nu_s) = 2\cos^2\theta\sin^2\theta \left[rac{\sin^2 L/L_{osc}}{1/2}
ight]$$

$$P(\nu_e \rightarrow \nu_e) = \cos^4 \theta + \sin^4 \theta + 2\cos^2 \theta \sin^2 \theta \cos 2L/L_{osc}$$

where $L_{osc} = 4E_{\nu}/\Delta m^2$.

Probability to see $\bar{\nu}p \to e^+n$ at a distance *L* is proportional to $P(\nu_e \to \nu_e) = 1 - P(\nu_e \to \nu_s)$.

A $\bar{\nu}_e$ and a box of protons (1)

The $\bar{\nu}_e$ can be absorbed via $\bar{\nu}_e p \rightarrow e^+ n$, cross section σ \Rightarrow absorption length $L_{abs} = (\rho \sigma)^{-1}$ ($\rho = \text{protons/volume}$)

Question:

What is the probability that the neutrino passes through the box?

Answer if $\theta = 0$ (no mixing):

$$P = \exp(-L\rho\sigma)$$

A $\bar{\nu}_e$ and a box of protons (2)

The $\bar{\nu}_e$ can be absorbed via $\bar{\nu}_e p \rightarrow e^+ n$, cross section σ \Rightarrow absorption length $L_{abs} = (\rho \sigma)^{-1}$ ($\rho = \text{protons/volume}$)

Question:

What is the probability that the neutrino passes through the box?

Answer if $\theta \neq 0$ and $L_{osc} \gg L$:

$$P = \exp(-L\rho\sigma)$$

A $\bar{\nu}_e$ and a box of protons (3)

The $\bar{\nu}_e$ can be absorbed via $\bar{\nu}_e p \rightarrow e^+ n$, cross section σ \Rightarrow absorption length $L_{abs} = (\rho \sigma)^{-1}$ ($\rho = \text{protons/volume}$)

Question:

What is the probability that the neutrino passes through the box?

Answer if $\theta \neq 0$ and $L_{osc} \ll L$:

A $\bar{\nu}_e$ and a box of protons (3)

The $\bar{\nu}_e$ can be absorbed via $\bar{\nu}_e p \rightarrow e^+ n$, cross section σ \Rightarrow absorption length $L_{abs} = (\rho \sigma)^{-1}$ ($\rho = \text{protons/volume}$)

Question:

What is the probability that the neutrino passes through the box?

Answer if $\theta \neq 0$ and $L_{osc} \ll L$:

$$P = \cos^2\theta \exp(-L\rho\sigma\cos^2\theta) + \sin^2\theta \exp(-L\rho\sigma\sin^2\theta)$$

A $\bar{\nu}_e$ and a box of protons (3)

Question:

What is the probability that the neutrino passes through the box?

Answer if $\theta \neq 0$ and $L_{osc} \ll L$:

$$P = \cos^2\theta \exp(-L\rho\sigma\cos^2\theta) + \sin^2\theta \exp(-L\rho\sigma\sin^2\theta)$$

= (Probability $\bar{\nu}_e$ is a $\bar{\nu}_1$) × (Probability that $\bar{\nu}_1$ passes through box) + (Probability $\bar{\nu}_e$ is a $\bar{\nu}_2$) × (Probability that $\bar{\nu}_2$ passes through box)

People who immediately find the right answer (1)

 People who have never heard of neutrino oscillations. Mixing angles just give branching ratios and cross-sections (like the Cabibbo angle) ν_1 and ν_2 couplings

Just like Cabibbo quark mixing:

< E.

 ν_e - ν_s mixing $\Rightarrow \nu_e$ - ν_s oscillations

$$|\nu_e\rangle = \cos\theta |\nu_1\rangle + \sin\theta |\nu_2\rangle \qquad |\nu_s\rangle = -\sin\theta |\nu_1\rangle + \cos\theta |\nu_2\rangle$$

 ν_1 and ν_2 have masses m_1 and m_2 . Oscillation probability at a distance *L* from production:

$$P(\nu_{e} \to \nu_{s}) = \left[\cos^{2}\theta \sin^{2}\theta + \sin^{2}\theta \cos^{2}\theta\right] \left[\frac{\sin^{2}L/L_{osc}}{1/2}\right]$$

$$P(\nu_e \to \nu_e) = \cos^2 \theta \cos^2 \theta + \sin^2 \theta \sin^2 \theta + 2\cos^2 \theta \sin^2 \theta \cos \frac{2L}{L_{osc}}$$

where $L_{osc} = 4E_{\nu}/\Delta m^2$.

L-averaged probabilities are naive Cabibbo probabilities

Jim Rich (IRFU)

People who immediately find the right answer (2)

- People who have never heard of neutrino oscillations. Mixing angles just give branching ratios and cross-sections (like the Cabibbo angle)
- People who search for sterile neutrinos via discontinuities in beta-decay spectra.

Electron spectrum is incoherent sum of spectra for $^3{\rm H} \rightarrow {^3{\rm He}e^-}\nu_1$ and $^3{\rm H} \rightarrow {^3{\rm He}e^-}\nu_2$

Branching ratio to $\nu_2 = \sin^2 \theta$ \Rightarrow discontinuity in electron energy spectrum at $(E_{max} - m_2)$.

People who immediately find the right answer (3)

- People who have never heard of neutrino oscillations. Mixing angles just give branching ratios and cross-sections (like the Cabibbo angle)
- People who search for sterile neutrinos via discontinuities in beta-decay spectra.

Branching ratio to $\nu_2 = \sin^2 \theta$

 \Rightarrow discontinuity in electron energy spectrum at $(E_{max} - m_2)$.

People who think neutrinos are produced as wave packets.
 ν₁ and ν₂ wave packets quickly separate and become independent, non-interfering objects.

 $L_{sep} \sim L_{osc} imes (E/\Delta E)$

• People who are virtuosi of two-state formalism absorption \Rightarrow imaginary part of $\langle \nu_e | H | \nu_e \rangle$

Some conclusions

- For mean absorption, oscillations are usually irrelevant:
 - $L \ll L_{osc}$ no time to oscillate
 - $L \gg L_{osc}$ oscillations averaged over
- For L ≫ L_{osc} best to think of mixing as a Cabibbo problem. Use propagation (mass) eigenstates, not flavor eigenstates. "Decoherence" of ν₁ and ν₂ which act like "normal particles"
- For L ≫ L_{abs} only v₂ emerge (not v_s).
 "Of course, such mixing renders these species not truly sterile" (Abazajian et al.)
 (We need a word for "nearly sterile mass eigenstate")
- For $\sin^2 \theta \ll 1 \nu_2$ are hard to produce, but they are equally hard to destroy $\Rightarrow \rho_1 \sim \rho_2$ is possible in early universe.

Reaching thermal equilibrium in a static universe

Starting with a thermal mixture of (γ, e^+, e^-, p, n) , neutrinos (ν_1, ν_2) are produced: ν_1 rapidly and ν_2 slowly.

 ν_1 abundance rapidly increases until creation rate equal destruction rate (i.e. thermal equilibrium)

 u_2 abundance slowly increases until creation rate equal destruction rate (i.e. thermal equilibrium with same density as u_1 if $m_1 \sim m_2$)

Simulation: Thermal Bath $\leftrightarrow e \leftrightarrow \nu_{1,2}$

Jim Rich (IRFU)

Cosmological production of "Sterile" neutrino

March, 2018 15 / 24

Simulation: ν_2 reach equilibrium

Jim Rich (IRFU)

Cosmological production of "Sterile" neutrino

Reaching equilibrium in an expanding universe

Four time scales:

t_H ~ 1/√GT⁴ (Hubble time) Time for temperature or density to change significantly
t_{weak} ~ 1/(G_FT² × T³) Absorption, collision, production time for full-strength ν
t₂ ≡ t_{weak}/sin²θ time for e → ν₂ via charged current
t_{osc} ~ T/Δm²
Thermal abundance of ν₂ obtained if at some epoch

• $t_{osc} < t_{weak}$ \Rightarrow charged-currents give ν_1 and ν_2 rather than ν_e

• $t_2 < t_H$

 \Rightarrow each electron has enough time to produce a ν_2

Reactor-anomaly u: $m_2 \sim 1 eV$, $heta^2 \sim 0.03$

March, 2018 18 / 24

Warm DM neutrinos: $m_2 \sim 1 keV$, $heta^2 \sim 4 imes 10^{-8}$

 $T > 300 {\rm MeV}$: $t_{weak} < t_{osc}$ $\Rightarrow e \rightarrow \nu_e$ only $t_2 > t_H$ $\Rightarrow \nu_2$ never reaches equilibrium abundance but high mass compensates to give $\Omega_{\nu} \sim 0.3$

Mixing in Matter (1)

Matter potential, V, modifies mixing angle and oscillation length:

$$\sin^2 2\theta_m = \frac{\sin^2 2\theta}{\sin^2 2\theta + [\cos 2\theta - V/\Delta]^2} \qquad \Delta = \frac{\Delta m^2}{2E_\nu}$$

$$I_{osc,m} = I_{osc} \frac{\sin 2\theta_m}{\sin 2\theta}$$

Matter-antimatter symmetric universe:

V < 0 and $\propto T^5 \Rightarrow V/\Delta \sim t_{osc}/t_{weak}$ \Rightarrow mixing angle decreases but only at temperatures where there are no oscillations.

Mixing in Matter (2)

Matter potential, V, modifies mixing angle and oscillation length:

$$\sin^2 2\theta_m = \frac{\sin^2 2\theta}{\sin^2 2\theta + [\cos 2\theta - V/\Delta]^2} \qquad \Delta = \frac{\Delta m^2}{2E_{\nu}}$$

$$I_{osc,m} = I_{osc} \frac{\sin 2\theta_m}{\sin 2\theta}$$

Lepton-antilepton asymmetric universe:

Abazajian, Fuller and Patel: arXiv:astro-ph/0101524

V can be positive or negative: $\propto (\Delta L) T^3$

- \Rightarrow mixing angle can become large at certain T, $E_{
 u}$
- \Rightarrow non-thermal spectrum of ν_2

Unlike solar neutrinos, level-crossings not generally adiabatic.

"2-state" systems beloved of teachers of QM

• *NH*₃ molecule

Tunnelling between two classically degenerate configurations

• $K_0 - \overline{K}_0$ system

Particle and antiparticle share a common decay mode $(\pi\pi)$

• ν_e - ν_μ system

 ν_1 and ν_2 nearly same mass

 $\Rightarrow {}^{98}X \rightarrow {}^{98}Ye^-\bar{\nu}_1$ and ${}^{98}X \rightarrow {}^{98}Ye^-\bar{\nu}_2$ nearly indistinguishable.

- $\Rightarrow \bar{\nu}_1 p \rightarrow n e^+$ and $\bar{\nu}_2 p \rightarrow n e^+$ nearly indistinguishable
- \Rightarrow Amplitudes for $\bar{\nu}_1$ and $\bar{\nu}_2$ scattering interfere.
- \Rightarrow Amplitude is oscillating function of source-target distance

Neutrino Oscillations?

- The ν_e - ν_μ system lacks the symmetry of NH_3 , $K_0 \bar{K}_0$.
- The two-state formalism hides interesting questions, do the two neutrinos share a common energy or a common momentum?

or Scattering Amplitude oscillations?

What we generally call neutrino oscillations result from an interference between amplitudes for ν_1 scattering and ν_2 scattering. Such interference is very fragile and can be destroyed by:

- averaging over source-target distance
- averaging over "neutrino energy"

Fragility increases with time and distance from source.

 \Rightarrow oscillations can only be seen near a neutrino target.

Cosmological neutrinos to not oscillate because:

- Neutrinos don't oscillate (amplitudes oscillate) (Adapted from R. Glauber)
- No amplitude oscillations because L_{ST} not well defined, and
- Massive neutrinos have differing trajectories