- An absorption profile centered at 78 megahertz in the sky-averaged spectrum EDGES experiment (<u>https://www.nature.com/articles/nature25792</u>)
- Possible interaction between baryons and DM particles revealed by the first stars Barkana (<u>https://www.nature.com/articles/nature25791</u>)
- Severely Constraining Dark Matter Interpretations of the 21-cm Anomaly berlin et al. (<u>https://arxiv.org/abs/1803.02804</u>)
 - The 21 cm transition and the IGM
 - The EDGES signal
 - Barkana's interpretation
 - Berlin et al. Interpretation

The 21 cm transition

• Hydrogen hyperfine structure:

• spin temperature
$$T_S : \frac{n_1}{n_0} = \frac{g_1}{g_0} \exp \frac{-\Delta E}{kT_S}$$

• signal : brilliance temperature

$$\delta T_b \approx 21 \text{mK} x_{\text{H}_{\text{I}}} \left(1 - \frac{T_{\gamma}}{T_S}\right) \sqrt{\frac{1+z}{10}}$$

IGM history

- 1100 > z > 150: Thomson scattering on residual $e^- = T_{gas} = T_{CMB}$ collisional coupling $T_s = T_{gas}$
- 150 > z > 80: gas decoupled from CMB

$$T_{CMB} \sim 1/a$$
 and $T_{S} = T_{gas} \sim 1/a^{2}$

80> z > 30 :

collisional coupling $T_s \rightarrow T_{CMB}$ due to radiative coupling $\hat{f}_{\underline{s}}$

 $\delta T_b \approx 21 \text{mK} x_{\text{H}} \left(1 - \frac{T_{\gamma}}{T}\right) \left|\frac{1+z}{T}\right|$

absorption (
$$T_s < T_{CMB}$$
) or emission ($T_s > T_{CMB}$)

Ly-α pumping (Wouthuysen - Field)

z ~ 30 : cosmic down
 => Ly-α (n=1 <-> n=2, 4 lines)
 lines ratio -> color temperature T_α
 gas optically thick =>

equilibrium with the gas: $T_{\alpha} \rightarrow T_{gas}$

$$T_{S}^{-1} = \frac{T_{\gamma}^{-1} + x_{c}T_{gas}^{-1} + x_{\alpha}T_{\alpha}^{-1}}{1 + x_{c} + x_{\alpha}}$$

• when x_{α} increases $T_s \rightarrow T_{\alpha} \rightarrow T_{gas}$ Ly- α is recoupling the spin to the gas

IGM history

The EDGES experiment

- MRO western Australia (Site for SKA precursor)
- began August 2015
- high band 90-200 MHz
- v = 1420 / (1+z) (14>z>6)
- 2 low band 50-100 MHz (27>z>13)
- radio-receiver
- single-polar dipole-like antenna
- metal ground plane
- measure sky averaged signal

Fit the data

• physically-motivated fit :

Galactic synchrotron + ionospheric absorption (b_3) and emission (b_4)

K

Temperature,

5,000

3,000

1,000

50

60

80

70

90

100

$$T_{\rm F}(\nu) = b_0 \left(\frac{\nu}{\nu_{\rm c}}\right)^{-2.5+b_1+b_2\log(\nu/\nu_{\rm c})} e^{-b_3(\nu/\nu_{\rm c})^{-2}} + b_4 \left(\frac{\nu}{\nu_{\rm c}}\right)^{-2}$$

• linear approximation to it , centered on $v_c = 75$ MHz (5 param)

$$T_{\rm F}(\nu) \approx a_0 \left(\frac{\nu}{\nu_{\rm c}}\right)^{-2.5} + a_1 \left(\frac{\nu}{\nu_{\rm c}}\right)^{-2.5} \log\left(\frac{\nu}{\nu_{\rm c}}\right) + a_2 \left(\frac{\nu}{\nu_{\rm c}}\right)^{-2.5} \left[\log\left(\frac{\nu}{\nu_{\rm c}}\right)\right]^2 \\ + a_3 \left(\frac{\nu}{\nu_{\rm c}}\right)^{-4.5} + a_4 \left(\frac{\nu}{\nu_{\rm c}}\right)^{-2}$$

• alternative fit $T_{\rm F}(\nu) = \sum_{n=0}^{N-1} a_n \nu^{n-2.5}$ (N=4,5,6)

residuals

new fit

• add a 4 param function to fit the trough

• $v_c = 78 \pm 1 \text{ MHz}$, FWHM = 19^{+4}_{-2} MHz, A= $0.5^{+0.5}_{-0.2}$ K (99%)

• absorption with S/N = 37

Hardware and processing tests

- ground plane
- NS/EW
- balun shield
- moon, sun, Galaxy
- solar and sidereal time
- data over 2 years
- 2 calib. techniques
- 2 pipelines
- beam correction
- beam model
- foreground fit
- 90-200 MHz has no signal

alternative explanations

Alternative astronomical or atmospheric mechanisms all excluded for various reasons :

- H II regions and Radio-frequency recombination lines not concentrated in Galactic plane, inconsistent spectra
- Earth's ionosphere no diurnal variations
- Hydroxyl radical and nitric oxide max 0.1 mK

=> signal due to 21 cm absorption

Signal due to 21 cm absorption

- absorption at v = 1420 / (1+z) MHz => 20 > z > 15 : expected
- U shape not expected: strong initial flux of Ly- α ?
- Amplitude requires $T_{CMB} / T_s > 15$ while at most 7 is expected - earlier gas decoupling (z=250 instead of 150) excluded by Planck
 - T_{CMB} > 104 K instead of 2.725 (1+z) = 46 K at z=17
 DM decay or annihilation, primordial BH,
 primordial B field would also increase T_{gas} and T_S
 - T_s < 3.2 K, interacting with something cooler: CDM ?

Experimental perspectives

Many similar experiments underway

• LEDA, SCI-HI, PRIZM, SARAS2

best would be

- in space (no atmosphere and ionosphere -> simpler foreground)
- lunar farside (surface or orbiting the moon)

Spatial fluctuations with interferometer

• HERA operational in the next 2 years:

power spectrum of EDGE signal

• SKA

Barkana's interpretation

- best case $x_{H1} = 1$, $T_s = T_{gas}$, no astrophysical heating : A = 209 mK
- various ideas to increase absorptions fail: density fluctuations, much larger abundance of early haloes (~ no effect), lower residual electron fraction (constrained by CMB observations)

=> must be CDM

• assume velocity-dependent baryon-DM cross-section:

$$\sigma(\nu) = \sigma_c \left(\frac{\nu}{c}\right)^{-4} = \sigma_1 \left(\frac{\nu}{1 \,\mathrm{km}\,\mathrm{s}^{-1}}\right)^{-4}$$

- similar to Coulomb but millicharge model probably excluded
- assume mon-standard coulomb-like interaction

Computation of 21 cm signal

 DM follow only gravity, baryons coupled to photons => relative "streaming velocity" due to DM

spatial average => global 21 cm signal (many ingredients in the calculation)

results

- $\sigma_1 = 8 \ 10^{-20} \ \text{cm}^2 \ \text{m}_{\varkappa} = 0.3 \ \text{GeV}$
- $\sigma_1 = 3 \ 10^{-19} \ \text{cm}^2 \ \text{m}_{\mu} = 2 \ \text{GeV}$
- $\sigma_1 = 1 \ 10^{-18} \ \text{cm}^2 \ \text{m}_{\varkappa} = 0.01 \ \text{GeV}$
- red amplitude comparable
 to data but not shape
- signal in dark ages unlikely
 to be observable (ionospheric
 distortions and Galactic
 synchrotron 40 times larger)

Constraints on DM

black curves for A= 231, 310, 500 mK

A < 231 mK excluded region

favors small m_{χ} and high cross section

Severely Constraining Dark Matter Interpretations of the 21-cm Anomaly

- if σ is velocity independent, we cannot explain EDGES signal
- effect of DM baryon interaction maximized for $\sigma \sim v^{-4}$ => interaction mediated by a particle with m_{med} << T at z = 17, i.e. m_{med} < 10⁻³ eV
- - experimental constraints on 5th force in this mass range
 - this mediator would contribute too much

to density of radiation at recombination

=> no new mediator

=> only possibility are models in which DM carries a "millicharge"

- Then they spend all the article discussing millicharge model
- But Barkana says : millicharge is excluded so we assume a nonstandard Coulomb-like interaction

Constraints on millicharge

• $\mathcal{E} = \mathbf{e}_{\chi} / \mathbf{e}$ millicharge

Constraints on millicharge

Many other papers

Increase CMB T

- Population of high-z black holes [Ewall-Wice+ (2018)]
- Soft photon emission from light dark matter [Fraser+ (2018)]
- Resonant oscillation of dark photons into RJ photons [Pospelov+ (2018)]
- Phenomenological connection to ARCADE-2 excess? [Feng & Holder (2018); Chluba (2015)]

Earlier gas decoupling due to early DE (Hills & Baxter 2018): Vanilla version excluded by CMB, may be highly tuned versions

Today on ArXiv: Heating of the intergalactic medium by the cosmic microwave background during cosmic dawn

Summary

- 21 cm signal \propto (T_S T_{CMB})
- EDGES sees an absorption around 78 MHz with S/N=37
- position consistent with Wouthuysen-Field effect at cosmic dawn
- however the amplitude is at least twice has much as expected
- Seems to mean T_s and then T_{gas} lower
- Barkana: this is due to cooling by a non-standard Coulomb-like interaction with CDM
- Berlin et al.: only possible model is millicharge this model can only give f_{CDM} ~ 1%
- note: if DM interacts with hadrons, it probably also annihilates to hadrons an heats gas
- experimental confirmation soon ?