Towards linking core-collapse supernova simulations with observations

- **Annop Wongwathanarat**
- **Ewald Müller**
- Hans-Thomas Janka
- **Victor Utrobin**
- **Michael Gabler**
- and Garching SN group

Max-Planck-Institut für Astrophysik

Institute for Theoretical and Experimental Physics

CEA/DAp seminar, 23 October 2018

Outline

- Brief introduction
 - What is core-collapse supernova ?
 - The delayed neutrino-driven mechanism
 - How do we model it ?
- What happen after the explosion ?
 - State-of-the-art long-time modeling of CCSNe
 - Mixing instabilities in progenitor envelope
- Extracting observables from simulations
 - Light curves
 - Pulsar kicks
 - Element distributions
- Conclusions

What is CCSNe ?

CCSNe = death of massive stars > 8-10 Msun

collapse >> bounce >> shock formation >> stalled accretion shock

how to revive the stalled shock???

delayed neutrinodriven mechanism

multi-D effects play important roles !!!

Figure from Janka et al. (2012)

Si

0

Si

Convection and SASI

9.6 solar masses star

Melson et al. (2015a), ApJL 801

20 solar masses star

Melson et al. (2015b), ApJL 808

Half a century problem

Ingredients in CCSN models and observables

Predictions of Signals from Supernovae

Figure from Janka et al. (2012)

What happens after the explosions?

SN shock propagation

Shock propagation follows Sedov-Taylor blast wave solution Shock acceleration when ρr³ profile decreases, and vice versa

Kifonidis+ 2003

Rayleigh-Taylor instabilities induce macroscopic mixing

2D simulation by Müller et al. (1991) using PROMETHEUS

2D simulation by Arnett et al. (1989) using PROMETHEUS 15 M_{\odot} progenitor by Arnett (1987)

Challenges in long time simulations

Standard approach in 90s

Motivated by observations of SN1987A Nickel required to mix beyond ~3000 km/s 2D simulations + thermal bomb + perturbation

Arnett+ 1989b; Fryxell+ 1991; Müller+ 1991b,a,c; Hachisu+ 1990, 1991, 1992, 1994;Yamada & Sato 1990, 1991; Herant & Benz 1991; Herant & Benz 1992;Herant & Woosley 1994; Shigeyama+ 1996; Iwamoto+ 1997; Nagataki+ 1998; Kane+ 2000

But, failed to solve "Nickel discrepancy" >> Nickel confined to velocities below 2000 km/s >> Nickel not mixed far enough

Progenitors

progenitor structure

Herant&Benz 92

80 100 60 20 Herant&Benz 91 Different growth of **RTIs depending on** 80 100

Explosion physics

Kifonidis+ 2000, 2003, 2006 were first to consider explosions in Multi-D

Low mode instabilities in SN cores make large-scale largeamplitude perturbation

Numerics

How explosion asymmetries evolve

Isosurfaces of 3% Ni color coded by velocities

Wongwathanarat+ (2015)

Shigeyama&Nomoto (1990) **BSG**, N20 5589 s 5e11 cm v_{r} [1000 km/s] 0.49 -0.37 1.4 2.2 7258 s

 v_{r} [1000 km/s]

2.2

3.3

1.1

Woosley+ (1988)

8e11 cm

-0.074

BSG, **B15**

Nickel-rich ejecta at shock breakout

Woosley & Weaver (1995)

RSG, L15 Limongi+ (2000)

Dynamical interplay between the propagation of the forward SN shock, the reverse shock, and the Ni-rich ejecta determines the morphology of Ni-rich ejecta at shock breakout

Shigeyama&Nomoto (1990) **BSG**, N20

5589 s

5e11 cm v_r [1000 km/s] 0.49 -0.371.4 2.2

RSG model

at He/H interface

→ meet reverse shock

Shock strongly accelerates --> RTI fingers stretch --> Reverse shock forms --> RTI fingers collide with Reverse shock

N20 model

Shock accelerates briefly --> Reverse shock forms --> Slow nickel bubbles collide with reverse shock and flattened

B15 model

at C+O/He interface

Significant growth of RTIs --> fragmentation of nickel bubbles

B15 model

at He/H interface

→ meet reverse shock

Shock accelerates briefly --> Reverse shock forms --> Fast nickel fingers ahead of reverse shock !!!

B15 model

meet reverse shock

→ shock breakout

Fast nickel fingers stretch --> inner part of ejecta trapped by reverse shock

Connections to observations

SN1987A

Core-collapse supernova Type: IIP-pec Discovery: Feb 23, 1987 osition: Large Magellanic Cloud (LMC) Progenitor: Sanduleak -69° 202 Luminosity: 3-6 x 10³⁸ erg/s T_{eff}: 15000-18000 K Progenitor type: Blue Supergiant

ZAMS: 18-21 M_{\odot} Woosley (1988), Shigeyama & Nomoto (1990)

 $\begin{array}{c} \text{M(He core): 6 } \text{M}_{\odot} \\ \text{Saio et al. (1988), Woosley (1988)} \\ \text{Explosion Energy: (1.1\pm0.3)x10^{51} erg} \\ \text{Blinnikov et al. (2000)} \\ \text{M(56Ni): (7.1\pm0.3)x10^{-2} } \text{M}_{\odot} \\ \text{M(44Ti): (0.55\pm0.17)x10^{-4} } \text{M}_{\odot} \end{array}$

Seitenzahl et al. (2014)

SN1987A models

Wongwathanarat+ (2015), Utrobin+ (2015)

Utrobin+ (in prep.)

Light Curves of SN1987A

- **B15** model reproduces the dome of light curve

Light curve deficits due to progenitor structure

Preliminary results from Binary merger models

- Consider binary merger models by Menon & Heger (2017)
- First results look promising

Utrobin et al. (in prep.)

Courtesy of Victor Utrobin

Neutron star kicks

Kick mechanism??

average pulsars velocity: 200-500 km/s (e.g., Hobbs et al. 2005)

Pulsar kicks

39 long-time models in 3D

Wongwathanarat & Janka (in prep.)

 $\vec{v}_{ns}(t) = -\vec{P}_{gas}(t)/M_{ns}(t)$

Simulation results show for the first time a NS kick beyond 1000 km/s

Element distribution

Ni shows hemispheric asymmetry

asymmetry can be as large as 50%

observed??? Constrain kick mechanism???

Pulsar kicks

Katsuda+ (2018)

- IME ejecta ejected preferentially opposite to the NS kick direction
- Strong support for hydrodynamic kick mechanism

Conclusions

 We are now making progresses towards direct comparison with SN/SNR observations !!!

- perform 3D simulations of CCSN from shortly after core bounce until shock breakout
- Compute bolometric light curves based on 3D hydrodynamic models and compare with data from SN1987A
- results from 7 single star progenitor models are still unable to reproduce the observed light curve
- Calculate NS kicks by gravitational tug boat mechanism
- Obtain kick beyond 1000 km/s which can explain even the fastest pulsar velocity observed