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Vlasov-Poisson	equa.ons:	
dynamics	of	a	self-gravita.ng	collisionless	fluid
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Liouville	theorem:

Poisson	equa.on:

Before	shell-crossing,	moments>2	can	be	neglected	(velocity	dispersion,…)	and	we	get	
evolu*on	equa*ons	for	the	cosmic	density	and	velocity	fields:	
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These	highly	non-linear	equa*ons	can	be	solved	using	numerical	simula*ons	or	analy*cally	in	
some	specific	regimes.	Exact	solu*ons	are	crucial	to	understand	the	details	of	structure	forma*on.	
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con.nuity	equa.on:

Euler	equa.on:
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The	spherical	collapse	dynamics
II.1	Vlasov-Poisson

A	solu*on	is	known	for	an	ini*al	spherically	symmetric	fluctua*on	thanks	to	Gauss	theorem.	

R̈ = �GM

R2

The	evolu*on	of	the	radius	of	the	shell	of	mass	M	is	given	by	

where	M	is																																																				.	M =
4
3
⇡R3
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Parametric	solu*ons	are	known	in	an	EdS	Universe	(numerical	integra*on	has	to	be	done	in	
the	general	case).		
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An	ini*ally	overdense	sphere	expands	un*l	
turnaround	and	collapses	for	a	linearly	
interpolated	density																						.	
																						

�c ⇡ 1.686

in 3D where J3/2 is the Bessel function of the first kind of index 3/2. The calculation14 of (160)
makes indeed intervene only the second moment and its variation with the smoothing scale so
that Bernardeau (1994a),

h�3
Ric

h�2
Ri2 = 3⌫2 +

d log �
2
R

d log R
(162)

where ⌫2 is directly related to F2 as its angular average,

⌫2 =

Z 1

�1
dµ F2(k1,k2) (163)

(µ is the cos of the angle between k1 and k2). For an Einstein-de Sitter universe we have
3⌫2 = 34/7. Such relation between the spherical collapse dynamics and tree-order cumulant can
actually be generalized to all orders. This is this connexion that we will try to unveil in the
rest of this section. First we need to explore a bit more the specificities of the spherical collapse
solutions.

11.2 The spherical collapse
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Figure 20: Example of evolution of a density profile with the spherical collapse. In blue we
give the linearly evolved profile (linear growing mode)), in red its nonlinear evolution. Given a
density contrast within a radius in the growing mode linear regime ⌧(< r) the subsequent shell
size and density it compasses are entirely determined by the spherical evolution. Example of
such evolutions are given by the blue and red circles.

The spherical collapse does not only give the time within which a spherically symmetric
perturbation collapses, it gives the explicit and exact solution of the nonlinear evolution of the
density field before shell crossing for a wide class of initial fields, those with initial spherical
perturbations. Moreover, the Gauss theorem ensures that the radius evolution of a shell in such
a geometry is entirely determined by the total mass it contains. So let us consider a density
contrast ⌧(< r) within the radius r. Let us call R(⌘) the radius of that same shell during its
nonlinear evolution and ⇢(< R, ⌘) the total density it contains. At an arbitrarily early time
the amount of matter encompassed within such a radius is simply 4⇡/3r

3
⇢(⌘0) and by matter

conservation we have
⇢(< R, ⌘)R3(⌘) = ⇢(⌘0)r3

. (164)

14It is based on the exploitation of summation theorem enjoyed by the Bessel functions, relation 8.530 of
Gradshteyn and Ryzhik (1965).
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1.	CV 3.	Galaxies2.	Contexte 4.	Cosmologie 6.	Résumé5.	ProjetII.	Instabilité	gravita5onnelles

Perturba.on	theory
II.1	Vlasov-Poisson

Assump5on:	cosmic	fields	can	be	expanded	wrt	ini*al	fields	
All	orders	can	then	be	computed	hierarchically

�(x, t) = �1(x, t) + �2(x, t) + · · ·

α(k1,k2) ≡
k12 · k1

k21
, β(k1,k2) ≡

k212(k1 · k2)

2k21k
2
2

(39)

encode the non-linearity of the evolution (mode coupling) and come from the non-
linear terms in the continuity equation (16) and the Euler equation (17) respectively.
From equations (37)-(38) we see that the evolution of δ̃(k, τ) and θ̃(k, τ) is determined
by the mode coupling of the fields at all pairs of wave-vectors k1 and k2 whose sum is
k, as required by translation invariance in a spatially homogeneous Universe.

2.4.2 General Solutions in Einstein-de Sitter Cosmology

Let’s first consider an Einstein-de Sitter Universe, for which Ωm = 1 and ΩΛ = 0. In
this case the Friedmann equation, Eq. (4), implies a(τ) ∝ τ2, H(τ) = 2/τ , and scaling
out an overall factor of H from the velocity field brings Eqs. (37-38) into homogeneous
form in τ or, equivalently, in a(τ). As a consequence, these equations can formally be
solved with the following perturbative expansion [270, 334, 428],

δ̃(k, τ) =
∞
∑

n=1

an(τ)δn(k), θ̃(k, τ) = −H(τ)
∞
∑

n=1

an(τ)θn(k), (40)

where only the fastest growing mode is taken into account. Remarkably it implies
that the PT expansions defined in Eq. (35) are actually expansions with respect to the
linear density field with time independent coefficients. At small a the series are domi-
nated by their first term, and since θ1(k) = δ1(k) from the continuity equation, δ1(k)
completely characterizes the linear fluctuations.

The equations of motion, Eqs. (37-38) determine δn(k) and θn(k) in terms of the
linear fluctuations to be:

δn(k) =

∫

d3q1 . . .

∫

d3qn δD(k− q1...n)Fn(q1, . . . ,qn)δ1(q1) . . . δ1(qn), (41)

θn(k) =

∫

d3q1 . . .

∫

d3qn δD(k− q1...n)Gn(q1, . . . ,qn)δ1(q1) . . . δ1(qn), (42)

where Fn and Gn are homogeneous functions of the wave vectors {q1, . . . ,qn}
with degree zero. They are constructed from the fundamental mode coupling functions
α(k1,k2) and β(k1,k2) according to the recursion relations (n ≥ 2, see [270, 334]
for a derivation):

Fn(q1, . . . ,qn) =
n−1
∑

m=1

Gm(q1, . . . ,qm)

(2n+ 3)(n− 1)

[

(2n+ 1)α(k1,k2)Fn−m(qm+1, . . . ,qn)

+2β(k1,k2)Gn−m(qm+1, . . . ,qn)
]

, (43)

20

PT kernels
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Perturba.on	theory
II.1	Vlasov-Poisson

maJer	power	spectrum:

2-loop 
(RegPT)

Taruya+12

This	approach	is	valid	in	the	weakly	non-linear	
regime	 where	 |δ|<<1	 i.e	 at	 high	 redshiY	 /	
large	scale.	

How	to	go	beyond?	
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large	scale.	

How	to	go	beyond?	
Adding	 new	 degrees	 of	 freedom	 in	 the	
modeling?
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regime	 where	 |δ|<<1	 i.e	 at	 high	 redshiY	 /	
large	scale.	
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Adding	 new	 degrees	 of	 freedom	 in	 the	
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Perturba.on	theory
II.1	Vlasov-Poisson

maJer	power	spectrum:

2-loop 
(RegPT)

Taruya+12

This	approach	is	valid	in	the	weakly	non-linear	
regime	 where	 |δ|<<1	 i.e	 at	 high	 redshiY	 /	
large	scale.	

How	 to	 go	 beyond	 without	 introducing	 a	
myriad	of	free	parameters?	
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How	to	go	beyond	the	weakly	non-linear	regime?
II.1	Vlasov-Poisson

Need:	configura*ons	in	which		
-solu*ons	from	first	principles	can	be	found	
-solu*ons	are	accurate	as	deep	as	possible	in	the	non-linear	regime	

Mo5va5on:	
-theorists:	we	want	to	understand	the	physical	processes	driving	structure	forma*on!	
-galaxy	surveys:	huge	datasets	that	will	need	to	be	modelled	very	precisely	to	op*mally	
extract	the	underlying	cosmological	informa*on		

Idea:	use	the	symmetry!	

Proposed	configura5ons:	count-in-(spherical)cells	 P(⇢1, · · · , ⇢n) =?
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	Posi.vely	skewed	PDF

peaks	become	denservoids	become	emp.er
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Driving	parameter:	variance	σ	(=amplitude	of	fluctua*ons)	
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PT	can	predict	the	n-th	order	cumulants	whose	ra*os	

are	almost	z-independent.	In	par*cular,	if	the	density	
field	is	smoothed	with	a	top-hat	filter	
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where	

depends	on	the	shape	of	the	linear	power	spectrum.	

From	cumulants	to	PDF

Hierarchy	of	cumulants:	
σ2,	<δ3>c∝σ4,	<δ4>c∝σ6,	…	



The	PDF	of		x=δ/σ	can	then	be	wrieen	as	an	Edgeworth	expansion	(in	powers	of	σ):		

which	can	be	derived	from	the	cumulant	genera*ng	func*on	of	ρ=1+δ	
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«An unlikely fluctuation is brought about by 
the least unlikely among all unlikely paths » 
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From	cumulants	to	PDF Sn =
h�nic
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Problem	 :	When	 this	 series	 is	 truncated	 at	 some	
orders,	the	PDF	is	unphysical	:	it	is	not	normalised	
and	can	take	nega*ve	values.																																																																												
Solu*on	:	 large-devia.on	theory	provides	us	with	
a	model	 for	 the	 PDF	which	 does	 not	 suffer	 from	
those	issues.	All	cumulants	are	exact	at	tree-order.	
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‣ Large	devia*ons	principle	
‣ One-point	density	PDF	
‣ Cosmic	PDFs	as	a	cosmological	probe?

Sta.s.cs	of	cosmic	fields	in	the	large	devia.on	regime	



Different	ini*al	configura*ons	can	lead	to	the	same	final	state!	What	is	the	most	likely	one?

Large-devia.on	Theory:	what	is	the	most	likely	ini.al	
configura.on	a	final	density	originates	from?

Conjecture:	Spherical	symmetry	enforces	this	most	likely	path	to	be	the		Spherical	Collapse	dynamics.

in 3D where J3/2 is the Bessel function of the first kind of index 3/2. The calculation14 of (160)
makes indeed intervene only the second moment and its variation with the smoothing scale so
that Bernardeau (1994a),

h�3
Ric

h�2
Ri2 = 3⌫2 +

d log �
2
R

d log R
(162)

where ⌫2 is directly related to F2 as its angular average,

⌫2 =

Z 1

�1
dµ F2(k1,k2) (163)

(µ is the cos of the angle between k1 and k2). For an Einstein-de Sitter universe we have
3⌫2 = 34/7. Such relation between the spherical collapse dynamics and tree-order cumulant can
actually be generalized to all orders. This is this connexion that we will try to unveil in the
rest of this section. First we need to explore a bit more the specificities of the spherical collapse
solutions.

11.2 The spherical collapse
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Figure 20: Example of evolution of a density profile with the spherical collapse. In blue we
give the linearly evolved profile (linear growing mode)), in red its nonlinear evolution. Given a
density contrast within a radius in the growing mode linear regime ⌧(< r) the subsequent shell
size and density it compasses are entirely determined by the spherical evolution. Example of
such evolutions are given by the blue and red circles.

The spherical collapse does not only give the time within which a spherically symmetric
perturbation collapses, it gives the explicit and exact solution of the nonlinear evolution of the
density field before shell crossing for a wide class of initial fields, those with initial spherical
perturbations. Moreover, the Gauss theorem ensures that the radius evolution of a shell in such
a geometry is entirely determined by the total mass it contains. So let us consider a density
contrast ⌧(< r) within the radius r. Let us call R(⌘) the radius of that same shell during its
nonlinear evolution and ⇢(< R, ⌘) the total density it contains. At an arbitrarily early time
the amount of matter encompassed within such a radius is simply 4⇡/3r

3
⇢(⌘0) and by matter

conservation we have
⇢(< R, ⌘)R3(⌘) = ⇢(⌘0)r3

. (164)

14It is based on the exploitation of summation theorem enjoyed by the Bessel functions, relation 8.530 of
Gradshteyn and Ryzhik (1965).
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LDP	tells	us	how	to	compute	the	cumulant	genera.ng	func.on	from	the	ini*al	condi*ons	
using	the	spherical	collapse	as	the	«	mean	dynamics	»:

'({�k}) = sup(�i⇢i � I(⇢i))
⇢i

Varadhan’s 
theorem
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The	density	PDF	is	then	obtained	via	an	inverse	Laplace	transform	of	the	CGF

'(�) =
Z

P (⇢) exp(�⇢)$ P (⇢) =
Z ı1

�ı1

d�

2ı⇡
exp(�⇢� '(�))exp

• This	is	exact	in	the	zero	variance	limit.	We	then	extrapolate	to	non	zero	values.	

• Parameter-free	theory	which	depends	on	cosmology	through	:	the	spherical	collapse	
dynamics,	the	linear	power	spectrum	and	growth	of	structure.	

• Predic*ons	are	fully	analy.cal	if	one	applies	the	LDP	to	the	log						 Uhlemann+16



LDP	tells	us	how	to	compute	the	cumulant	genera.ng	func.on	from	the	ini*al	condi*ons	
using	the	spherical	collapse	as	the	«	mean	dynamics	»:

'({�k}) = sup(�i⇢i � I(⇢i))
⇢i

Varadhan’s 
theorem

Why?	

Cosmological density profiles from perturbation theory
calculations

20 avril 2013

1 Introduction

It is time to revisit count in cells statistics...

2 The general theory

Let us define a finite number of concentric cells of radius Ri and their densities, ⇢i. They form a priori
a set of correlated random variables. One can define the generating function of their cumulants as

'({�i}) =
1X

pi=0

h⇧i⇢
pi
i ic

⇧i�
pi
i

⇧ipi
. (1)

Such a function is a function of �i. Note that it is by itself an observable as it can be computed from the
joint PDF,

exp ['({�i})] = hexp(�i⇢i)i (2)

from the moment generating function. One expects however such a function to be defined for limited
range of values of �i as such ensemble average are not defined if |�i| is too large. We will see that this
analytical properties will play a crucial role in the following.

This generating function can be computed at tree order in perturbation theory, that is when each of
the coe�cient h⇧i⇢

pi
i ic is computed at leading order assuming Gaussian initial conditions. As recalled in

the introduction, this can be entirely related to the spherical collapse dynamics.
The formal solution of this question is give by,

exp ['({�i})] =
Z

D [⌧(~x)]P [⌧(~x)] exp(�i⇢i [⌧(~x)]) (3)

Let us denote ⇣(⌧i) the nonlinear transform of the density when ⌧i is the linear density profile. This
transform is a priori time dependent but its dependence on time is very small and in the following we
will neglect this dependence. We can define  (⇢i) as

 ({⇢i}) =
1

2

X

ij

⌅ij ⌧i⌧j (4)

where ⇣(⌧i) = ⇢i and ⌅ij is the inverse matrix of the cross-correlation of the density in cells of radius

Ri⇢
1/3
i ,

�2(Ri⇢
1/3
i , Rj⇢

1/3
j ) ⌅jk = �ik. (5)

The coe�cient therefore depend on both the radii Ri and the density ⇢i. The cumulant generating function
is then given by the Legendre transform of  ,

'({�i}) =
X

i

�i⇢i � ({⇢i}) (6)

where ⇢i are determined by the stationarity conditions,

�i =
@ ({⇢i})

@⇢i
. (7)

This is this general expression that we will exploit in the following.

1

⤷ known Gaussian PDF

' �i h⇢ii + �i�j h⇢i⇢ji + . . .

initial density contrast

exp ['({�k})] = M({�k}) =
D
exp(⌃

i
�i⇢i)

E
=

Z 1

0
⇧
i
d⇢iP ({⇢k}) exp

⇣
⌃
i
�i⇢i

⌘

﹛
P(⌧) / e�I(⌧)

=
Z

d⌧i exp (�i⇣SC(⌧i)� I(⌧i))

'(�k)

contraction
principle
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Horizon-Run	4:	3.1	h-1	Gpc		
R	=	10…15	h-1	Mpc

One-cell	density	PDF
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We have developed a fast and easy-to-use public code… 
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http://cita.utoronto.ca/~codis/LSSFast.html
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To	get	one-cell	PDF,	one	has	to:

Where is the cosmology dependence?

spherical collapse 
dynamics

1)	know	the	rate	func*on	of	the	ini*al	condi*ons	e.g	(Gaussian):

I(⌧(R0)) = �2(Rp)⇥ 1/2⌧(R0)2/�2(R0)

2)	deduce	the	rate	func*on	of	the	final	densi*es	from	the	Contrac*on	Principle

I(⇢) = I(⌧ = ⇣�1(⇢))

where	the	ini*al	variance	is	a	func*on	of	the	linear	power	spectrum

�2(R) =
1

(2⇡)3

Z
d3kPlin(k)W 2

TH
(kR)

3)	compute	CGF	and	then	PDF

P (⇢|⌫, Plin, �NL(R, z))

modifications
of gravity initial statistics

primordial non-Gaussianities

growth of structure
dark energy

!25



The	full	knowledge	of	the	PDF	can	be	used	to	es*mate	the	redshiY	evolu*on	of	the	density	
variance	σ	and	therefore	the	DE	e.o.s	through	D(z).

sample varianceσ�A
σ�ML
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max likelihood

ML estimator for the variance

Maximum	Likelihood	es*mator	:

�̂2
A =

1
N

NX

i=1

(⇢i � 1)2

�̂2
ML = argmax�̃2

NY

i=1

P(⇢i|�̃2)

Sample	variance	:

When	the	PDF	becomes	non-
Gaussian	(high	σ),	the	sample	
variance	is	sub-op*mal	compared	
to	the	ML	es*mator

SC+16b
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0.1<z<1

PDF as a cosmological probe
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Joint statistics of count-in-cell 5

Figure 2. a) the configuration of 3 + 1 spherical cells in one location (red cells shown in the left-hand panel) can be used to compute
the joint cumulants involving any power of the density in 3 concentric cells in one location (red cells displayed in the b) panel) and
one power of the density in one cell (coloured in brown in the middle panel) at some arbitrary distance re from the rest, as described
in section 3.2. Those cumulants are the building blocks of the two-point PDF of concentric densities in the large-separation limit (see
equation 38). The corresponding configuration with n = 3 concentric cells in one location (red) and m = 3 concentric cells at a distance
re (brown) is displayed in the c) panel.

3.2 The n+1 cell formalism

Let us now consider the formal derivation of the generat-
ing function of joint cumulants for n + 1 cells centred on
the same point when the n + 1th radius, Rn+1 = re, is set
apart (at this stage there is no assumption on the relative
size of these radii). This configuration is illustrated in the
left-hand panel of Fig. 2 and is of particular interest since
we will show in this section how it can be used to predict
some configurations of the two-point statistics without any
assumption on the separation. Later, we will also use it as a
building block of the large-separation approximation of the
two-point correlation function of concentric densities (see
section 4.2). This generating function simply reads

'b({�k};< re) =
1X

pi=0

h⇢(re)⇧n
i=1 ⇢i

pi(Ri)ic
⇧i�

pi
i

⇧ipi!
, (24)

where ⇢(re) enters the cumulant h⇢(re)⇧n
i=1 ⇢i

pi(Ri)ic only
as a linear power. Equation (24) is the generating function
of the cumulants containing one power of the outer density
and arbitrary powers of the n inner densities. It simply cor-
responds to the first derivative of the cumulant generating
functions for n+ 1 cells taken at the origin

'b({�k};< re) =
@

@�n+1
'(�1, . . . ,�n+1)

���
�n+1=0

. (25)

Taking advantage of the stationary condition (23) applied
to �n+1, we also have

'b({�k};< re) = ⇢n+1(�1, . . . ,�n, 0) , (26)

where ⇢n+1 is in turn computed in terms of the �i from
the set of stationary conditions (20). Finally Equation (26)
can also be re-expressed via equation (17) in terms of the
corresponding linear density contrast as

'b({�k};< re) = ⇣ (⌧(re)) , (27)

where ⌧(re) ⌘ ⌧n+1(�1, · · · ,�n, 0) is to be computed as a
function of {�k} for the specific case where �n+1 is set to 0.
We can then take advantage of decimation (see Appendix A,
equation A14) to write ⌧(re) via the implicit equation:

⌧(re) =
nX

i=1

�
2(re ⇣(⌧(re))

1/3
, Ri ⇣(⌧i)

1/3)⇥

nX

j=1

⌅ij({Rk ⇣(⌧k)
1/3)})⌧j , (28)

where the tensor and vector quantities (⌅ij , ⌧i) are com-
puted when only the first n cells are considered (so that the
set

P
j=1,n ⌃ij⌅jk = �ik together with the stationary con-

ditions form a set of n coupled equations only). Technically,
equation (28) can be solved given the values of {⌧k}k=1,···n
which in turn can be expressed in terms of the variables
{�k}k=1,···n.

Now note that equations (27) and (28) can be used to
get the cumulant generating functions for any quantities lin-
early related to the density. In particular, the density in
an infinitesimal shell at a distance re reads ⇢(re < r <

re + dre) = d⇢(re)r
3
e/dr

3
e so the corresponding cumulant

generating function, 'b({�k}; re), can be written as

'b({�k}; re) =
1
r2e

d
dre

✓
r
3
e

3
'b({�k};< re)

◆
. (29)

Thanks to rotational invariance, the value of the cumulant
within an infinitesimal shell at a distance re is the same as if
the density was computed at a distance re in any direction.
Therefore, equation (29) also describes the cumulant gener-
ating function of concentric densities in spheres of radii Ri

(1 6 i 6 n) and density at some given distance re.
Finally note that the domain for ⇢e does not need to

be a spherical cell and equation (29) can subsequently be
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where	the	large-devia*ons	bias	is
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Finally note that the domain for ⇢e does not need to

be a spherical cell and equation (29) can subsequently be
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Joint statistics of count-in-cell 5

Figure 2. a) the configuration of 3 + 1 spherical cells in one location (red cells shown in the left-hand panel) can be used to compute
the joint cumulants involving any power of the density in 3 concentric cells in one location (red cells displayed in the b) panel) and
one power of the density in one cell (coloured in brown in the middle panel) at some arbitrary distance re from the rest, as described
in section 3.2. Those cumulants are the building blocks of the two-point PDF of concentric densities in the large-separation limit (see
equation 38). The corresponding configuration with n = 3 concentric cells in one location (red) and m = 3 concentric cells at a distance
re (brown) is displayed in the c) panel.

3.2 The n+1 cell formalism

Let us now consider the formal derivation of the generat-
ing function of joint cumulants for n + 1 cells centred on
the same point when the n + 1th radius, Rn+1 = re, is set
apart (at this stage there is no assumption on the relative
size of these radii). This configuration is illustrated in the
left-hand panel of Fig. 2 and is of particular interest since
we will show in this section how it can be used to predict
some configurations of the two-point statistics without any
assumption on the separation. Later, we will also use it as a
building block of the large-separation approximation of the
two-point correlation function of concentric densities (see
section 4.2). This generating function simply reads

'b({�k};< re) =
1X

pi=0

h⇢(re)⇧n
i=1 ⇢i

pi(Ri)ic
⇧i�

pi
i

⇧ipi!
, (24)

where ⇢(re) enters the cumulant h⇢(re)⇧n
i=1 ⇢i

pi(Ri)ic only
as a linear power. Equation (24) is the generating function
of the cumulants containing one power of the outer density
and arbitrary powers of the n inner densities. It simply cor-
responds to the first derivative of the cumulant generating
functions for n+ 1 cells taken at the origin

'b({�k};< re) =
@

@�n+1
'(�1, . . . ,�n+1)

���
�n+1=0

. (25)

Taking advantage of the stationary condition (23) applied
to �n+1, we also have

'b({�k};< re) = ⇢n+1(�1, . . . ,�n, 0) , (26)

where ⇢n+1 is in turn computed in terms of the �i from
the set of stationary conditions (20). Finally Equation (26)
can also be re-expressed via equation (17) in terms of the
corresponding linear density contrast as

'b({�k};< re) = ⇣ (⌧(re)) , (27)

where ⌧(re) ⌘ ⌧n+1(�1, · · · ,�n, 0) is to be computed as a
function of {�k} for the specific case where �n+1 is set to 0.
We can then take advantage of decimation (see Appendix A,
equation A14) to write ⌧(re) via the implicit equation:

⌧(re) =
nX

i=1

�
2(re ⇣(⌧(re))

1/3
, Ri ⇣(⌧i)

1/3)⇥

nX

j=1

⌅ij({Rk ⇣(⌧k)
1/3)})⌧j , (28)

where the tensor and vector quantities (⌅ij , ⌧i) are com-
puted when only the first n cells are considered (so that the
set

P
j=1,n ⌃ij⌅jk = �ik together with the stationary con-

ditions form a set of n coupled equations only). Technically,
equation (28) can be solved given the values of {⌧k}k=1,···n
which in turn can be expressed in terms of the variables
{�k}k=1,···n.

Now note that equations (27) and (28) can be used to
get the cumulant generating functions for any quantities lin-
early related to the density. In particular, the density in
an infinitesimal shell at a distance re reads ⇢(re < r <

re + dre) = d⇢(re)r
3
e/dr

3
e so the corresponding cumulant

generating function, 'b({�k}; re), can be written as

'b({�k}; re) =
1
r2e

d
dre

✓
r
3
e

3
'b({�k};< re)

◆
. (29)

Thanks to rotational invariance, the value of the cumulant
within an infinitesimal shell at a distance re is the same as if
the density was computed at a distance re in any direction.
Therefore, equation (29) also describes the cumulant gener-
ating function of concentric densities in spheres of radii Ri

(1 6 i 6 n) and density at some given distance re.
Finally note that the domain for ⇢e does not need to

be a spherical cell and equation (29) can subsequently be
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15,000	square	degrees	
R	=	10	h-1	Mpc	

0.1<z<1

PDF as a cosmological probe

SC+16b

Error	budget	for	finite	volume	surveys?

dark energy equation of state
w=w0+(1-a)wa

FoM for a Euclid-like survey

galaxy	bias?
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How to deal with biased tracers?
Halo	bias	can	be	accounted	for	and	marginalised	over	for	cosmological	experiments…

bias function
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We	use	a	quadra*c	log	bias	model: log ⇢m = b0 + �1� log ⇢h + �2� log2 ⇢h
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=b1 =b2
Measuring	the	PDF	then	allows	us	to	constrain	σ	and	the	bias	parameters:
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How to deal with biased tracers?
Halo	bias	can	be	accounted	for	and	marginalised	over	for	cosmological	experiments…
We	use	a	quadra*c	log	bias	model: log ⇢m = b0 + �1� log ⇢h + �2� log2 ⇢h

!32



=b1 =b2
Measuring	the	PDF	then	allows	us	to	constrain	σ	and	the	bias	parameters:
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15,000	square	degrees	
R	=	10	h-1	Mpc	

0.1<z<1

PDF as a cosmological probe

SC’16b

Error	budget	for	finite	volume	surveys?

dark energy equation of state
w=w0+(1-a)wa

FoM for a Euclid-like survey

galaxy	bias?

photometric	surveys?
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densities in redshift bins
Uhlemann+17e

Densi*es	in	long	cylinders:	same	formalism	applies	with	cylindrical	collapse
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‣ Multi-scale density PDF can be predicted in the mildly 
non-linear regime with surprising accuracy (<1% for 
σ=O(1)) even in the rare event tails 

‣ Predictions are fully analytical, parameter-free and 
explicitly cosmology-dependent 

‣ Cosmic variance can be predicted from first principle 

‣ We have an accurate model for biased density tracers, 
velocities, projected densities and (in progress) cosmic 
shear maps, including primordial non-Gaussianities 

Conclusion	

Large	devia5on	principle:	
an	unlikely	fluctua5on	is	brought	about	by	the	least	unlikely	of	all	unlikely	paths.	



comparison	with	log	normal		
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comparison	with	log	normal	:	biased	tracers	
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