Statistics of cosmic fields
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How is the cosmic web woven?

Gaussian primordial fluctuations
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Vlasov-Poisson equations:
dynamics of a self-gravitating collisionless fluid

Liouville theorem: 0 p 0 0
o —mVo— t) =0
at —|_ ma2 aX m ¢ap f(X7 p? )
Poisson equation: A¢ = 4ma*G(p — p)

These highly non-linear equations can be solved using numerical simulations or analytically in
some specific regimes. Exact solutions are crucial to understand the details of structure formation.

Before shell-crossing, moments>2 can be neglected (velocity dispersion,...) and we get
evolution equations for the cosmic density and velocity fields:

continuity equation: % + lv [(1+6)u] =0
a

Euler equation: Ou, 4+ ﬁui 4 u; 05t _ 09 0 [xy]

ot  a a a oa




The spherical collapse dynamics

A solution is known for an initial spherically symmetric fluctuation thanks to Gauss theorem.

The evolution of the radius of the shell of mass M is given by

GM
T R?
4 A
where Mis M = §7TR3 ( — %>

Parametric solutions are known in an EdS Universe (numerical integration has to be done in
the general case).

R 1
R_ — 5(1 — COS 77) 20~ evol\lled

m i profile
i_l( — sinn) '3t e
tm T ' ' ' ‘ ro = T = TOP_l/g

An initially overdense sphere expands until
turnaround and collapses for a linearly
interpolated density d. ~ 1.686 .
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Perturbation theory

Assumption: cosmic fields can be expanded wrt initial fields (x,t) = 61(x,t) + d2(x, 1) + - - -
All orders can then be computed hierarchically

on (k) = /d?’ql---/d?’qn op(k —ai..n)Fn(di,. .., qn)01(d1) ... 01(dn)

PT kernels
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Perturbation theory

matter power spectrum:
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This approach is valid in the weakly non-linear
regime where |8|<<1 i.e at high redshift /
large scale.

How to go beyond?



Perturbation theory

This approach is valid in the weakly non-linear

regime where |8|<<1 i.e at high redshift /
large scale.

How to go beyond?

Adding new degrees of freedom in the
modeling?
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large scale.

- How to go beyond?

Adding new degrees of freedom in the

modeling?
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Perturbation theory

RegPT (2-loop) Osato+18 ’
SPT (2 loop) d
RegPT+ (2-loop) (1 } This approach is valid in the weakly non-linear
IR-resummed EFT (2-loop] 3 . . . .
RESPRESSO | regime where [§|<<1 i.e at high redshift /

simulation large scale.

1.3

1.1 4] | | - How to go beyond?

Adding new degrees of freedom in the

modeling?
1.0+

But... does it really allow us to get tighter
cosmological constraints?
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cosmological constraints?
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Perturbation theory
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This approach is valid in the weakly non-linear
regime where |8|<<1 i.e at high redshift /
large scale.

How to go beyond?
Adding new degrees of freedom in the
modeling?

But... does it really allow us to get tighter
cosmological constraints?

No!
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Perturbation theory

matter power spectrum:
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How to go beyond the weakly non-linear regime?

Need: configurations in which
-solutions from first principles can be found
-solutions are accurate as deep as possible in the non-linear regime

Motivation:
-theorists: we want to understand the physical processes driving structure formation!
-galaxy surveys: huge datasets that will need to be modelled very precisely to optimally
extract the underlying cosmological information

Idea: use the symmetry!

Proposed configurations: count-in-(spherical)cells 7)(,01) =




Cosmic density PDF




Cosmic density PDF
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Bernardeau 94

From cumulants to PDF

PT can predict the n-th order cumulants whose ratios Baugh & Gazfaﬁaga 95
] ] LI llll ] LI llll ] ]
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T g2n—2 ET + E
are almost z-independent. In particular, if the density s, $ 1 s, ]
field is smoothed with a top-hat filter 10,00 3
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depends on the shape of the linear power spectrum. 1




From cumulants to PDF gt

The PDF of x=6/c can then be written as an Edgeworth expansion (in powers of o):

S, o Ss 1 /S5\°
P(z)=G(x) |14+ 0—Hz(x)+0“ | —Hs(zx)+ = | = | Hg(x) |+
3! 4! 2\ 3!
which can be derived from the cumulant generating function of p=1+6
100 d)\
o ¢(N) = [ Plp)exp(h) < P(o) = [ 3% exp(ho — p(3)
Laplace transform inverse Laplace transform

where ©(A) =) T '), .
i=1



From cumulants to PDF gt

The PDF of x=6/c can then be written as an Edgeworth expansion (in powers of o):
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-- Edgeworth order 2 |




From cumulants to PDF gt

The PDF of x=6/c can then be written as an Edgeworth expansion (in powers of o):

S, o Ss 1 /S5\°
P(z)=G(x) |14+ 0—Hz(x)+0“ | —Hs(zx)+ = | = | Hg(x) |+
3! 4! 2\ 3!
which can be derived from the cumulant generating function of p=1+6
100 d)\
o ¢(N) = [ Plp)exp(h) < P(o) = [ 3% exp(ho — p(3)
Laplace transform inverse Laplace transform

| Problem : When this series is truncated at some

— exact PDF 1 orders, the PDF is unphysical : it is not normalised
* Edgeworthorder2 | 31 can take negative values.

| Solution : large-deviation theory provides us with

| a model for the PDF which does not suffer from

| those issues. All cumulants are exact at tree-order.

«An unlikely fluctuation is brought about by
the least unlikely among all unlikely paths »




Statistics of cosmic fields in the large deviation regime

» Large deviations principle
» One-point density PDF
» Cosmic PDFs as a cosmological probe?
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I. Gravitational instability

Bernardeau 94

Valageas 02 Large-deviation Theory: what is the most likely initial
Bernardeau&Reimberg 16 . . . . . .
configuration a final density originates from?

In principle, one has to sum over all possible paths:

Final conditions

Different initial configurations can lead to the same final state! What is the most likely one?
Conjecture: Spherical symmetry enforces this most likely path to be the Spherical Collapse dynamics.

20}

evolved
profile

| T — p = (sc(T)
initial *v —1/3
profile
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I. Gravitational instability

Large-deviation Theory: in a nutshell

LDP tells us how to compute the cumulant generating function from the initial conditions
using the spherical collapse as the « mean dynamics »:

theorem

aradhan’s
e({M}) = sup(Nipi — 1(p)) o

The density PDF is then obtained via an inverse Laplace transform of the CGF

oxp o) = [ P)expO) = Plp) = [ 52 exph— ¢(N)

oo 20T

e Thisis exact in the zero variance limit. We then extrapolate to non zero values.

e Parameter-free theory which depends on cosmology through : the spherical collapse
dynamics, the linear power spectrum and growth of structure.

e Predictions are fully analytical if one applies the LDP to the log Uhlemann+16




I. Gravitational instability

Large-deviation Theory: in a nutshell

LDP tells us how to compute the cumulant generating function from the initial conditions
using the spherical collapse as the « mean dynamics »:

aradhan’s

({Ak}) — Sgp( iPi = I(,O'z,)) Vtheorem

Why? -
P(Ak) = <e‘Xp(ZAz‘m,)> = /O Ldp; P({px}) exp (%Wm)
~ X (pi) + ANidj (pipj) + -
initial density contrast
- [ ST
k)known Gaussian PDF P(T) X G_I(T)
contraction
principle — /dTZ eXp ()\’iCSC (TZ) o I(T’L))

—— ———
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Statistics of cosmic fields in the large deviation regime

» Large deviations principle
» One-point density PDF
» Cosmic PDFs as a cosmological probe?
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I. Gravitational instability

One-cell density PDF Ontomamers.
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SC+16b

We have developed a fast and easy-to-use public code...

(3

000 (¢ (D http://cita.utoronto.ca/~codis/LSSFast.html

LSSFAST

A Mathematica package to compute cosmic density PDI in the large-deviation regime

Author: Sandrine Codis (CITA)

Last modified: 04/03/2016

Code: LSSfasttarg:z

This code is based on theoretical works in collaboration with Francis Bernardeau (IAP, CEA-Saclay) , Christophe Pichon (IAP, KIAS) and Cora Uklemann (Utrecht University)

The LSSFast code is a free software distributed under the terms of the GNU-General Public License 3. It can be redistributed and mocified at your own risk.
This program is made publicly available in the hope that it will be useful in scientific research but without any warranty.

The companion paper "Constraining the nature of dark energy via density PDF" by S. Codis, F. Bernardeau, C. Pichon, C. Uhlemann and S. Prunet illustrates
the possible use of LSSFast for cosmological data analys:s.

Any questions or remarks can be emailed to codis@cita utoronto ca

21
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Bernardeau+15
Uhlemann+16

Two-cell PDF

p2—p1 ~slope

P1

22



Bernardeau+ 15

Uhlemann+16 Two-cell PDF
statistics of the slope
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Higher density environments have more negative slopes (peaks!).
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Statistics of cosmic fields in the large deviation regime

» Large deviations principle
» One-point density PDF
» Cosmic PDFs as a cosmological probe?
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Where is the cosmology dependence?

To get one-cell PDF, one has to:
1) know the rate function of the initial conditions e.g (Gaussian):

I(1(Ro)) = 0*(Ry) x 1/27(Ro)*/o*(Ro)

where the initial variance is a function of the linear power spectrum

2 L 1 3 2
P R) = / d kWTH(kR)

2) deduce the rate function of the final densities from the Contraction Principle

I(p) = I(r €)' (p)
\ spherical collapse

dynamics

3) compute CGF and then PDF

|V Phn?O-NL R Z

growth of structure
dark energy
modifications

of gravity . |r?|t|al statistic§ o
primordial non-Gaussianities

25



SC+16b
ML estimator for the variance

The full knowledge of the PDF can be used to estimate the redshift evolution of the density
variance o and therefore the DE e.o.s through D(z).

N
Maximum Likelihood estimator : 63y, = argmax;: HP(,O@-]&Q)
N .
1 =1
: La2 b 12
Sample variance : 6% = ~ Z(pz 1)
1=1
2
— G4 sample variance :
| ikelihood  «—— When the PDF becomes non-
! — O MaXHIKEINoo ] Gaussian (high o), the sample
é : . €— variance is sub-optimal compared
T o _ to the ML estimator
3 - E— -
= —
_1 ]
_2- T R ———————————
0.1 0.2 0.3 0.4 0.5 0.6
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PDF as a cosmological probe

0.2

dark energy iequation of state
w=wp+(l-a)wa

15,000 square degrees & &
R=10h1Mpc y
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PDF as a cosmological probe

0.2

dark energy iequation of state
w=wp+(l-a)wa

15,000 square degrees & &
R=10h1Mpc y

Error budget for finite volume surveys?
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SC+1b6a

Error budget?

Maximum likelihood requires proper handling of correlations between

spheres at finite separations.
The large-deviation principle provides a framework to compute the

expected two-point correlations in the (not so) large separation limit

dark matter correlation density bias

N

P(p(z),p'(z+1e)) = P(p)P(p")[1 + &(re)b(p)b(p)]
where the large-deviations bias is

e spherical collapse
o2 (Rp1/3)

\encodes Piin(k)

28



SC+1éa

Maximum likelihood requires proper handling of correlations between

spheres at finite separations.

The large-deviation principle provides a framework to compute the
expected two-point correlations in the (not so) large separation limit

P(p(x), p'(z +1e)) = P(p)P(p")[1 4 &(re)b(p)b(p")]

dark matter correlation density bias

where the large-deviations bias is

b(p) =

— spherical collapse
—1
Csc (p)

o2(Rpl/3)

\encodes Piin(k)

Error budget?

N

Gr . .
4 e 0=0.39

: 0=0.48
2_

i e 0=0.55

b(p)

T N

—— e e —— e ——

measurements

decorrelation@ p=1

05 10
p=density
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SC+1éa

Error budget?

Maximum likelihood requires proper handling of correlations between

spheres at finite separations.

The large-deviation principle provides a framework to compute the
expected two-point correlations in the (not so) large separation limit

dark matter correlation

where the large-deviations bias is

e spherical collapse
Csc%L (p)
o2 (R,Ol/?’)

b(p) =

\encodes Piin(k)

b(p)

The typical cosmic variance on the density PDF is then:

shot noise
‘/ finite volume error

A Plr)

P*(0)) = (P(0)) = Frpg €D (0)P

“(p)

density bias

N

P(p(x), p'(z +1e)) = P(p)P(p")[1 4 &(re)b(p)b(p")]

[
I
I
1

—— e e —— e ——

measurements

decorrelation@ p=1

05

1.0

15 2.
p=density
28
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PDF as a cosmological probe

0.2

dark energy equation of state

w=wp+(l-a)Wwa 15,000 square degrees &«

R=10h1Mpc y

Error budget for finite volume surveys?

galaxy bias?

_0-'%.15 -110 -105 -100 -095 -090 -0.85

Wp
FoM for a Euclid-like survey




How to deal with biased tracers?

Halo bias can be accounted for and marginalised over for cosmological experiments...

We use a quadratic log bias model:

) at z=0., R=15

log pm = bo + B10 log py, + G20 log” py,

PDF Log+o(P(0om,on)

bias function

cumulative PDF

cumulative PDF fit-

scatter plot fit

- Ul lemann+ | 7c

Pm

Pm=Pm(Pn)

30



How to deal with biased tracers?

Halo bias can be accounted for and marginalised over for cosmological experiments...

We use a quadratic log bias model: log p,, = bg + B1olog py, + Boo log2 Oh
0.0} "' o 'Uhle'mdnnl+ll7c_:
-0.5 \‘\“\ 5
§-1.o | :
Q\ | _ _ .
> _15 z=0., R=10 i ]
8) 0., R=15
A Z=U., R=
— 2.0/
» z=1., R=10
-2.5¢
! » z=1., R=15
230
0 1 2 3
Ph
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How to deal with biased tracers?

Halo bias can be accounted for and marginalised over for cosmological experiments...
We use a quadratic log bias model: log p,, = bg —I—@log on + log® pp,
=b1 =b2

Measuring the PDF then allows us to constrain o and the bias parameters:
0_04 r+ &+~ 1 47T T T 70+ T T 7T r7 T T T T T T 71 T T

0.03!

S 0.02]

/ 0.08!
) 015 020 025 030 035 040
ag

DEGENERATE! oo

1

g
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B1

How to deal with biased tracers?

Halo bias can be accounted for and marginalised over for cosmological experiments...
We use a quadratic log bias model: log p, = bg —I—@log on + log? Oh

=b, =b,
Measuring the PDF then allows us to constrain o and the bias parameters:
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PDF as a cosmological probe

0.2

dark energy equation of state

w=wp+(l-a)Wwa 15,000 square degrees &«

R=10h1Mpc y

Error budget for finite volume surveys?
galaxy bias?

photometric surveys?

_0-'%.15 -110 -105 -100 -095 -090 -0.85
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Uhlemann+17e

densities in redshift bins

Densities in long cylinders: same formalism applies with cylindrical collapse

ToD\ ¥
Coclran) = (1= %)
v~1.3
PDF of projected DM PDF of projected halo densities
U.V e B S S = —
3 2=0.7, depth d=150 Mpc/h 4. . 0.0r 2=0.7, depth d=150 Mpc/h ]
- R=3 - 05
» R=5 L 1.0 _
R—7 a - radius:
-] 3_1_5 . . R=3 Mpc/h
. R=10 7 i . R=5
] -2.0"
R=7
-2.5"
i ° R=1O .
1.0 15 . 2.5 H e S S
p=DM density ph=halo density
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Conclusion

Multi-scale density PDF can be predicted in the mildly
non-linear regime with surprising accuracy (<1% for
o0=0(1)) even in the rare event tails

Predictions are fully analytical, parameter-free and
explicitly cosmology-dependent

Cosmic variance can be predicted from first principle

We have an accurate model for biased density tracers,
velocities, projected densities and (in progress) cosmic
shear maps, including primordial non-Gaussianities

P “,“ i | . .#4; SIS e R
Large deviation principle:

an unlikely fluctuation is brought about by the least unlikely of all unlikely paths.




comparison with log normal
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comparison with log normal : biased tracers
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