

Three ways to describe nuclear dynamics with energy density functional

D. Regnier¹, D. Lacroix¹, N. Dubray², N. Schunck³, M. Verrière⁴ G. Scamps⁵, Y. Hashimoto⁶, S. Ayik⁷

¹IPNO, CNRS/IN2P3, Univ. Paris-Sud, 91406 Orsay, France
 ²CEA, DAM, DIF, 91297 Arpajon, France
 ³Nuclear and Chemical Science Division, LLNL, Livermore, USA
 ⁴Los Alamos National Laboratory, Los Alamos, USA
 ⁵Institut d'Astronomie et d?Astrophysique, Université Libre de Bruxelles, Belgium
 ⁶Center for Computational Sciences, University of Tsukuba, Japan
 ⁷Physics Department, Tennessee Technological University, Cookeville, USA

Why treating explicitly the dynamics ?

Two ways to tackle a quantum problem

$$H\psi = E\psi$$

 $i\hbar\partial_t\psi = H\psi$

No need for the full Hilbert space \implies dynamics for one initial condition only

Sucessfull applications of dynamical approaches

- Vibration modes: gamma strength function
- Fission: yields, fragments observables
- Heavy ion collision: fusion barriers, nucleon transfer, fusion/fission versus quasi-fission

Progress of the time dependent mean field approaches

Quasi-fission of ${}^{40}Ca+{}^{238}U$, Oberacker *et al.*, PRC 90 (2014)

Scission of ²⁴⁰Pu, Bulgac *et al.*, PRL 116 (2016)

Method	Cost (10-20 zs)		
TDHF	few days, few CPU		
TDBCS	1 week, few CPU		
TDHFB	10h, 1700 GPU		

Major improvements in the last few years:

- Unrestricted spatial symmetries
- Inclusion of the pairing correlations

Recent achievements

- $\bullet~$ Understanding the role of quasi-fission in $^{40,48}\text{Ca}+^{238}\text{U}$
- Prediction of the energy sharing between reaction products

Some general goals/challenges for dynamical approaches

- Fission yields of exotic system involved in the r-process
- Transfer reactions in sub-barrier heavy ion collisions
- Quest to super-heavy production
- Cluster radioactivity of super-heavy nuclei
- Dissipation of collective vibrations

What is the current status of time-dependent approaches based on energy density functionals ?

Two illustrative examples:

- Fission dynamics
- ② Collisions between two superfluid nuclei near the Coulomb barrier

Table of contents

Time dependent methods based on energy density functional (EDF)

2 Fission dynamics

Transfer reaction between superfluid nuclei

1: Choosing an *ansatz* for the many body state

- ullet The nucleus is described by a quantum state $|\psi(t)
 angle$
- The degrees of freedom are the nucleons

	Single reference EDF Mean-field	Multi-reference EDF	
Static	$ \psi\rangle = \langle \langle \rangle \rangle$	$ \psi\rangle = f_1 \langle \psi\rangle + f_2 \langle \psi\rangle + \cdots$	
	ΙΨ/ Ι 🛶 /	$ \psi angle = \int_q f(q) \phi(q) angle dq$	
Time dependent $ \psi(t) angle=$		$ \psi(t)\rangle = \int_q f(q,t) \phi(q,t)\rangle dq$	
	$ \psi(t)\rangle = \underbrace{\underbrace{}_{(t)}}_{(t)} \rangle$	$\begin{split} \phi(q,t)\rangle &= \bar{\phi}(q)\rangle \implies \text{TDGCM} \\ \phi(q,t)\rangle &= \prod_{i}^{A} a_{i}^{\dagger}(t) 0\rangle \implies \text{MC-TDHF} \end{split}$	
$\left \stackrel{\text{Slater determinant (HF)}}{\bigoplus} ight angle = \operatorname{Slater determinant (HF)}_{\operatorname{Quasiparticule vacuum (HFB)}}$			

2: Getting the dynamics from a variational principle

The dynamics derives from the stationarity of the Dirac-Frenkel action:

$$\delta S = 0, \quad S = \int_{t_0}^{t_\infty} \langle \psi(t) | \hat{H} - i\hbar \partial_t | \psi(t) \rangle dt$$
 (1)

 \implies optimal evolution given the <code>ansatz</code>

Example: TDHF, a set of coupled 1-body Shrödinger equations

$$i\hbar\frac{\partial}{\partial t} \begin{bmatrix} \phi_1(\mathbf{r},\sigma,t) \\ \cdots \\ \phi_n(\mathbf{r},\sigma,t) \end{bmatrix} = \begin{bmatrix} h[\rho]\phi_1(\mathbf{r},\sigma,t) \\ \cdots \\ h[\rho]\phi_n(\mathbf{r},\sigma,t) \end{bmatrix}$$

 $\phi_i(\mathbf{r}, \sigma, t)$: 1-body wave function $h[\rho]$: mean field Hamiltonian

Comment on EDF versus Hamiltonian

Using directly the bare n-n interaction is problematic:

- hard-core of the interaction
- huge numerical cost of 3-body forces

In practice: effective interaction / energy density functional (EDF) that accounts for the medium effects for a given *ansatz*: Skyrme, Gogny, Relativistic functionals.

M. Bender et. al., PRC 79 (2009)

9 / 35

Table of contents

Time dependent methods based on energy density functional (EDF)

Pission dynamics

Transfer reaction between superfluid nuclei

Probing the fission dynamics

A multi-reference EDF ansatz

$$|\psi(t)\rangle = f_1(t)|\underset{\text{time independent}}{\underbrace{\text{HFB solutions with } \neq \text{ shapes, time independent}}}$$

A two step process:

- () Generate an ensemble of deformed quasi-particule vacua $|\phi_q
 angle$
- **②** Solve the evolution equation for the mixing function f(q, t)
 - Here we use the Gaussian overlap approximation
 - \implies a local Schrödinger like equation

A fully quantum-mechanical description of the time evolution

Gives the amplitude of probability for the nucleus to have a given shape at time t.

Example of a n + $^{239}\mbox{Pu}$ fission

- One of the collective variables:
 - elongation (Q₂₀ in b),
 - mass asymmetry (Q₃₀ in b^{3/2})
- Calculate potential energy surface and inertia tensor
- Define initial wave packet for the probability amplitude
- Compute time evolution of probability amplitude
- Extract fission fragment distribution by computing the flux of the probability amplitude across the scission line

Example of a n + $^{239}\mbox{Pu}$ fission

- One of the collective variables:
 - elongation (Q₂₀ in b),
 - mass asymmetry (Q₃₀ in b^{3/2})
- Calculate potential energy surface and inertia tensor
- Define initial wave packet for the probability amplitude
- Compute time evolution of probability amplitude
- Extract fission fragment distribution by computing the flux of the probability amplitude across the scission line

Example of a n + $^{239}\mbox{Pu}$ fission

- Oboose the collective variables:
 - elongation (Q₂₀ in b),
 - mass asymmetry (Q₃₀ in b^{3/2})
- Calculate potential energy surface and inertia tensor
- Define initial wave packet for the probability amplitude
- Compute time evolution of probability amplitude
- Extract fission fragment distribution by computing the flux of the probability amplitude across the scission line

Example of a n + $^{239}\mbox{Pu}$ fission

- Oboose the collective variables:
 - elongation (Q₂₀ in b),
 - mass asymmetry (Q₃₀ in b^{3/2})
- Calculate potential energy surface and inertia tensor
- Define initial wave packet for the probability amplitude
- Compute time evolution of probability amplitude
- Extract fission fragment distribution by computing the flux of the probability amplitude across the scission line

Example of a n + $^{239}\mbox{Pu}$ fission

- Oboose the collective variables:
 - elongation (Q₂₀ in b),
 - mass asymmetry (Q₃₀ in b^{3/2})
- Calculate potential energy surface and inertia tensor
- Define initial wave packet for the probability amplitude
- Compute time evolution of probability amplitude
- Extract fission fragment distribution by computing the flux of the probability amplitude across the scission line

Development of this microscopic approach

2005: First calculation for ²³⁸U H. Goutte *et al.*, PRC **71**, 024316 (2005)

2012: Fission yields of 236 U and 240 Pu W. Younes *et al.*, LLNL-TR-586678 (2012)

- Promising results
- High numerical costs

2D PES 40000 HFB states Dynamics 10 zs $(10^{-21}s)$

Upgrade numerical methods

Gaussian process to speed up HFB solver FELIX-1.0 D. Regnier *et al.*, CPC **122**, 350-363 (2016) FELIX-2 0

D. Regnier et al., CPC 225, 180-191 (2018)

Pre-neutron mass yields for 238 U at 2.4 MeV above the fission barrier (H. Goutte *et al.*). solid line: dynamics calculation dashed line: Whal evaluation (2002)

Recent applications

Fission of ²⁴⁰Pu, ²⁵²Cf, ²²⁶Th, Fm A. Zdeb *et al.*, PRC **95**, 054608 (2017) H. Tao *et al.*, PRC **96**, 024319 (2017)

- J. Zhao et al., PRC 99, 014618 (2019)
- D. Regnier et al., PRC 99, 024611 (2019)

Primary fragments mass yields for low energy fission of actinides

- The initial energy is taken 1 MeV above the fission barrier.
- The raw flux results are convoluted with a Gaussian of width $\sigma = 4$.
- The qualitative reproduction of the asymmetric fission of actinides is robust.
- A better modeling of several physics effects (initial state, fragment separation) is necessary to reach a $\simeq 10\%$ accuracy.

Fission yields in neutron rich Fermium isotopes

- Open symbols: Spontaneous fission
- Full symbols: Thermal n-induced fission
- D1S:

Our calculation starting from 1 MeV above the fission barrier D. Regnier et al., PRC **99**, (2019)

Fission yields in neutron rich Fermium isotopes

- Open symbols: Spontaneous fission
- Full symbols: Thermal n-induced fission
- D1S:

Our calculation starting from 1 MeV above the fission barrier D. Regnier et al., PRC **99**, (2019)

Results

- Transition reproduced
- Difficulty with ²⁵⁶Fm

Limitations of the current implementation of TDGCM

- A mostly adiabatic dynamics
- ② Lacuna in our set of generator states
- \implies Consequences:
 - Missing the dynamics through scission
 - Estimation of the fragments properties before complete separation

H. Goutte et al., PRC 71, 024316 (2005)

CEA-Saclay DPhN, February 22nd 2019

Recovering the diabatic motion with time dependent mean-field

 $|\psi(t)\rangle = |\psi(t)\rangle$

Recent developments:

2014: ²⁵⁸Fm ²⁶⁴Fm (no pairing)
C. Simenel *et al.*, PRC 89, 031601(R) (2014)
2015: ²⁵⁸Fm with pairing (TDBCS)
G. Scamps *et al.*, PRC 92, 011602(R) (2015)
≃ 1 week on a few CPU

• 60 to 80% of the TXE is generated during the rapid descent to scission

2016: ²⁴⁰Pu with pairing (full TDHFB) A. Bulgac *et al.*, PRL **116**, 122504 (2016) \simeq 10h on 1700 GPU

• TKE reproduction within 3% for a few possible fragmentations

Density of protons for a symmetric fission of $^{258}\mathrm{Fm}$ from TDBCS

Recovering the diabatic motion with time dependent mean-field

 $|\psi(t)\rangle = |\psi(t)\rangle$

Recent developments:

2014: ²⁵⁸Fm ²⁶⁴Fm (no pairing)
C. Simenel *et al.*, PRC 89, 031601(R) (2014)
2015: ²⁵⁸Fm with pairing (TDBCS)
G. Scamps *et al.*, PRC 92, 011602(R) (2015)
≃ 1 week on a few CPU

 60 to 80% of the TXE is generated during the rapid descent to scission

2016: ²⁴⁰Pu with pairing (full TDHFB) A. Bulgac *et al.*, PRL **116**, 122504 (2016) \simeq 10h on 1700 GPU

• TKE reproduction within 3% for a few possible fragmentations

Density of protons for a symmetric fission of $^{258}\mathrm{Fm}$ from TDBCS

Recovering the diabatic motion with time dependent mean-field

 $|\psi(t)\rangle = |\psi(t)\rangle$

Recent developments:

2014: ²⁵⁸Fm ²⁶⁴Fm (no pairing)
C. Simenel *et al.*, PRC 89, 031601(R) (2014)
2015: ²⁵⁸Fm with pairing (TDBCS)
G. Scamps *et al.*, PRC 92, 011602(R) (2015)
≃ 1 week on a few CPU

• 60 to 80% of the TXE is generated during the rapid descent to scission

2016: ²⁴⁰Pu with pairing (full TDHFB) A. Bulgac *et al.*, PRL **116**, 122504 (2016) \simeq 10h on 1700 GPU

• TKE reproduction within 3% for a few possible fragmentations

Density of protons for a symmetric fission of $^{258}\mathrm{Fm}$ from TDBCS

Perspectives and limitations of the time dependent mean-field picture

Up to now, only a few applications of this method to fission. Some interesting perspectives:

- Scission neutrons
- Fragments spin

Major limitation for fission:

- **(** Too sharp distributions for the fragment observables (no yields)
- In tunneling through the fission barrier

Particle distribution in the fragments for 3 TDBCS simulations of $^{258}\mathrm{Fm}$ fission

G. Scamps et al., PRC 92, 011602(R) (2015)

More fluctuations with the stochastic mean-field approach

Idea:

- Generate an ensemble of one body-densities that mimic some initial quantum fluctuation
- ② Evolve each density with the TDHFB equation
- Recover distributions of final observables by classical average

- Possibility to compute fission fragments yields
- No tunneling through the fission barrier
- Formal issues: representativity problem, fluctuation cut off

To put it in a nutshell...

State of the art EDF methods to tackle fission dynamics:

- Time dependent mean-field with pairing
- Stochastic mean-field
- Time dependent GCM

Difficulty to tackle both

- the dissipation/diabatic aspects
- and the large quantum fluctuations.

Attempts and projects to move forwards:

- 2 quasi-particules exciated states in TDGCM
- Temperature in TDGCM
- Hybrid TDGCM + TD mean field approach ?

Table of contents

Time dependent methods based on energy density functional (EDF)

2 Fission dynamics

Transfer reaction between superfluid nuclei

Time dependent mean-field for collisions

Fragment production cross section for $^{64}Ni + ^{238}U$ from K. Sekizawa, PRC 96 (2017)

- No need for empirical ion-ion potential
- All channels already included at the mean-field level

A mini-review: K. Sekizawa, arXiv:1902.01616

CEA-Saclay DPhN, February 22nd 2019

Spontaneous breaking of the rotational symmetry

One system at the mean-field level

The physics does not depend on the orientation in space

The physics strongly depends on the relative orientation

Collision between superfluid nuclei

Treatment at the TDHFB level which

- () introduces the pairing gap $\Delta(r)$,
- breaks the number of particle symmetry.

HFB state	Energy	Pairing field
$ \Psi angle$	E_ψ	$ \Delta(\mathbf{r}) e^{i\theta(\mathbf{r})}$
$e^{i heta_0\hat{N}} \Psi angle$	E_ψ	$ \Delta(\mathbf{r}) e^{i(\theta(\mathbf{r})+2\theta_0)}$

The physics does not depend on the orientation in gauge space

The fusion barrier varies by $30\ \text{MeV}$ with the relative orientation

 \Rightarrow How to remove this spurious effect ?

Toy model: interaction between two superfluid levels

Hamiltonian: $H = H_A + H_B + V(t)$

- Pairing Hamiltonian $H_{A/B}$ in each system
- $\Omega_{A/B}$ twice degenerated levels in each system
- Coupling term V(t) to simulate a short interaction

Initial state (exact)

Find the exact ground state for A and B with good particle number

Initial state (BCS)

- Solve the BCS equation for A and B
- Scale the interaction (g_A, g_B, v₀) to recover the exact energy
- O Rotate one system by an angle θ⁰_{AB} in the gauge space

Treatment at the TDHFB level

Spurious dependency with the relative gauge angle

Transfer from a phase space averaging approach 1

No relative gauge angle should be favored $P(\theta_{AB}) = rac{1}{2\pi}$

- Initial distribution of mean field states P_i(ρ(θ_{AB}, t₀))
- Independent evolution of trajectories $\mathcal{O}[\rho(\theta_{AB}, t)] = \langle O(t) \rangle$

Statistical average over the final observables

$$\overline{O^k} \equiv rac{1}{2\pi} \int_0^{2\pi} \mathcal{O}[
ho(heta_{AB}),t]^k d heta_{AB}$$

- No spurious components from initial fluctuation on N_A, N_B
- Fluctuations on θ_{AB} included
- No interference between trajectories (classical picture)

¹D. Regnier et al., PRC 97, 034627 (2018)

Results with phase space averaging (PSC)

In the perturbative regime:

• semi-classical estimation of the first moments:

$$\mu_0 = 1, \quad \mu_1^{sc} \simeq \mu_1^{exs}, \quad \mu_2^{sc} \simeq \mu_2^{exs}$$

• Weak coupling:

$$P_{0n} \gg (P_{2n}, P_{-2n}) \gg (P_{4n}, P_{-4n}) \cdots$$

Simple estimate for one pair transfer:

$$\begin{cases}
P_{2n} \simeq \frac{\mu_2 + 2\delta N_A}{8} \\
P_{-2n} \simeq \frac{\mu_2 - 2\delta N_A}{8}
\end{cases}, \quad (2)$$

 P_{2n} , P_{-2n} from independent TDHFB trajectories

Higher moments of $P(N_A)$ from phase space averaging

Moments of the probability distribution $P(N_A)$ at final time as a function of the coupling strength v_0/g .

In the perturbative regime:

- Moment of order 2 matches the exact solution
- Higher moments underestimate the exact solution

This semi-classical approach fails to predict the probabilities of multi-pairs transfer

Another method: Multi-configuration TDHFB

Projecting the initial state on the good number of particles in A and B:

$$|\psi(t_0)
angle = \int_{ heta_1 heta_2} f(heta_1, heta_2) |\phi_{ extsf{HFB}}(heta_1, heta_2)
angle d heta$$

The idea is to use the ansatz:

$$|\psi(t)\rangle = f_1(t)|\underbrace{\underbrace{\underbrace{\underbrace{}}}_{\underbrace{}}(t)\rangle + f_2(t)|\underbrace{\underbrace{}}_{\underbrace{}}(t)\rangle + \cdots$$

TDHFB evolution from \neq initial relative angles

Variational determination of $f(\theta_1, \theta_2, t)$ in the ansatz:

- Projected initial wave function
- Independent evolution of trajectories $|\phi_{HFB}(\theta_1, \theta_2, t)\rangle$
- Second the mixing function f
- Quantum expectation of any N-body observable

Quantum interferences between independent TDHFB trajectories

Results with Multi-configuration TDHFB

- Better P_{2n} in the perturbative regime
- Results hold for stronger interaction between nuclei

To put it in a nutshell...

State of the art method to tackle heavy-ion collisions:

Time dependent mean-field (+ pairing),

Symmetry breaking introduces spurious behavior:

- Phase-space averaging to cure this issue
 - misses 40% of P_{2n}
 - fails for multi-particle transfer as well as in the non-perturbative regime

Attempts and projects to move forwards:

- Multi-configuration mixing to recover the quantum interferences
- Balian-Veneroni variational principle to recover fluctuations

Table of contents

Time dependent methods based on energy density functional (EDF)

2 Fission dynamics

Transfer reaction between superfluid nuclei

Overview of the time-dependent methods

Thank you for your attention !

Competition between collective potential valleys

Competition between collective potential valleys

Competition between collective potential valleys

CEA-Saclay DPhN, February 22nd 2019

D. Regnier, D. Lacroix, N. Dubray, N. Schunck et al.

Exact transfer probabilities

Case of a symmetric reaction: $\Omega_A = \Omega_B = 6$, $N_A^0 = N_B^0 = 6$.

 \implies Perturbative regime for $v_0 < 5.10^{-2}g$

 $(v_0 = 2 \times 10^{-2}g)$