
MAUNAKEA SPECTROSCOPIC EXPLORER (MSE) TELESCOPE MOUNT

Revealing the faint Universe millions of spectra at a time

The Maunakea Spectroscopic Explorer after **Conceptual Design**

> Nicolas Flagey CFHT MSE System & Operations Scientist

Nicolas Martin Observatoire astronomique de Strasbourg French representative Science Advisory Group du MSE @nfmartin1980

The Maunakea Spectroscopic Explorer (MSE) is a project to transform CFHT into ...

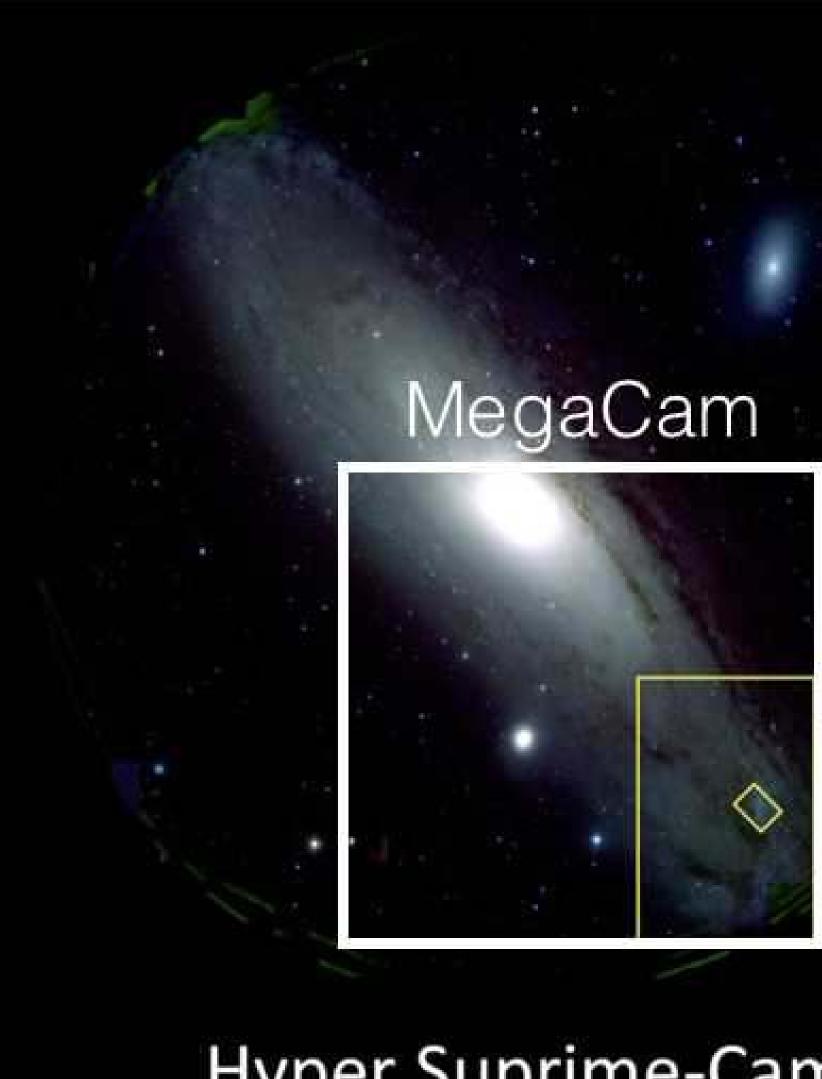
The Maunakea Spectroscopic Explorer (MSE) is a project to transform CFHT into an 11.25m, wide-field, optical and near-infrared facility completely dedicated to multiobject spectroscopy of samples that comprise thousands to millions of astrophysical objects.

The Maunakea Spectroscopic Explorer (MSE) will be the observatory (facility + science platform) of the next decades, helping astronomers answer some of the most exciting questions of modern astronomy!

..........

- Context
- Science
- Architecture
- Performance
- Operations
- Partnership, Cost, and Schedule

CONTEXT

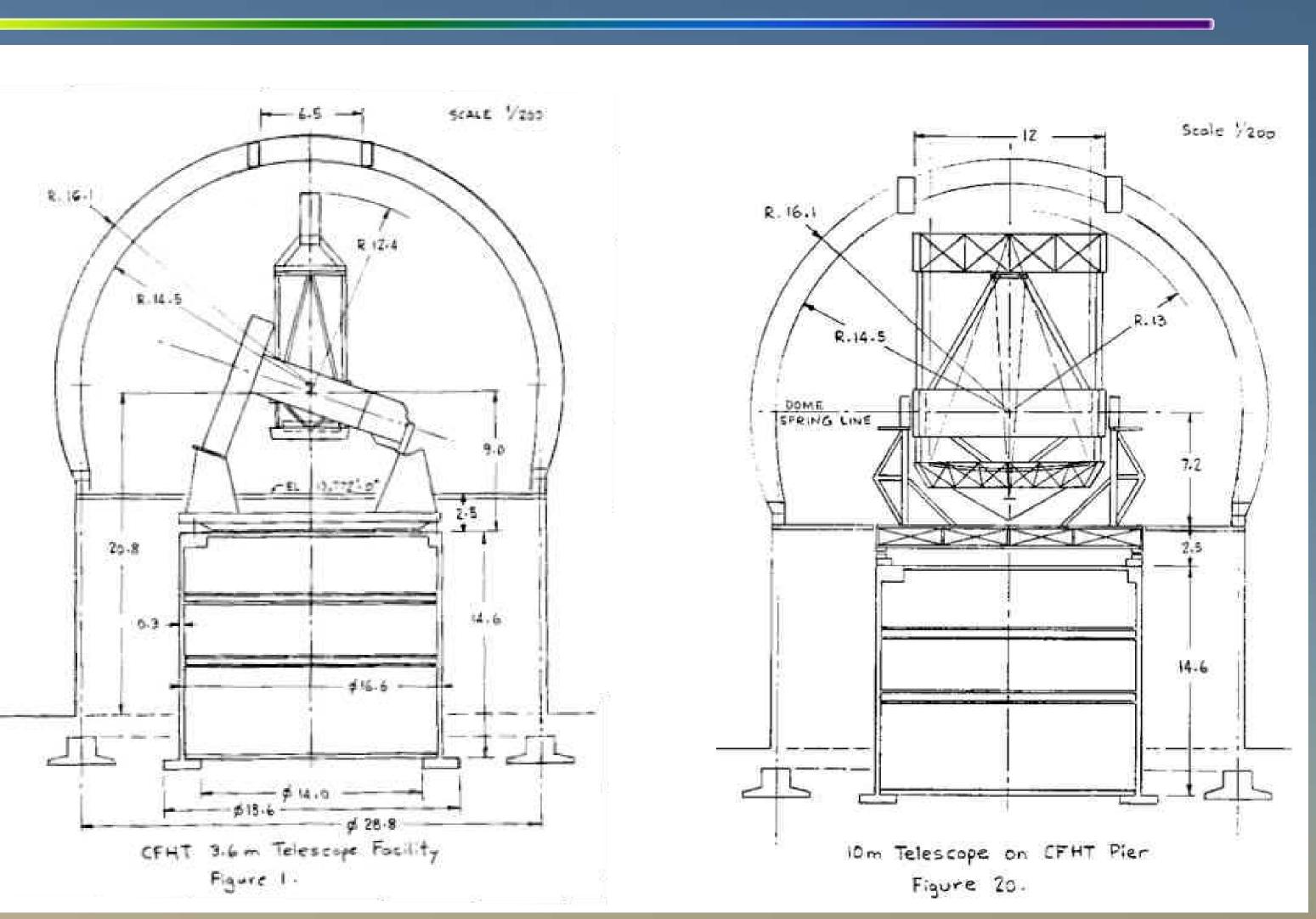

MegaCam SITELLE WIRCam SPIRou **ESPaDOnS**

CFHT Today

A 40-year old, 3.6-meter telescope

The Competition

Hyper Suprime-Cam Image Release July 2013



• "ngCFHT" concept initiated in Canada as part of LRP2010. Feasibility study ran from 2012-2014

- Subsequently received "Priority 0" recommendation in French 5year Prospective (2014).
- CFHT Board set up a Project Office in 2014 to lead the "Design Phase" of ngCFHT → MSE, to run until end of 2017

Imperative to stay within 10% of the current sky-line envelope.

2018: "SAC endorses MSE as the scientific future SAC supports proceeding to the Preliminary Desig

Redevelopment of CFHT

Wide-field, massively multi-object spectrographs

Maunakea Spectroscopic Explorer

•

An

WIC

onε

Aperture masking Astrometry Polarimetry High-time res spectroscopy High-precision rad vel High-contrast imaging Moderate MOS/IFU, moderate res Long Baselines Interferometry High MOS, moderate res WF img/continuum surveys Single/IFU spectroscopy WF spectroscopic surveys High MOS, high-res

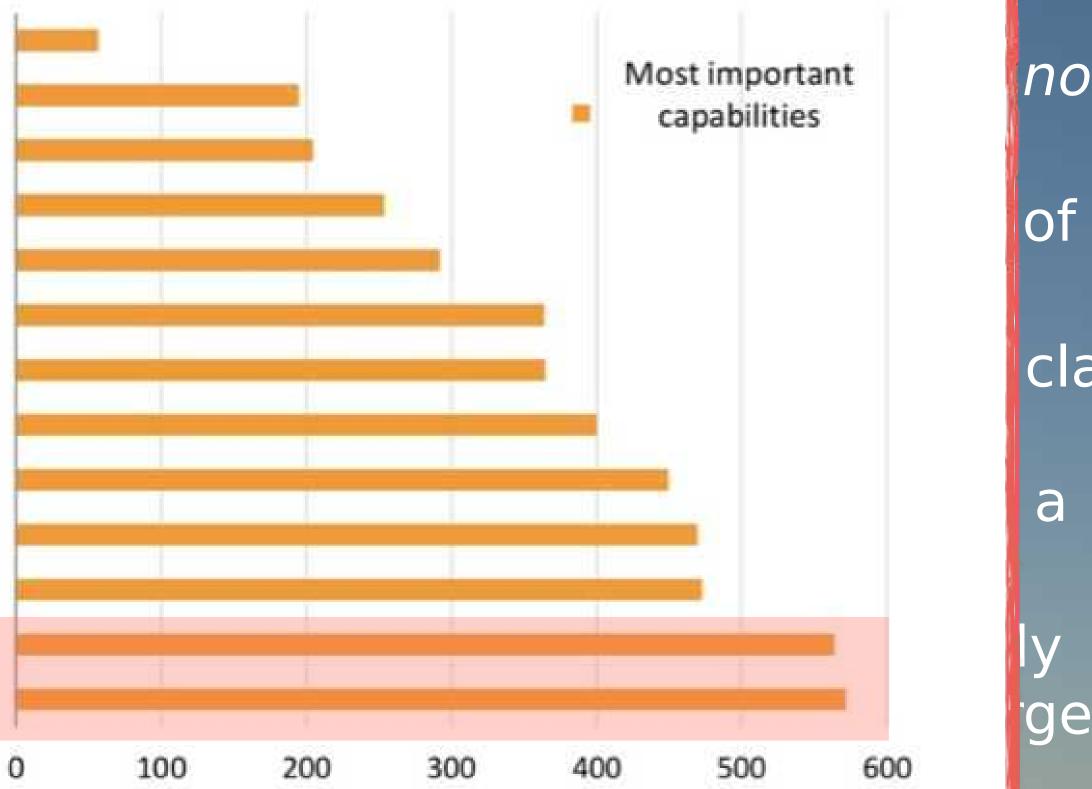


Figure 2. Users were asked to select the most important capabilities for their own research in the 2020-2030 timeframe. Responses are shown in absolute number of preferences expressed for each option. A total of 4,661 responses were received.

of a class 'ge-

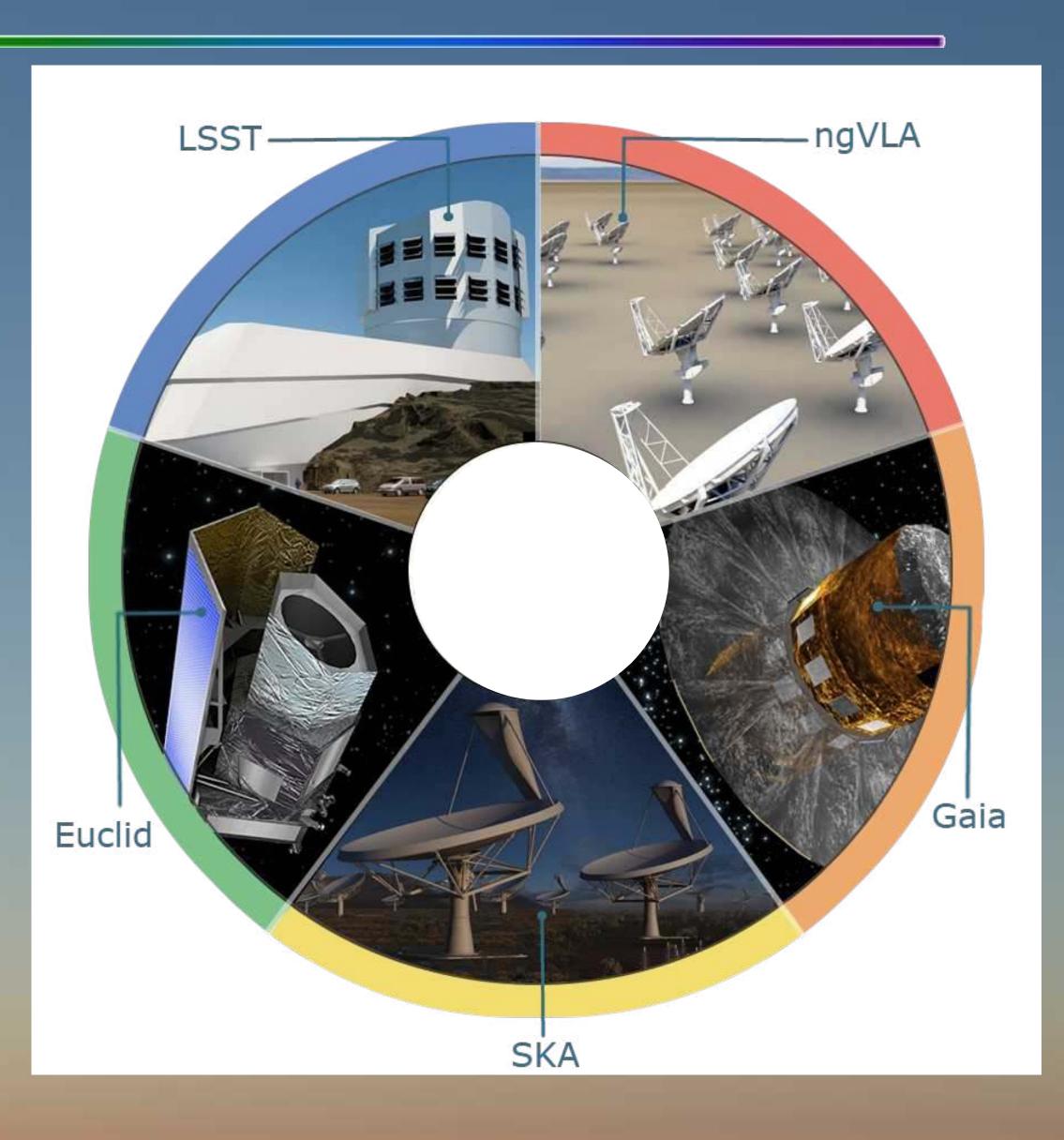
Wide-field, massively multi-object spectrographs

Maunakea Spectroscopic Explorer

- An 8–10-meter class telescope with a heavily multiplexed, one has:
 - large-aperture, wide-field MOS
 - telescope equipped with an extremely multiplexed wide range of fields..."
 - important role" in dark energy studies • ESO...

wide-field spectrograph is the facility everyone wants but no

The Australian decadal plan recognizes the importance of a


 The Canadian Long Range Plan 2010 notes that a 10m class spectrograph would "...have a transformative impact in a

 The US Astro 2010 Decadal Review notes that "Massively multiplexed spectrographs in intermediate-class and largeaperture ground-based telescopes would also play an

- Era of big facilities, billions of dollars invested, large international teams
 - Imaging surveys: PanSTARRS, Subaru/HSC, CFHT/Megacam, Gaia, LSST, Euclid, WFIRST, ...
 - Radio surveys: ALMA, SKA, LOFAR, ngVLA
 - Small & mid-aperture spectroscopic surveys: VISTA/4MOST, WHT/WEAVE, AAT/HERMES, Subaru/PFS, VLT/MOONS
 - Giant telescopes: ELT, GMT, TMT

Context

MSE will:

obtain efficiently very large numbers (>106) of low- (R ~ 2 000), moderate- (R ~ 6 500) and high-resolution (R > 20 000) spectra

- for faint (20 < g < 24) science targets over large areas of the sky (10³ – 10⁴ sq.deg
- spanning blue/optical to near-IR wavelengths, 0.37 -> NIR

At the highest resolutions, it should have a velocity accuracy of <<1 km/s

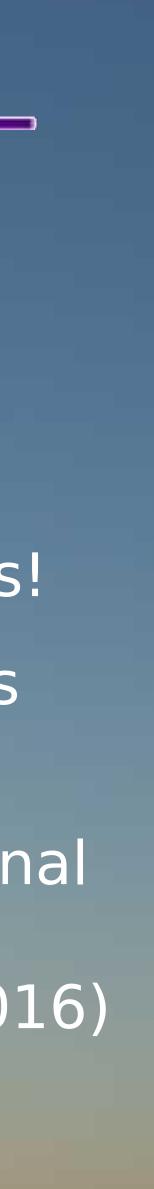
At low resolution, complete wavelength coverage should be possible in a single observation

SCIENCE

About to release an updated version of the MSE Detailed Science

The Detailed Science Case of the Maunakea Spectroscopic Explorer

The MSE Science Team


February 22, 2019

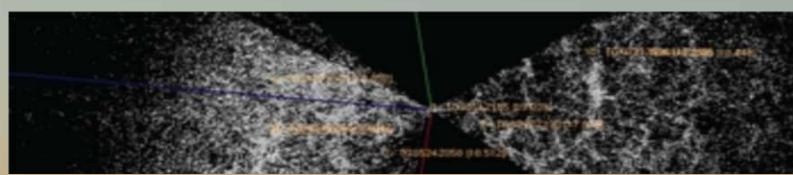
http://arxiv.org/abs/1606.00060

http://arxiv.org/abs/1606.00043

Detailed Science Case

- Nearly 300 pages!
- Over 100 authors
- Builds upon original MSE Detailed Science Case (2016)

Science Working Groups

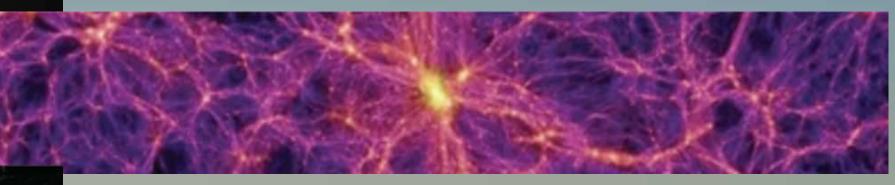


Chemical nucleosynthesis Sivarani Thirupathi & David Yong

Galaxy Formation and evolution Kim-Vy Tran & Aaron Robotham

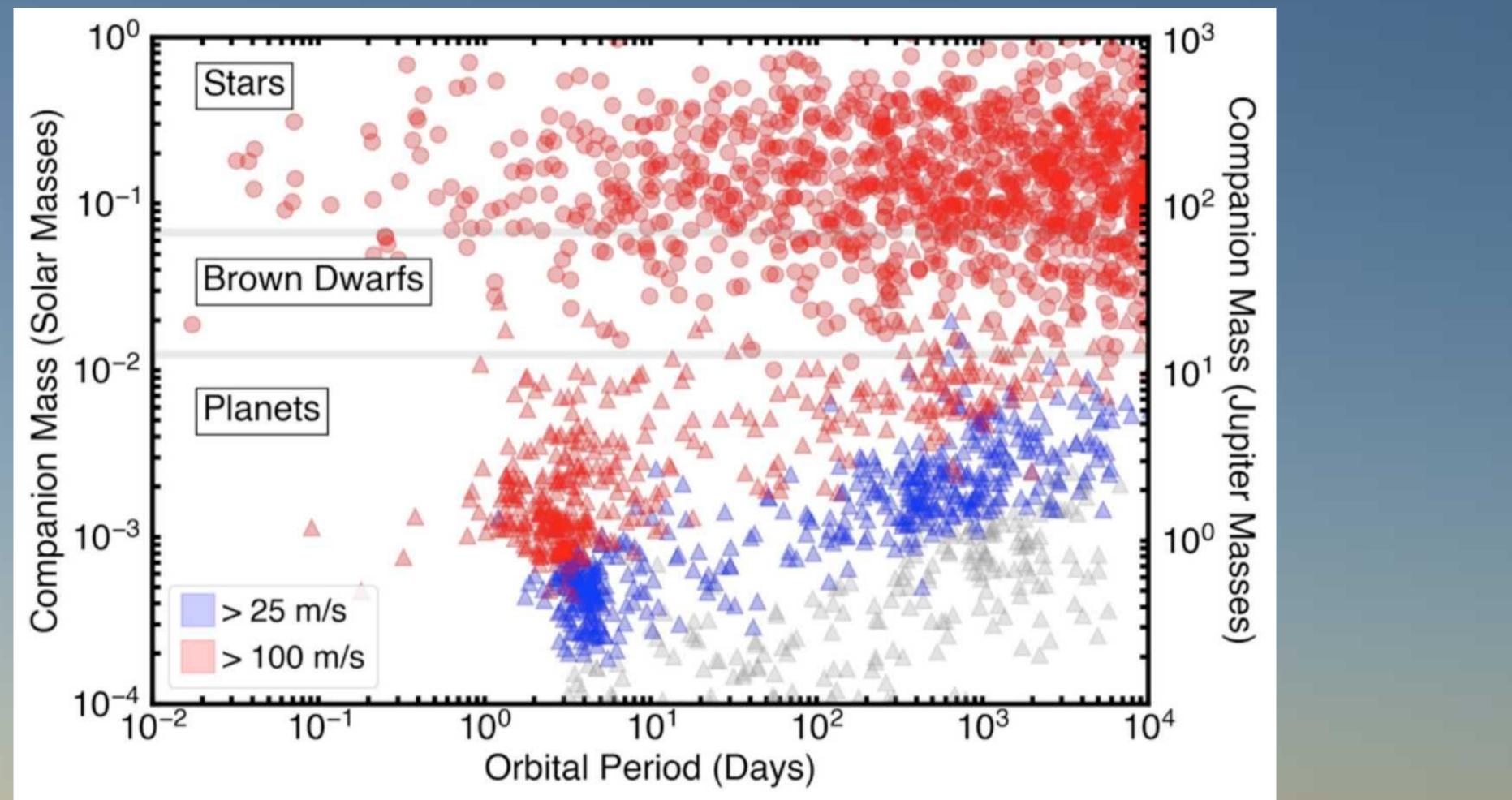
Astrophysical tests of dark matter Ting Li & Manoj Kaplinghat

Time domain astronomy and transients



Milky Way and resolved stellar pops Carine Babusiaux & Sarah Martell

AGN and supermassive black holes Yue Shen & Sara Ellison



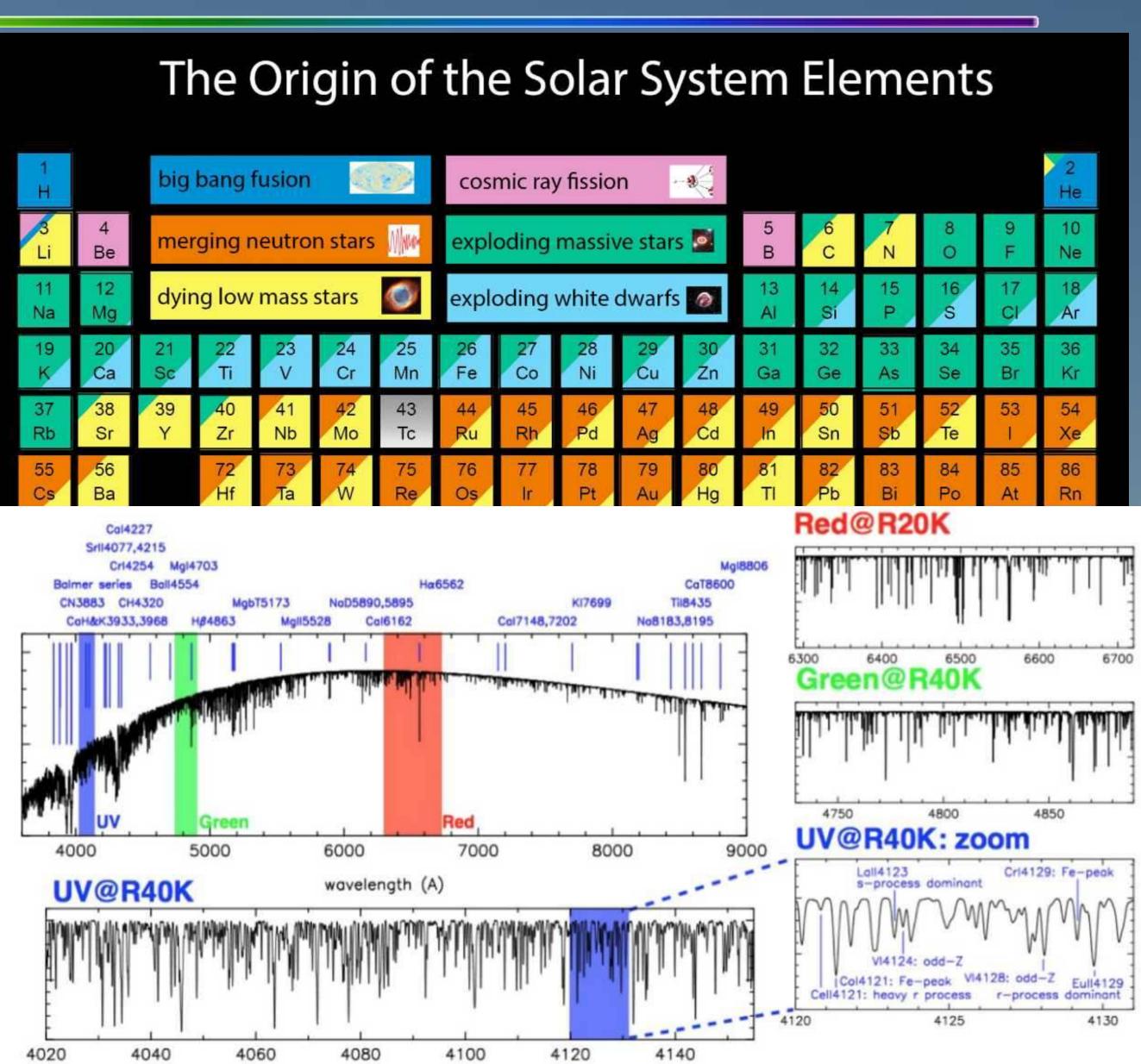
Cosmology Will Percival & Christophe Yeche

Radial velocities of planets and brown dwarfs

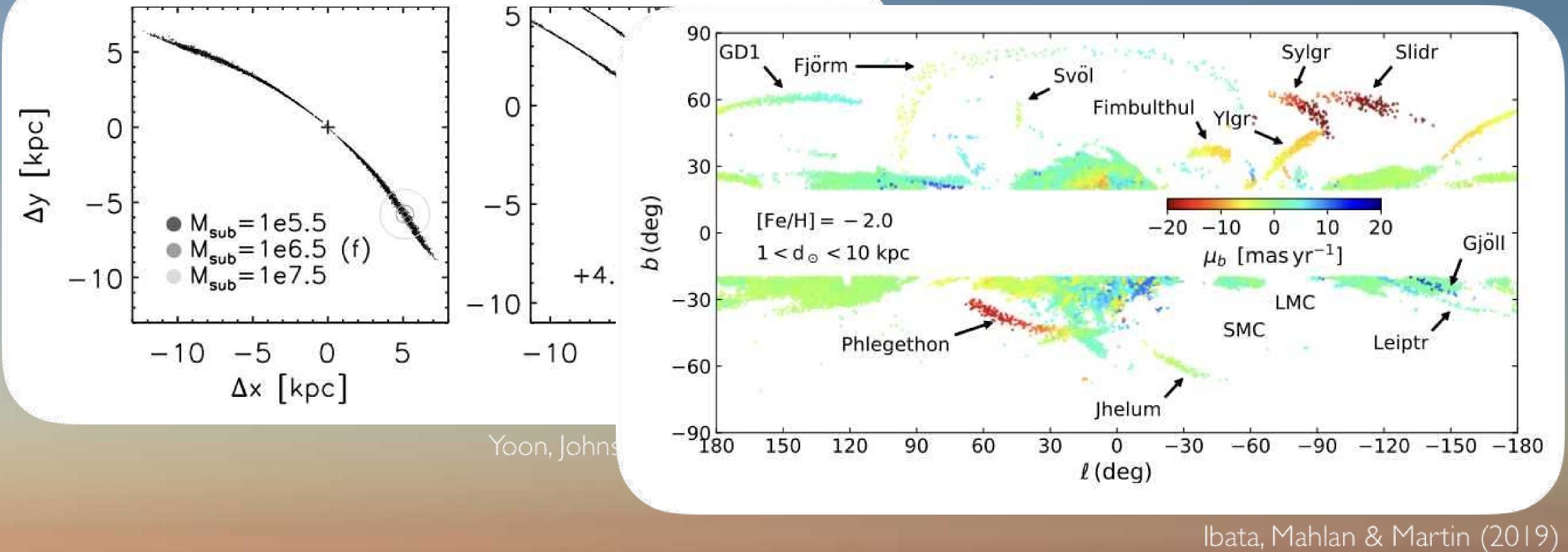
Maunakea Spectroscopic Explorer

A huge amount of parameter sp
 Tied to temporal spectroscopy

A huge amount of parameter space accessible with basic specs.

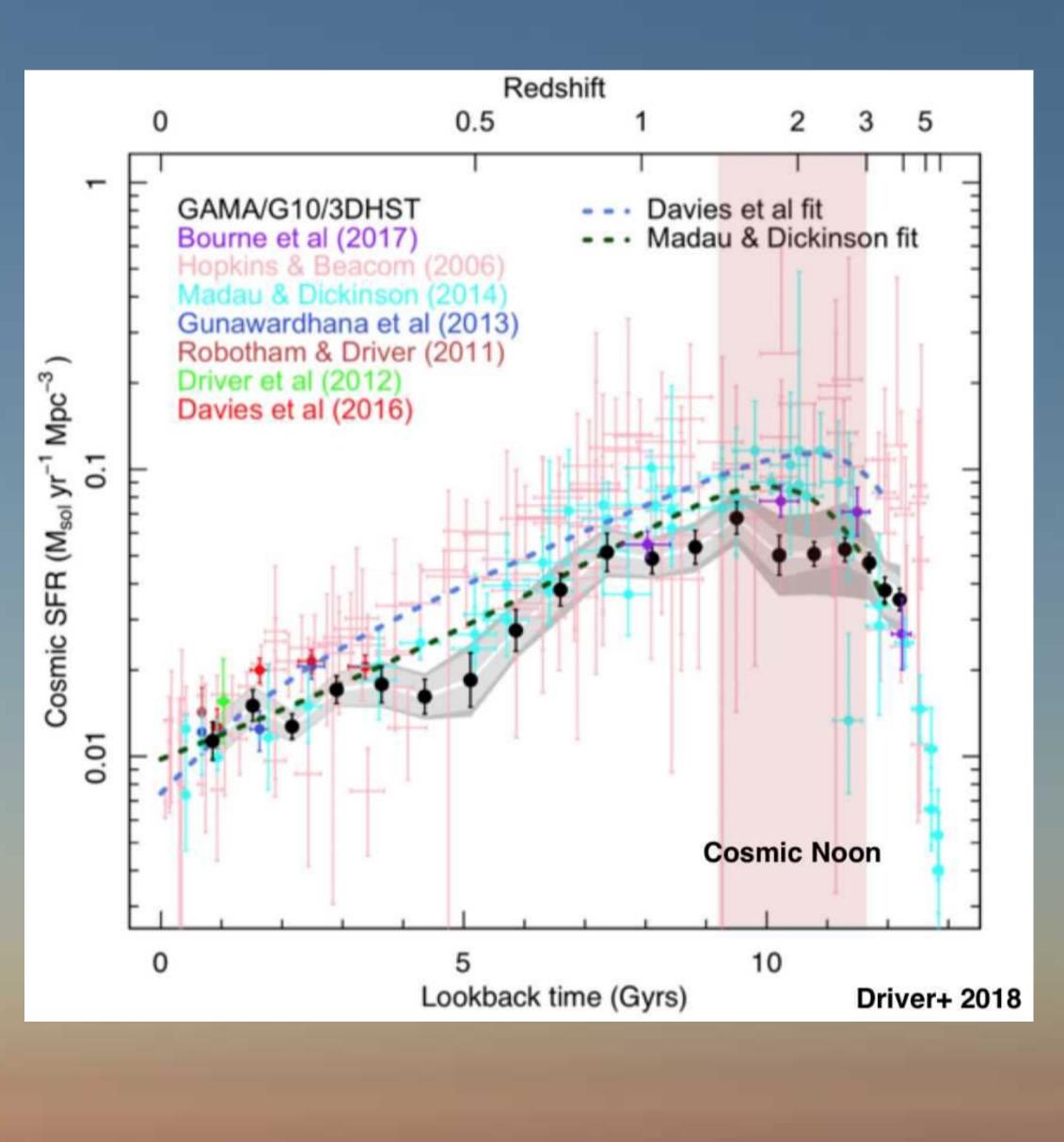


Origins of the elements


- From H, He, Li to C, N, O, Ca, Fe …
- Better understanding of nuclear processes, astrophysical locations and details
- Formation sites act as chronometer, allowing to study system formation
- MSE will measure elemental abundances in an unprecedented number of stars, providing the final piece of direct observational evidence of the origins of every element on the Periodic Table

Science highlights

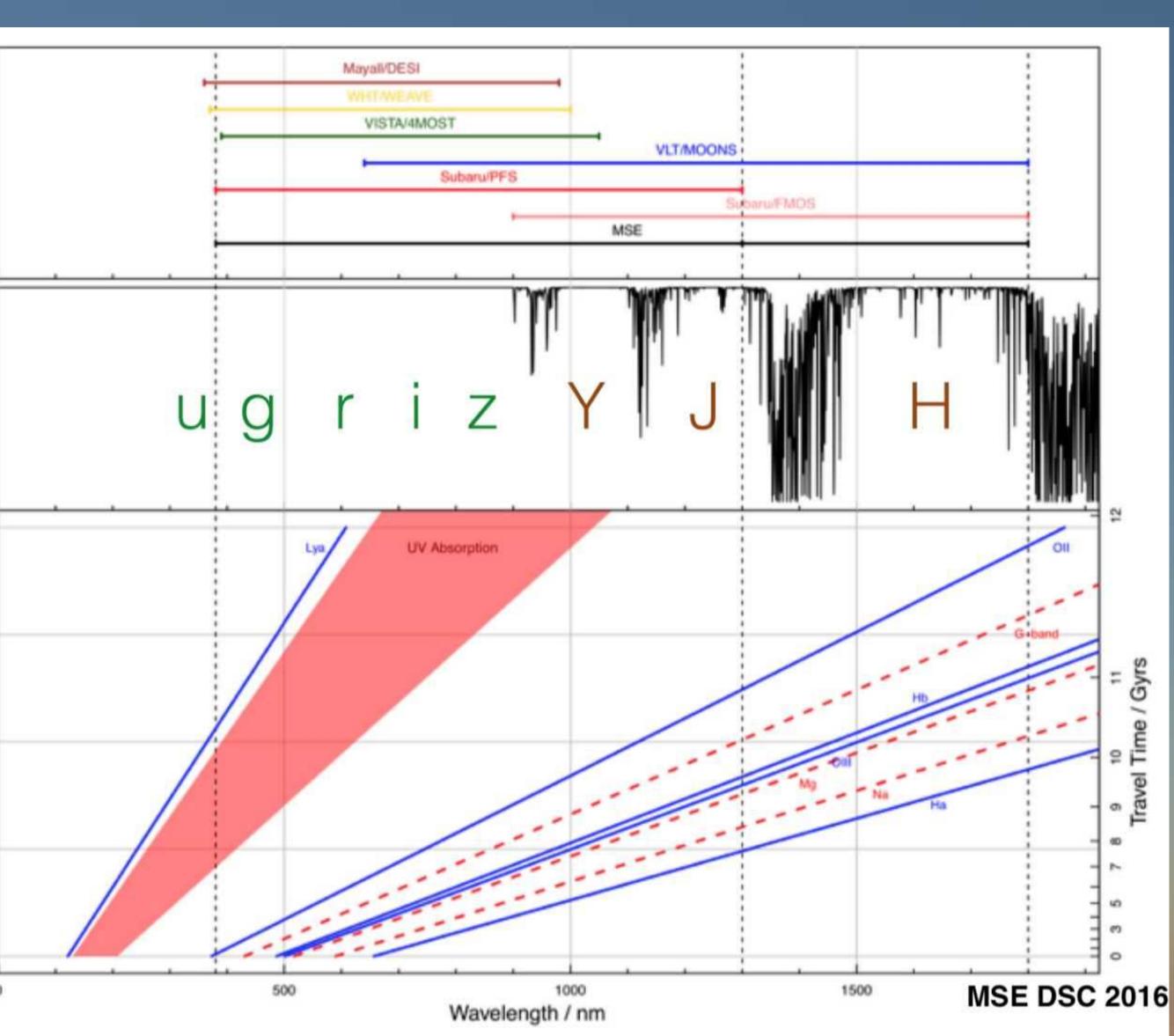
Probing the particle nature of dark matter Using stellar streams as seismograph, MSE will be able to find (and constrain) the population of dark matter sub-halos around the Milky Way



Science highlights

- SDSS has opened up the parameter space for low redshift galaxies by orders of magnitudes.
- A similar survey but at the peak of star formation (AKA cosmic noon) will open up a similar magnitude of science opportunities.
- Key issue is to probe representative volumes.
- These need to be of order Gpc³

Cosmic Star Formation History


- Key new parameter space for extra-galactic science is H-band.
- This allows us to observe over the z~2 redshift desert in survey mode for the first time (caveat VLT/MOONS, with fewer fiber hours available).

Sky Transimission

Redshift

 Also very low z<0.2 survey probing low mass halos and dwarf galaxies.

Cosmic Star Formation History

Science Working Groups

DoubleTree by Hilton Hotel, Tucson, AZ 26-28 February, 2019

Meeting Agenda

Zoom Link:

Join from PC, Mac, iOS or Android: https://cfht.zoom.us/j/6827754649

About


Venue

Tuesday 26 February 2019

Registration & Coffee 8:00

Registration Agenda Participants

Huge response to the call for Science Team Membership!

- Currently 372 members from 36 countries
 - Australia* 30
 - Belgium 7
 - Canada* 38
 - *Chile* 7
 - China* 32
 - *France** *38*
 - Germany 18

- India* 11
- Italy 12
- Spain 14
- United Kingdom 31
- USA 93
- Other 130
- * Current MSE participants

 SF2A Workshop, May 14 (Nice) Join <u>mseinfo@mse.cfht.hawaii.edu</u> or ping marshall@mse.cfht.hawaii.edu

Growth of Science Team

Maunakea Spectroscopic Explorer

DOCUMENTS ORGANIZATION SCIENCE NEWS Call for Maunakea Spectroscopic Explorer Science Team Membership

Call for Maunakea Spectroscopic **Explorer Science Team Membership**

or science development phase will get underway in April/May 2018, that will be spearheaded by science team. Specifically, they will develop the first phase of the MSE Design Reference Survey (DRS). The DRS is planned as a 2 year observing campaign that will demonstrate the science impact of MSE in a broad range of science areas and will provide an excellent dataset for community science. It will describe and simulate an executable survey plan that addresses the key science described in the Detailed Science Case. The DRS will naturally undergo several iterations between now and first light of MSE: this first phase (nicknamed DRS1) will set the foundation for its future development.

DRS1 will be supported by the Project Office and will use various simulation tools, including Integration Time Calculators fiber-assigning software, and a telescope scheduler. It is anticipated that the DRS will become the first observing program on MSE come first light of the facility, and it will be used by the Project Office going forward to understand the consequences for science for all decisions relating to the engineering and operational development of MSE.

Science requirements

Accessible sky	30000 square degrees (airmass<1.55)						
Aperture (M1 in m)	11.25m						
Field of view (square degrees)		1.5					
Etendue = FoV x π (M1 / 2) ²	149						
Modes	Lc)W	Moderate	High			IFU
Wavelength range	0.36 - 1.8 μm			0.36 - 0.95 μm #			
	0.36 - 0.95 μm	J, H bands	0.36 - 0.95 μm	0.36 - 0.45 μm	0.45 - 0.60 μm	0.60 - 0.95 μm	
Spectral resolutions	2500 (3000)	3000 <i>(5000)</i>	6000	40000	40000	20000	IFU capak
Multiplexing	>3200		>3200	>1000			anticipate
Spectral windows	Full		≈Half	λ _c /30	λ _c /30	λ _c /15	secono generati
Sensitivity	m=24 *		m=23.5 *	m=20.0 넉			capabilit
Velocity precision	20 km/s ♪		9 km/s ♪	< 100 m/s ★			
Spectrophotometic accuracy	< 3 % relative		< 3 % relative	N/A			

Dichroic positions are approximate

- * SNR/resolution element = 2
- \$ SNR/resolution element = 10

- rightarrow SNR/resolution element = 5
- **\star** SNR/resolution element = 30

Science requirements

	8 - 12 m class facilities						
	VLT / MOONS		Subaru / PFS		MSE		
Dedicated facility	No		No		Yes		
Aperture (M1 in m)	8.2		8.2		11.25		
Field of View (sq. deg)	0.	0.14 1.25		1.52			
Etendue	7.	.4	66		151		
Multiplexing	1000		2394		4329		
Etendue x Multiplexing	7400 (= 0.01)		158004 (= 0.24)		653679 (= 1.00)		
Observing fraction	<	1?	0.2 (first 5 years) 0.2 - 0.5 afterwards ?		1	1	
Spectral resolution (approx)	4000	18000	3000	5000	3000	6500	40000
Wavelength coverage (um)	0.65 - 1.80	windows	0.38 - 1.26	0.71 - 0.89	0.36 - 1.8	0.36 - 0.95 50%	windows
IFU	N	0	No		econd generation		

MSE is 100% dedicated to surveys, covers the full range from *near-UV* to the *H band*, and includes a (very) high spectral resolution mode for stellar astronomy

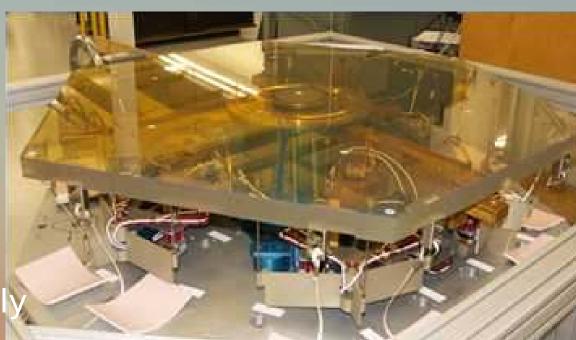
ARCHITECTURE

- MSE aims to transform CFHT into a 10m class spectroscopic survey facility

 - MSE development is starting Preliminary Design Phase.
- order to minimize development of new technologies
 - Minimize project exposure to technical and programmatic risks
 - Ensure project schedule and budget are attainable
- the external appearance of CFHT after MSE completion

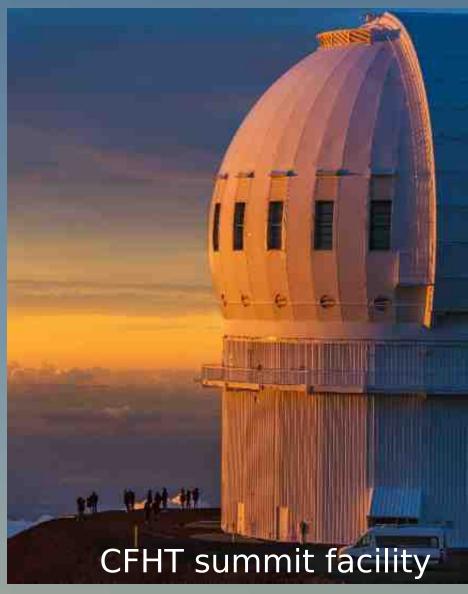
 - Limiting size increase of the new facility building and enclosure to 10%

Architecture


• Only dedicated large aperture wide-field MOS facility under development in the world

Our engineering approach is to maximize utilization of existing designs in

 Out of environmental and cultural respect, a strong desire to preserve • MSE will reuse the CFHT summit building without additional ground disturbances




Redevelopment of CFHT site and Waimea HQ
Proven site with exquisite IQ with well established infrastructure
Access to over 40 years of experience and knowledge on Maunakea!

TMT segment and support assembly

Architecture

Echidna/Sphinx fiber positioner

of the lot of the lot of the lot of the

of the state of the local local local local local local local

Enclosure: Calotte style with vent modules for excellent airflow

Fiber Transmission System: 3,249 fibers leading to low/moderate resolution spectrographs; 1,083 fibers leading to high resolution spectrographs

Low/Moderate resolution spectrographs: six located on both instrument platforms

Telescope and **Enclosure Piers:** modified CFHT structures

Science Driven Design

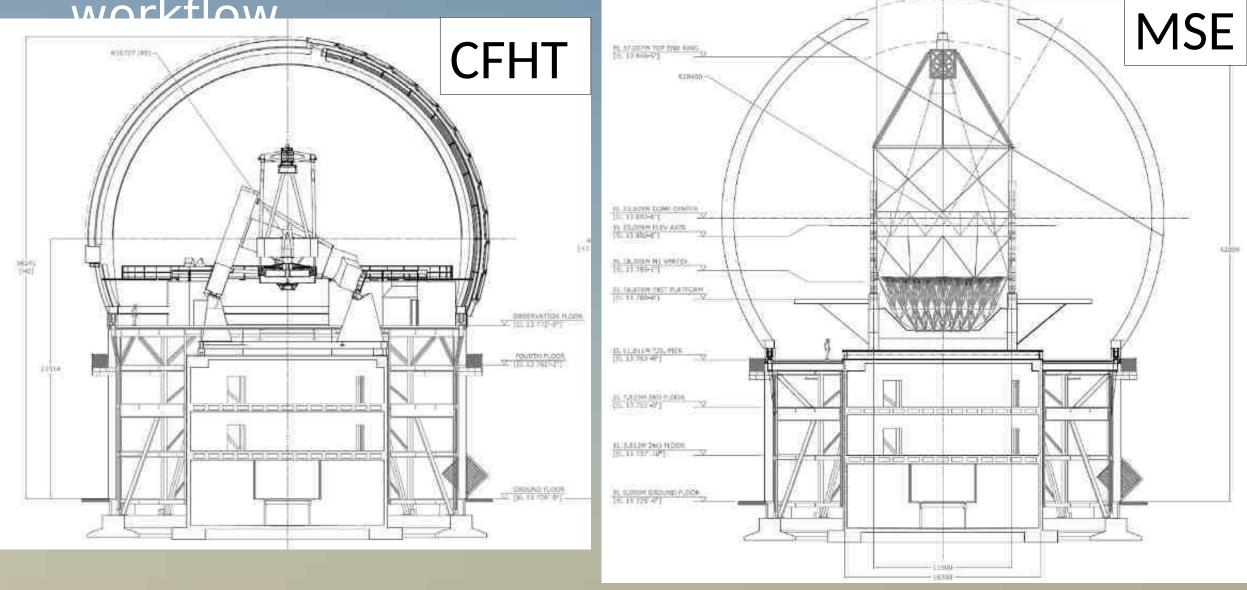
Fiber Positioner System: 4,332 positioners providing simultaneous complete full field coverage for all spectroscopic modes, with upgrade path to multiobject IFU system

Wide Field Corrector and Atmospheric Dispersion Corrector: 1.5 square degree field of view

> Telescope Structure: prime focus configuration, high stiffen-to-mass ratio open-truss design to promote airflow

M1 System: 11.25m aperture with 60 1.44m hexagonal segments

High resolution spectrographs: two located in environmental stable Coude room



Reusing CFHT Observatory Building Facilities

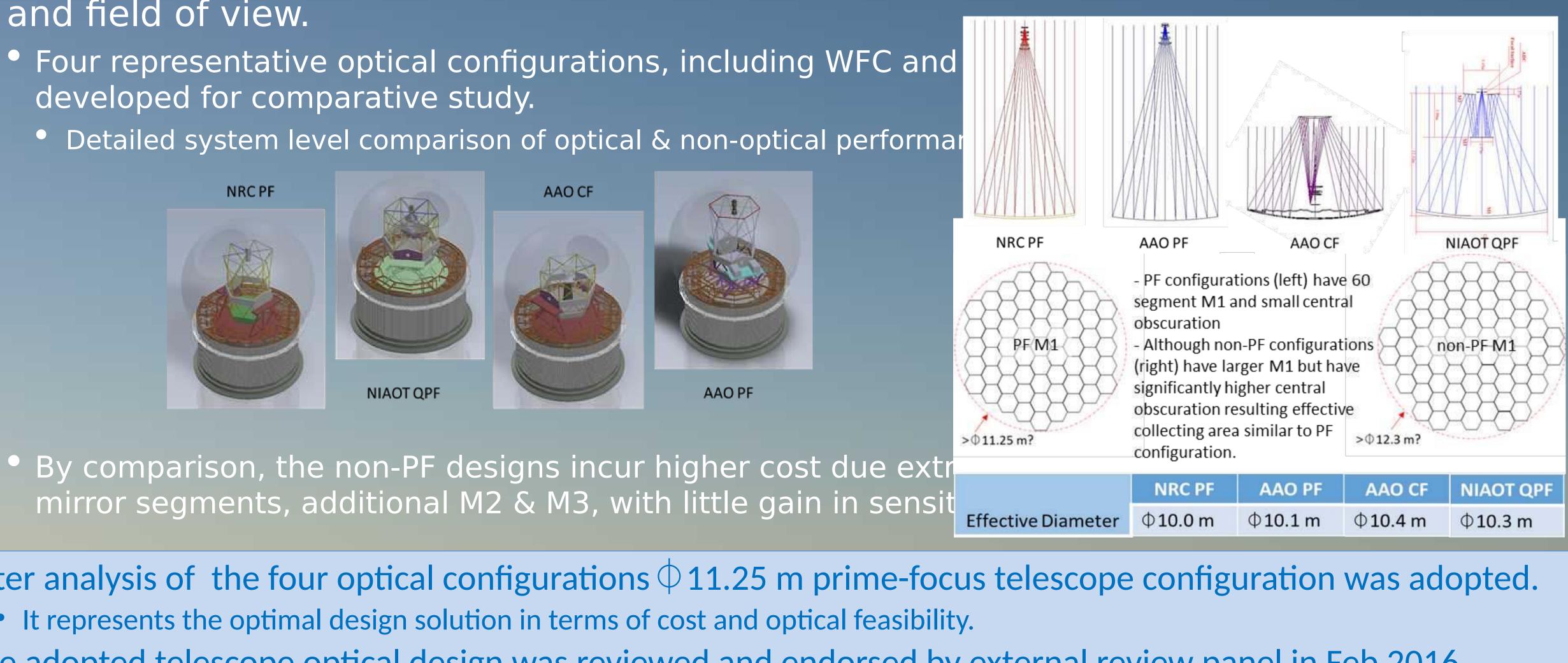
- After seismic upgrade
- Reconfigure building layout to optimize workflow



Design Choice – OBF & ENCL

Calotte style enclosure selected after reviewing the trade study findings from TMT

- Mass & geometry compatible with existing pier
- Lighter enclosure, lower construction & ops costs
- CFHT's sty ventilation

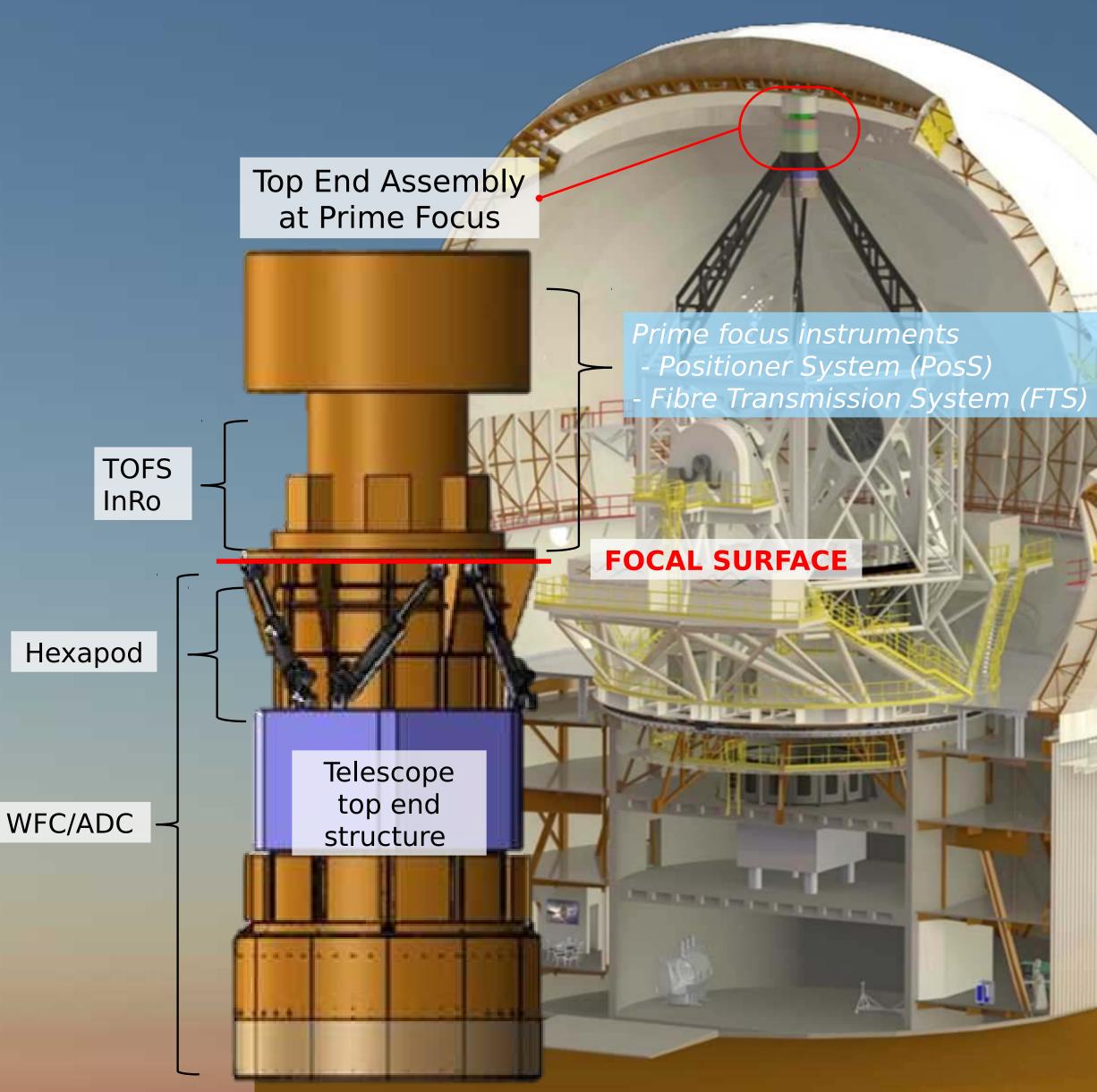


ilitate

Telescope optical design is driven by key SRD requirements such as sensitivities and field of view.

- developed for comparative study.

After analysis of the four optical configurations \oplus 11.25 m prime-focus telescope configuration was adopted. • It represents the optimal design solution in terms of cost and optical feasibility. The adopted telescope optical design was reviewed and endorsed by external review panel in Feb 2016.

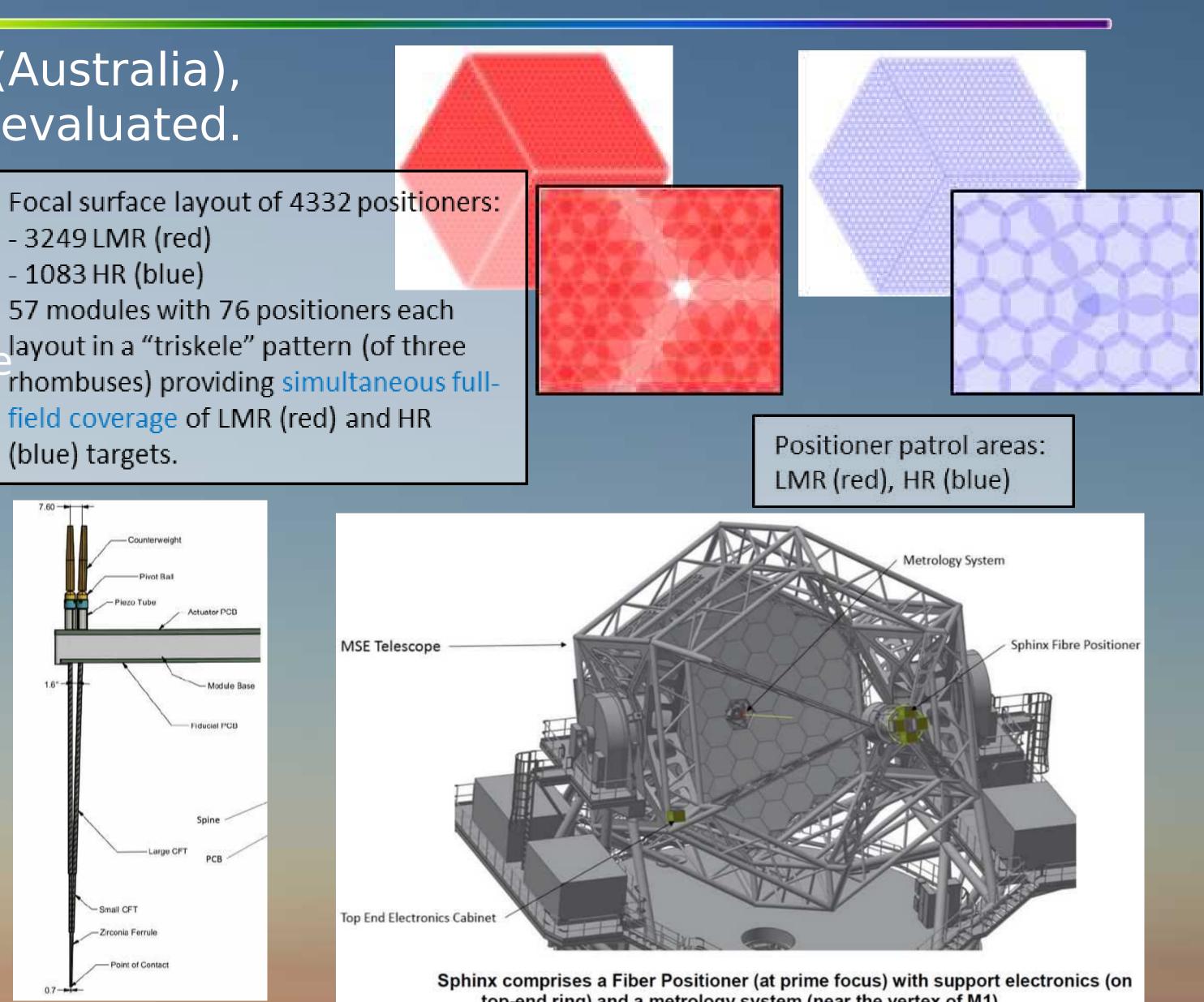

Design Choice – TEL

- TEA was a contribution of GEPI with DT/INSU. It contains the prime focus components and is considered part of the telescope subsystem:
 - Hexapod
 - Wide Field Corrector with <u>integrated atmospheric</u> dispersion correction
 - Novel lateral shift ADC design
 - Telescope Optics Feedback System (TOFS)
 - Acquisition and Guide Cameras
 - Phasing and Alignment Camera
 - Instrument Rotator (InRo) carries TOFS, *PosS* & *FTS*

TEA functions during observation

- During observation, the hexapod moves its payload to maintain optimal focus w.r.t. to the primary mirror.
 - Flexure and temperate compensates
- Instrument Rotator de-rotates the positioners on the focal surface to maintain science targets to fiber inputs alignment

Design Choice – Top End Assembly



Three competing designs from AAO (Australia), USTC (China) and UAM (Spain) were evaluated.

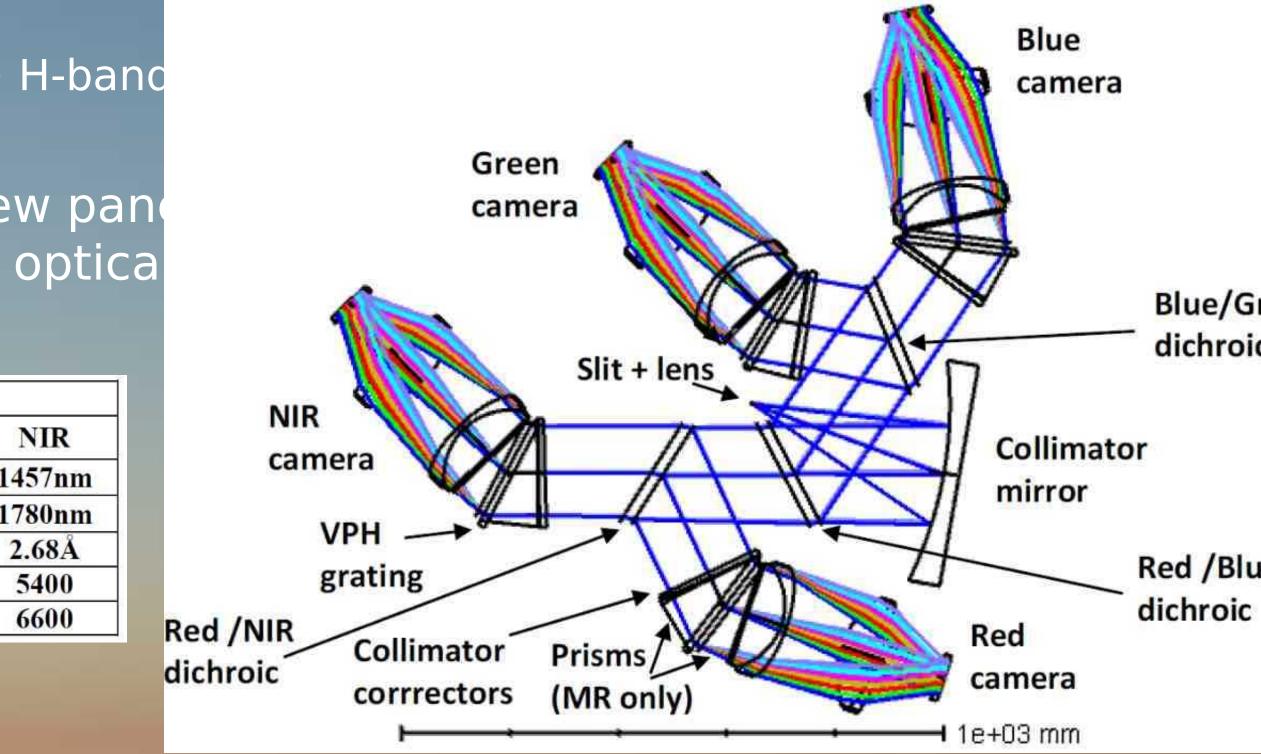
Patrol radius 90.3 arcsec Two fibers: closest approach 7 arcsec Three fibers: cluster within 9.9 arcsec circ

The AAO Sphinx system was selected.

- High target allocation efficiency
- High observing efficiency: simultaneous observation of both LMR and HR targets
- System configuration time in <2 minutes for 4000+ positioners
- System accuracy of 6 um RMS
- AAO test demonstrated FRD variations due to tilt < 2%
- PO verified injection efficiency loss due to fiber tilt are insignificant in context of overall system sensitivity

PosS Down-Select

top-end ring) and a metrology system (near the vertex of M1)

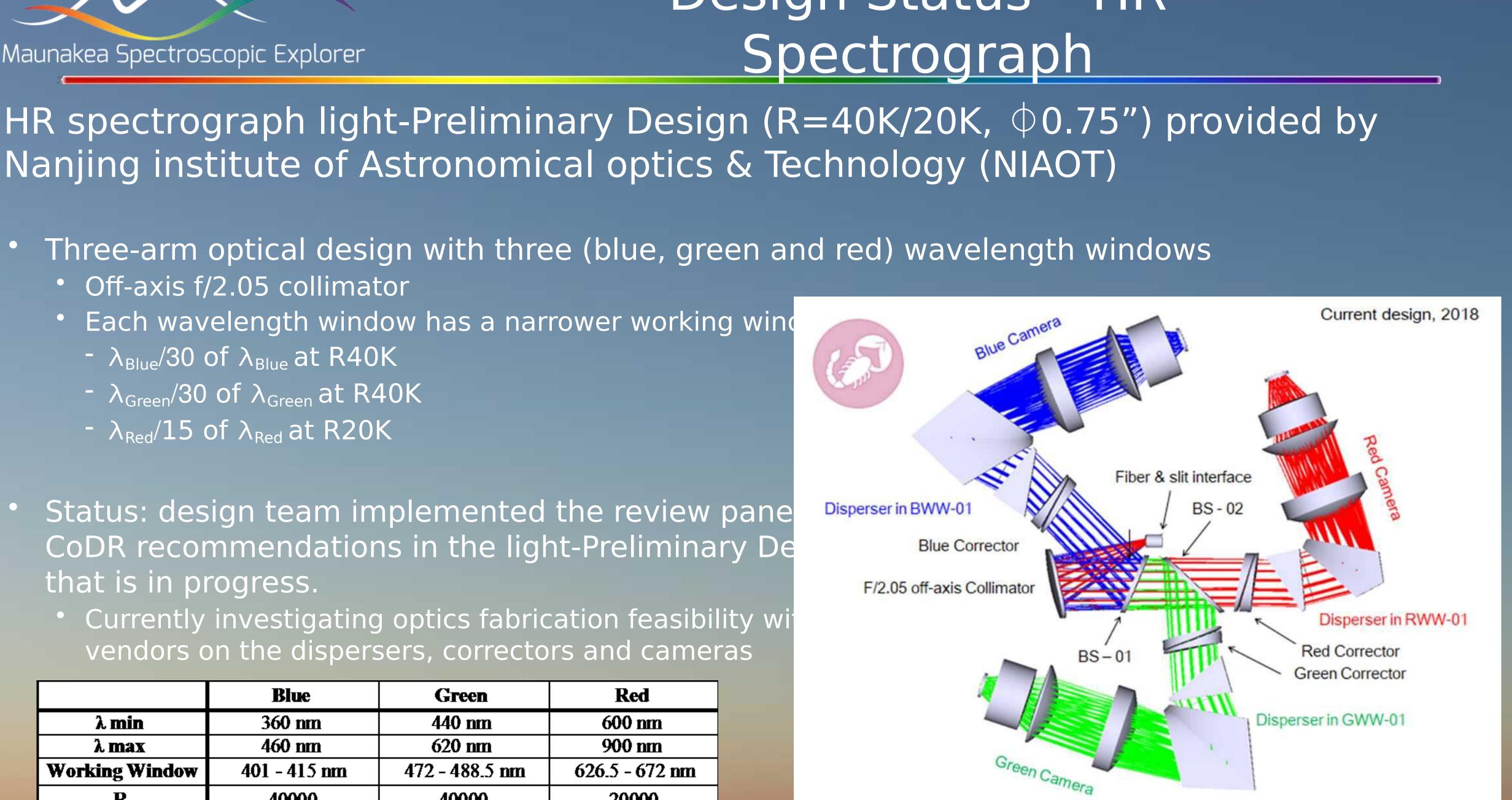

Centre de Recherche Astrophysique de Lyon (CRAL)

- Four-arm optical design
 - Off-axis Schmidt f/2 collimator
 - Resolution change by switching dispersive elements in each arm independently
 - VPH grating for optical-band LR + J-band
 - VPH grating + prisms for optical-band MR + H-banc
- Status: design team to implement the review panel CoDR recommendation to pursue alternate optical designs for risk reduction considerations.

	LR				MR			
	Blue	Green	Red	NIR	Blue	Green	Red	1
λmin	360nm	540nm	715nm	960nm	391nm	576nm	737nm	14
λ _{max}	560nm	740nm	985nm	1320nm	510nm	700nm	900nm	13
Resolution (Å)	1.78Å	1.75Å	2.36Å	3.15Å	1.02Å	1.02Å	1.35Å	2
R _{min}	2000	3100	3000	3000	3800	5600	5500	1 Million
R _{max}	3100	4200	4200	4200	5000	6800	6700	

Design Status – LMR Spectrograph

LMR spectrograph conceptual design (LR R3000/MR R6000, ϕ 1.0") provided by


Design Status – HR Spectrograph

Nanjing institute of Astronomical optics & Technology (NIAOT)

• Three-arm optical design with three (blue, green and red) wavelength windows

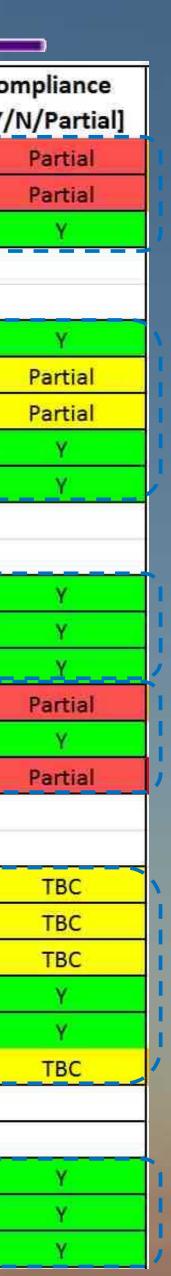
- Off-axis f/2.05 collimator
- Each wavelength window has a narrower working window
 - $\lambda_{Blue}/30$ of λ_{Blue} at R40K
 - $\lambda_{\text{Green}}/30$ of λ_{Green} at R40K
 - $\lambda_{\text{Red}}/15$ of λ_{Red} at R20K
- Status: design team implemented the review pane CoDR recommendations in the light-Preliminary De that is in progress.
 - Currently investigating optics fabrication feasibility wi vendors on the dispersers, correctors and cameras

	Blue	Green	Red
λmin	360 nm	440 nm	600 nm
λ max	460 nm	620 nm	900 nm
Working Window	401 - 415 nm	472 - 488.5 nm	626.5 - 672 nn
R	40000	40000	20000

PERFORMANCE

Color code illustrates the compliance of t requirements as fulfilled by the Level 1 Documents:

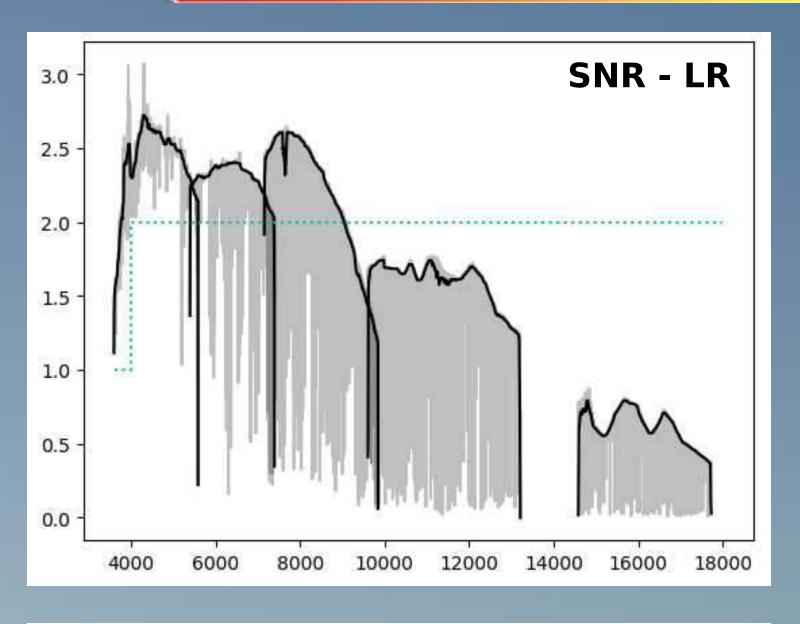
- 1. Spectral resolution
- 2. Focal plane input
- 3. Sensitivity
 - 3a. Spectral coverage
 - 3b. Sensitivity
- Calibration • 4.

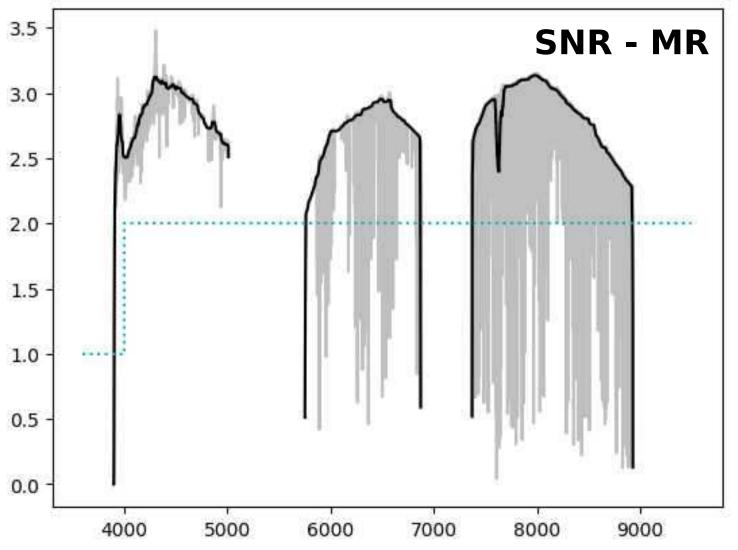

• 5. Lifetime operations Compliant assessment (Y/N/Partial/TBD)

–<mark>Y</mark> means fully meet requirement

- -TBC means by design or analysis the requirem already met but we plan to do more work in th Preliminary Design Phase before declaring con
- -Partial means formal declaration needed from Office to claim compliance.
- -Partial means a portion of a multiple-part requ met.

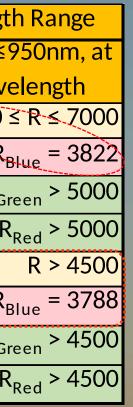
SRD Compliance Summary


REQ-SRD-011Low spectral resolutionREQ-SRD-012Moderate spectral resolutionREQ-SRD-013High spectral resolutionREQ-SRD-013High spectral resolutionRequirements relating to the Focal Plane Input:REQ-SRD-021Science field of viewREQ-SRD-022Multiplexing at low resolutionREQ-SRD-023Multiplexing at moderate resolutionREQ-SRD-024Multiplexing at moderate resolutionREQ-SRD-025Spatially resolved spectraREQ-SRD-031Spectral coverage at low resolutionREQ-SRD-032Spectral coverage at high resolutionREQ-SRD-033Spectral coverage at high resolutionREQ-SRD-034Sensitivity at low resolutionREQ-SRD-035Sensitivity at low resolutionREQ-SRD-036Sensitivity at moderate resolutionREQ-SRD-037Spectral coverage at high resolutionREQ-SRD-038Spectral coverage at high resolutionREQ-SRD-039Spectral coverage at high resolutionREQ-SRD-036Sensitivity at low resolutionREQ-SRD-036Sensitivity at moderate resolutionREQ-SRD-037Sectral coverage at high resolutionREQ-SRD-038Sectral coverage at high resolutionREQ-SRD-039Spectral coverage at high resolutionREQ-SRD-034Sensitivity at moderate resolutionREQ-SRD-035Sensitivity at moderate resolutionREQ-SRD-041Velocities at low resolutionREQ-SRD-042Velocities at high resolutionREQ-SRD-044Relative spectrophotometryREQ-SRD-045Sky subt						
REQ-SRD-012Moderate spectral resolutionRequirements relating to the Focal Plane Input:REQ-SRD-021Science field of viewREQ-SRD-022Multiplexing at low resolutionREQ-SRD-023Multiplexing at moderate resolutionREQ-SRD-024Multiplexing at moderate resolutionREQ-SRD-025Spatially resolved spectraRequirements relating to SensitivityRequirements relating to SensitivityRequirements relating to SensitivityRequirements relating to Sensitivity at moderate resolutionREQ-SRD-032Spectral coverage at moderate resolutionREQ-SRD-033Spectral coverage at high resolutionREQ-SRD-034Sensitivity at low resolutionREQ-SRD-035Sensitivity at low resolutionREQ-SRD-036Sensitivity at high resolutionREQ-SRD-037Sectral coverage at high resolutionREQ-SRD-038Sensitivity at high resolutionREQ-SRD-039Sectral coverage at high resolutionREQ-SRD-041Velocities at low resolutionREQ-SRD-042Velocities at high resolutionREQ-SRD-043Velocities at high resolutionREQ-SRD-044REQ-SRD-045Sky subtraction, continuumREQ-SRD-045Sky subtraction, continuumREQ-SRD-045Sky subtraction, continuumREQ-SRD-045Sky subtraction, continuumREQ-SRD-045Sky subtraction, continuumREQ-SRD-051<	he SRD		Requirements relating to Spectral Resolution:			
REQ-SRD-013High spectral resolutionRequirements relating to the Focal Plane Input:REQ-SRD-021Science field of viewREQ-SRD-022Multiplexing at low resolutionREQ-SRD-023Multiplexing at moderate resolutionREQ-SRD-024Multiplexing at high resolutionREQ-SRD-025Spatially resolved spectraRequirements relating to SensitivityREQ-SRD-031Spectral coverage at low resolutionREQ-SRD-032Spectral coverage at moderate resolutionREQ-SRD-033Spectral coverage at moderate resolutionREQ-SRD-034Sensitivity at low resolutionREQ-SRD-035Sensitivity at low resolutionREQ-SRD-036Sensitivity at high resolutionREQ-SRD-036Sensitivity at high resolutionREQ-SRD-037Spectral coverage at high resolutionREQ-SRD-038Sensitivity at low resolutionREQ-SRD-039Spectral coverage at high resolutionREQ-SRD-041Velocities at low resolutionREQ-SRD-042Velocities at noderate resolutionREQ-SRD-043Velocities at high resolutionREQ-SRD-044REQ-SRD-045Sky subtraction, continuumREQ-SRD-045Sky subtraction, continuumREQ-SRD-045Sky subtraction, continuumREQ-SRD-045Sky subtraction, continuumREQ-SRD-045Sky subtraction, continuumREQ-SRD-051Accessible sk			REQ-SRD-011	Low spectral resolution		
Requirements relating to the Focal Plane Input:REQ-SRD-021Science field of viewREQ-SRD-022Multiplexing at low resolutionREQ-SRD-023Multiplexing at moderate resolutionREQ-SRD-024Multiplexing at high resolutionREQ-SRD-025Spatially resolved spectraREQ-SRD-025Spatially resolved spectraREQ-SRD-031Spectral coverage at low resolutionREQ-SRD-032Spectral coverage at moderate resolutionREQ-SRD-033Spectral coverage at high resolutionREQ-SRD-034Sensitivity at low resolutionREQ-SRD-035Sensitivity at moderate resolutionREQ-SRD-036Sensitivity at high resolutionREQ-SRD-037Velocities at low resolutionREQ-SRD-038Velocities at low resolutionREQ-SRD-041Velocities at moderate resolutionREQ-SRD-042Velocities at high resolutionREQ-SRD-043Velocities at high resolutionREQ-SRD-044Relative spectrophotometryREQ-SRD-045Sky subtraction, continuumREQ-SRD-046Sky subtraction, emission linesHerment isSSecure science stating to Lifetime OperationsREQ-SRD-051Accessible skyREQ-SRD-052Observing efficiency			REQ-SRD-012	Moderate spectral resolution	Į	
2REQ-SRD-021Science field of viewREQ-SRD-022Multiplexing at low resolutionREQ-SRD-023Multiplexing at moderate resolutionREQ-SRD-024Multiplexing at high resolutionREQ-SRD-025Spatially resolved spectra 3aRequirements relating to Sensitivity REQ-SRD-031Spectral coverage at low resolutionREQ-SRD-032Spectral coverage at moderate resolutionREQ-SRD-033Spectral coverage at moderate resolutionREQ-SRD-034Sensitivity at low resolutionREQ-SRD-035Sensitivity at moderate resolutionREQ-SRD-036Sensitivity at moderate resolutionREQ-SRD-037Spectral coverage at high resolutionREQ-SRD-036Sensitivity at moderate resolutionREQ-SRD-037Spectral coverage at high resolutionREQ-SRD-038Spectral coverage at high resolutionREQ-SRD-039Spectral coverage at high resolutionREQ-SRD-034Sensitivity at moderate resolutionREQ-SRD-041Velocities at low resolutionREQ-SRD-042Velocities at moderate resolutionREQ-SRD-043Velocities at high resolutionREQ-SRD-044Relative spectrophotometryREQ-SRD-045Sky subtraction, continuumREQ-SRD-046Sky subtraction, emission linesIrrement is Requirements relating to Lifetime Operations REQ-SRD-051Accessible skyREQ-SRD-052Observing efficiency			REQ-SRD-013	High spectral resolution		
2REQ-SRD-021Science field of viewREQ-SRD-022Multiplexing at low resolutionREQ-SRD-023Multiplexing at moderate resolutionREQ-SRD-024Multiplexing at high resolutionREQ-SRD-025Spatially resolved spectra 3aRequirements relating to Sensitivity REQ-SRD-031Spectral coverage at low resolutionREQ-SRD-032Spectral coverage at moderate resolutionREQ-SRD-033Spectral coverage at moderate resolutionREQ-SRD-034Sensitivity at low resolutionREQ-SRD-035Sensitivity at moderate resolutionREQ-SRD-036Sensitivity at moderate resolutionREQ-SRD-037Spectral coverage at high resolutionREQ-SRD-036Sensitivity at moderate resolutionREQ-SRD-037Spectral coverage at high resolutionREQ-SRD-038Spectral coverage at high resolutionREQ-SRD-039Spectral coverage at high resolutionREQ-SRD-034Sensitivity at moderate resolutionREQ-SRD-041Velocities at low resolutionREQ-SRD-042Velocities at moderate resolutionREQ-SRD-043Velocities at high resolutionREQ-SRD-044Relative spectrophotometryREQ-SRD-045Sky subtraction, continuumREQ-SRD-046Sky subtraction, emission linesIrrement is Requirements relating to Lifetime Operations REQ-SRD-051Accessible skyREQ-SRD-052Observing efficiency						
2REQ-SRD-022Multiplexing at low resolutionREQ-SRD-023Multiplexing at moderate resolutionREQ-SRD-024Multiplexing at high resolutionREQ-SRD-025Spatially resolved spectra3aRequirements relating to SensitivityREQ-SRD-031Spectral coverage at low resolutionREQ-SRD-032Spectral coverage at moderate resolutionREQ-SRD-033Spectral coverage at moderate resolutionREQ-SRD-034Sensitivity at low resolutionREQ-SRD-035Sensitivity at low resolutionREQ-SRD-036Sensitivity at moderate resolutionREQ-SRD-037Spectral coverage at high resolutionREQ-SRD-038Spectral coverage at moderate resolutionREQ-SRD-039Spectral coverage at moderate resolutionREQ-SRD-031Spectral coverage at moderate resolutionREQ-SRD-032Spectral coverage at moderate resolutionREQ-SRD-034Sensitivity at low resolutionREQ-SRD-035Sensitivity at moderate resolutionREQ-SRD-041Velocities at moderate resolutionREQ-SRD-042Velocities at low resolutionREQ-SRD-043Velocities at high resolutionREQ-SRD-044Relative spectrophotometryREQ-SRD-045Sky subtraction, continuumREQ-SRD-046Sky subtraction, emission linesNetwork tisREQ-SRD-051Accessible skyREQ-SRD-052Observing efficiencyKequirements relating to Lifetime Operations			Requirements r	elating to the Focal Plane Input:		
2REQ-SRD-023Multiplexing at moderate resolutionREQ-SRD-024Multiplexing at high resolutionREQ-SRD-025Spatially resolved spectra3aRequirements relating to SensitivityREQ-SRD-031Spectral coverage at low resolutionREQ-SRD-032Spectral coverage at moderate resolutionREQ-SRD-033Spectral coverage at moderate resolutionREQ-SRD-034Sensitivity at low resolutionREQ-SRD-035Sensitivity at low resolutionREQ-SRD-036Sensitivity at moderate resolutionREQ-SRD-037Spectral coverage at high resolutionREQ-SRD-038Sensitivity at low resolutionREQ-SRD-039Sensitivity at moderate resolutionREQ-SRD-036Sensitivity at high resolutionREQ-SRD-041Velocities at low resolutionREQ-SRD-042Velocities at low resolutionREQ-SRD-043Velocities at high resolutionREQ-SRD-044Relative spectrophotometryREQ-SRD-045Sky subtraction, continuumREQ-SRD-046Sky subtraction, continuumREQ-SRD-046Sky subtraction, emission linesNirement isRequirements relating to Lifetime OperationsREQ-SRD-051Accessible skyREQ-SRD-052Observing efficiency	· · · · · · · · · · · · · · · · · · ·		REQ-SRD-021	Science field of view		
A sequirements relating to Lifetime Operation REQ-SRD-024 Multiplexing at high resolution REQ-SRD-025 Spatially resolved spectra Requirements relating to Sensitivity REQ-SRD-031 Spectral coverage at low resolution REQ-SRD-032 Spectral coverage at moderate resolution REQ-SRD-033 Spectral coverage at high resolution REQ-SRD-034 Sensitivity at low resolution REQ-SRD-035 Sensitivity at moderate resolution REQ-SRD-036 Sensitivity at high resolution REQ-SRD-036 Sensitivity at high resolution REQ-SRD-036 Sensitivity at high resolution REQ-SRD-041 Velocities at low resolution REQ-SRD-042 Velocities at moderate resolution REQ-SRD-043 Velocities at moderate resolution REQ-SRD-044 REQ-SRD-044 Relative spectrophotometry REQ-SRD-045 Sky subtraction, continuum REQ-SRD-046 Sky subtraction, emission lines REQ-SRD-051 Accessible sky REQ-SRD-052 Observing efficiency			REQ-SRD-022	Multiplexing at low resolution		
REQ-SRD-025Spatially resolved spectraRequirements relating to SensitivityRequirements relating to SensitivityREQ-SRD-031Spectral coverage at low resolutionREQ-SRD-032Spectral coverage at moderate resolutionBLQ-SRD-033Spectral coverage at high resolutionREQ-SRD-034Sensitivity at low resolutionREQ-SRD-035Sensitivity at moderate resolutionREQ-SRD-036Sensitivity at moderate resolutionREQ-SRD-036Sensitivity at moderate resolutionREQ-SRD-036Sensitivity at high resolutionREQ-SRD-037Velocities at low resolutionREQ-SRD-041Velocities at moderate resolutionREQ-SRD-042Velocities at moderate resolutionREQ-SRD-043Velocities at moderate resolutionREQ-SRD-044Relative spectrophotometryREQ-SRD-045Sky subtraction, continuumREQ-SRD-046Sky subtraction, emission linesRequirements relating to Lifetime OperationsREQ-SRD-051Accessible skyREQ-SRD-052Observing efficiency			REQ-SRD-023	Multiplexing at moderate resolution		
Requirements relating to SensitivityRC-SRD-031Spectral coverage at low resolutionREQ-SRD-032Spectral coverage at moderate resolutionREQ-SRD-033Spectral coverage at high resolutionREQ-SRD-034Sensitivity at low resolutionREQ-SRD-035Sensitivity at moderate resolutionREQ-SRD-036Sensitivity at moderate resolutionREQ-SRD-036Sensitivity at moderate resolutionREQ-SRD-037Sensitivity at moderate resolutionREQ-SRD-038Sensitivity at moderate resolutionREQ-SRD-039Sensitivity at moderate resolutionREQ-SRD-036Sensitivity at moderate resolutionREQ-SRD-041Velocities at low resolutionREQ-SRD-042Velocities at moderate resolutionREQ-SRD-043Velocities at moderate resolutionREQ-SRD-044Relative spectrophotometryREQ-SRD-045Sky subtraction, continuumREQ-SRD-046Sky subtraction, emission linesAther ProjectRequirements relating to Lifetime OperationsREQ-SRD-051Accessible skyREQ-SRD-052Observing efficiency			REQ-SRD-024	Multiplexing at high resolution		
3aREQ-SRD-031Spectral coverage at low resolution REQ-SRD-032Spectral coverage at moderate resolution REQ-SRD-0333b3bSpectral coverage at high resolution REQ-SRD-034Sensitivity at low resolution3bREQ-SRD-035Sensitivity at moderate resolution REQ-SRD-036Requirements relating to Calibrationnent is ne mpliance. the ProjectRequirements relating to Calibration REQ-SRD-041Velocities at low resolution4Requirements relating to Calibration REQ-SRD-042Requirements relating to Calibration REQ-SRD-043Requirements relating to Calibration REQ-SRD-0441Requirements relating to Calibration REQ-SRD-045Requirements relating to Calibration REQ-SRD-044Relative spectrophotometry REQ-SRD-0451Requirements relating to Lifetime Operations REQ-SRD-046Sky subtraction, emission linesRequirements relating to Lifetime Operations1Requirements relating to Lifetime Operations REQ-SRD-051Accessible sky REQ-SRD-052Observing efficiency			REQ-SRD-025	Spatially resolved spectra		
3aREQ-SRD-031Spectral coverage at low resolution REQ-SRD-032Spectral coverage at moderate resolution REQ-SRD-0333b3bSpectral coverage at high resolution REQ-SRD-034Sensitivity at low resolution3bREQ-SRD-035Sensitivity at moderate resolution REQ-SRD-036Requirements relating to Calibrationnent is ne mpliance. the ProjectRequirements relating to Calibration REQ-SRD-041Velocities at low resolution4Requirements relating to Calibration REQ-SRD-042Requirements relating to Calibration REQ-SRD-043Requirements relating to Calibration REQ-SRD-0441Requirements relating to Calibration REQ-SRD-045Requirements relating to Calibration REQ-SRD-044Relative spectrophotometry REQ-SRD-0451Requirements relating to Lifetime Operations REQ-SRD-046Sky subtraction, emission linesRequirements relating to Lifetime Operations1Requirements relating to Lifetime Operations REQ-SRD-051Accessible sky REQ-SRD-052Observing efficiency						
3aREQ-SRD-032Spectral coverage at moderate resolution REQ-SRD-033Spectral coverage at high resolution3bREQ-SRD-034Sensitivity at low resolutionREQ-SRD-035Sensitivity at moderate resolutionREQ-SRD-036Sensitivity at moderate resolutionREQ-SRD-036Sensitivity at moderate resolutionREQ-SRD-036Sensitivity at moderate resolutionREQ-SRD-036Sensitivity at high resolutionREQ-SRD-036Sensitivity at high resolutionREQ-SRD-037Velocities at low resolutionREQ-SRD-041Velocities at moderate resolutionREQ-SRD-042Velocities at moderate resolutionREQ-SRD-043Velocities at high resolutionREQ-SRD-044Relative spectrophotometryREQ-SRD-045Sky subtraction, continuumREQ-SRD-046Sky subtraction, emission linesVirement is5REQ-SRD-051Accessible skyREQ-SRD-052Observing efficiency	the SRD hent is appliance. the Project		Requirements relating to Sensitivity			
REQ-SRD-033 Spectral coverage at high resolution REQ-SRD-034 Sensitivity at low resolution REQ-SRD-035 Sensitivity at moderate resolution REQ-SRD-036 Sensitivity at high resolution REQ-SRD-037 Sensitivity at high resolution REQ-SRD-038 Sensitivity at high resolution REQ-SRD-041 Velocities at low resolution REQ-SRD-042 Velocities at moderate resolution REQ-SRD-043 Velocities at high resolution REQ-SRD-044 Relative spectrophotometry REQ-SRD-045 Sky subtraction, continuum REQ-SRD-046 Sky subtraction, emission lines Itrement is REQ-SRD-051 Accessible sky REQ-SRD-052 Observing efficiency Observing efficiency			REQ-SRD-031	Spectral coverage at low resolution		
3b REQ-SRD-034 Sensitivity at low resolution REQ-SRD-035 REQ-SRD-035 Sensitivity at moderate resolution REQ-SRD-036 REQ-SRD-036 Sensitivity at high resolution REQ-SRD-036 Sensitivity at high resolution REQ-SRD-036 Sensitivity at high resolution Requirements relating to Calibration REQ-SRD-041 Velocities at low resolution REQ-SRD-042 Velocities at moderate resolution REQ-SRD-042 Velocities at high resolution REQ-SRD-043 Velocities at high resolution REQ-SRD-043 Velocities at high resolution REQ-SRD-044 REQ-SRD-044 Relative spectrophotometry REQ-SRD-045 Sky subtraction, continuum REQ-SRD-046 Sky subtraction, emission lines Irrement is S S Requirements relating to Lifetime Operations REQ-SRD-051 Accessible sky REQ-SRD-052 Observing efficiency	1	3 a	REQ-SRD-032	Spectral coverage at moderate resolution		
3b REQ-SRD-034 Sensitivity at low resolution REQ-SRD-035 REQ-SRD-035 Sensitivity at moderate resolution REQ-SRD-036 REQ-SRD-036 Sensitivity at high resolution REQ-SRD-036 Sensitivity at high resolution REQ-SRD-036 Sensitivity at high resolution Requirements relating to Calibration REQ-SRD-041 Velocities at low resolution REQ-SRD-042 Velocities at moderate resolution REQ-SRD-042 Velocities at high resolution REQ-SRD-043 Velocities at high resolution REQ-SRD-043 Velocities at high resolution REQ-SRD-044 REQ-SRD-044 Relative spectrophotometry REQ-SRD-045 Sky subtraction, continuum REQ-SRD-046 Sky subtraction, emission lines Irrement is S S Requirements relating to Lifetime Operations REQ-SRD-051 Accessible sky REQ-SRD-052 Observing efficiency	La		REQ-SRD-033	Spectral coverage at high resolution		
Nent is nent is ne npliance. the ProjectRequirements relating to Calibration REQ-SRD-041Requirements relating to Calibration Velocities at low resolutionREQ-SRD-041Velocities at low resolutionREQ-SRD-041Velocities at moderate resolutionREQ-SRD-042Velocities at moderate resolutionREQ-SRD-042Velocities at moderate resolutionREQ-SRD-043Velocities at high resolutionREQ-SRD-043Velocities at high resolutionREQ-SRD-044Relative spectrophotometryREQ-SRD-045Sky subtraction, continuumREQ-SRD-046Sky subtraction, emission linesREQ-SRD-046Sky subtraction, emission linesSSREQ-SRD-051Accessible skyREQ-SRD-052Observing efficiency	(26	REQ-SRD-034		Ĩ	
Nent is ne ne npliance. the ProjectRequirements relating to CalibrationREQ-SRD-041Velocities at low resolutionREQ-SRD-042Velocities at moderate resolutionREQ-SRD-043Velocities at high resolutionREQ-SRD-044Relative spectrophotometryREQ-SRD-045Sky subtraction, continuumREQ-SRD-046Sky subtraction, emission linesRequirements relating to Lifetime OperationsREQ-SRD-051Accessible skyREQ-SRD-052Observing efficiency		50	REQ-SRD-035	Sensitivity at moderate resolution		
NentrisREQ-SRD-041Velocities at low resolutionNe npliance. the Project4REQ-SRD-042Velocities at moderate resolutionREQ-SRD-043Velocities at high resolutionREQ-SRD-043Velocities at high resolutionREQ-SRD-044Relative spectrophotometryREQ-SRD-045Sky subtraction, continuumREQ-SRD-045Sky subtraction, emission linesREQ-SRD-046Sky subtraction, emission linesNirement is5Requirements relating to Lifetime OperationsREQ-SRD-051Accessible skyREQ-SRD-052Observing efficiency0	I_		REQ-SRD-036	Sensitivity at high resolution	·	
NentrisREQ-SRD-041Velocities at low resolutionNe npliance. the Project4REQ-SRD-042Velocities at moderate resolutionREQ-SRD-043Velocities at high resolutionREQ-SRD-043Velocities at high resolutionREQ-SRD-044Relative spectrophotometryREQ-SRD-045Sky subtraction, continuumREQ-SRD-045Sky subtraction, emission linesREQ-SRD-046Sky subtraction, emission linesNirement is5Requirements relating to Lifetime OperationsREQ-SRD-051Accessible skyREQ-SRD-052Observing efficiency0						
A REQ-SRD-042 Velocities at now resolution REQ-SRD-042 Velocities at moderate resolution REQ-SRD-043 Velocities at high resolution REQ-SRD-044 Relative spectrophotometry REQ-SRD-045 Sky subtraction, continuum REQ-SRD-046 Sky subtraction, emission lines REQ-SRD-046 Sky subtraction, emission lines REQ-SRD-051 Accessible sky REQ-SRD-052 Observing efficiency	aant ia		Requirements r	elating to Calibration		
REQ-SRD-043Velocities at high resolutionThe ProjectREQ-SRD-044Relative spectrophotometryREQ-SRD-045Sky subtraction, continuumREQ-SRD-046Sky subtraction, emission linesJirement is Requirements relating to Lifetime Operations REQ-SRD-051Accessible skyREQ-SRD-052Observing efficiency	ientis		REQ-SRD-041	Velocities at low resolution		
AREQ-SRD-043Velocities at high resolutionREQ-SRD-044Relative spectrophotometryREQ-SRD-045REQ-SRD-045Sky subtraction, continuumREQ-SRD-046REQ-SRD-046Sky subtraction, emission linesRequirements relating to Lifetime OperationsREQ-SRD-051Accessible skyREQ-SRD-052REQ-SRD-052Observing efficiencyREQ-SRD-052	ne		REQ-SRD-042	Velocities at moderate resolution		
Inplicative REQ-SRD-044 Relative spectrophotometry Inplicative REQ-SRD-045 Sky subtraction, continuum REQ-SRD-046 Sky subtraction, emission lines Requirements relating to Lifetime Operations Internet is REQ-SRD-051 Accessible sky REQ-SRD-052 Observing efficiency Internet		Δ	REQ-SRD-043	Velocities at high resolution		
REQ-SRD-046 Sky subtraction, emission lines Requirements relating to Lifetime Operations REQ-SRD-051 Accessible sky REQ-SRD-052 Observing efficiency	npliance.		REQ-SRD-044	Relative spectrophotometry		
Requirements relating to Lifetime Operations REQ-SRD-051 Accessible sky REQ-SRD-052 Observing efficiency	the Droject		REQ-SRD-045	Sky subtraction, continuum		
Irement is REQ-SRD-051 Accessible sky REQ-SRD-052 Observing efficiency			REQ-SRD-046	Sky subtraction, emission lines		
Irement is REQ-SRD-051 Accessible sky REQ-SRD-052 Observing efficiency						
REQ-SRD-052 Observing efficiency			Requirements relating to Lifetime Operations			
	lirement is 🥐		REQ-SRD-051	Accessible sky		
REQ-SRD-053 Observatory lifetime		5	REQ-SRD-052	Observing efficiency		
	1. I.		REQ-SRD-053	Observatory lifetime		



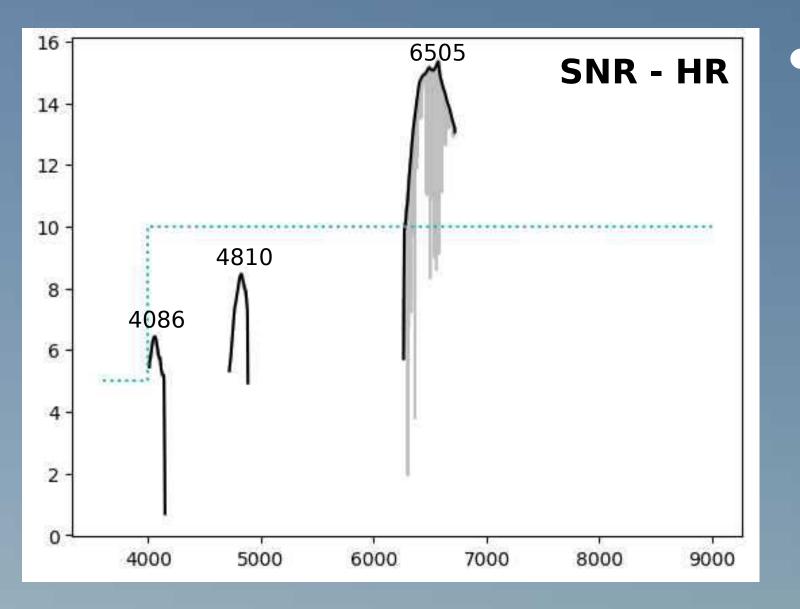
Solutions: science team lead

Maunakea Spectroscopic Explorer

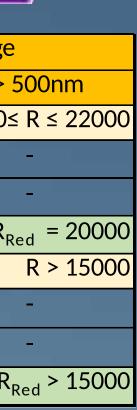

- low resolution?
- What is the anticipated target density in H-band?
 - 2200/sq. degrees is assumed in the SRD, same as the optical band
 - If the target density is lower, does having standalone H-band spectrograph make sense?
 - Can we do away with H-band LR mode all together?
 - What are the science motivations of the LR and MR resolutions, average and minimum?
 - Can we do away with MR mode all together?

• For LMR science considerations: What are the minimum sensitivities required for J-band and H-band in

		Wavelength Ra			
LR Mode	λ < 9	λ:			
Required Average Resolution	2500 ≤	R ≤ 3000			
Achieved Average Resolution		3396	9 11 12 23		
Required Minimum Resolution		R > 2000			
Achieved Minimum Resolution		1983			


	Wavelengt
	360nm ≤ λ ≤ 9
MR Mode	each wave
Required Average Resolution	5000 :
Achieved Average Resolution	R _B
Achieved Average Resolution	R _{Gr}
Achieved Average Resolution	R
Required Minimum Resolution	
Achieved Minimum Resolution	R _B
Achieved Minimum Resolution	R _{Gr}
Achieved Minimum Resolution	R

Maunakea Spectroscopic Explorer



- For HR science considerations: What is the minimum SNR and resolution for $\lambda < 500$ nm?
 - For example, is SNR=5 acceptable, instead of 10?
 - For example, is R35K acceptable, instead of R40k, in order to increase SNR?
 - windows?

Solutions?

	Wavelength Range		
HR Mode	λ < 500nm	λ >	
Required Average Resolution	38000≤ R ≤ 420000	18000:	
Achieved Average Resolution	R _{Blue} = 40000		
Achieved Average Resolution	R _{Green} = 40000		
Achieved Average Resolution	-	R _F	
Required Minimum Resolution	R > 35000		
Achieved Minimum Resolution	R _{Blue} > 35000		
Achieved Minimum Resolution	R _{Green} > 35000		
Achieved Minimum Resolution	-	R	

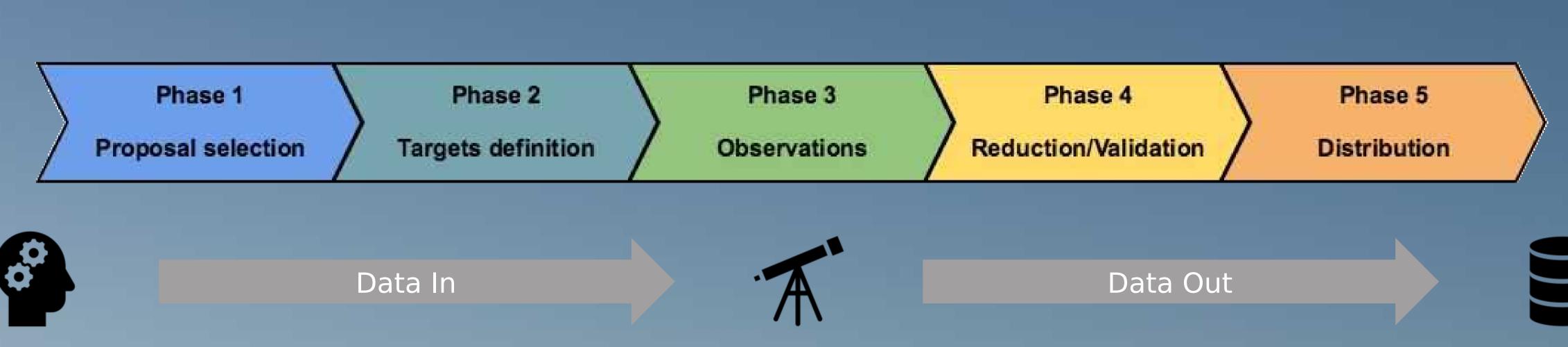
• What are the science appropriate central wavelengths for the blue, green and red spectral arms given the $\lambda/30$ and $\lambda/15$ working

OPERATIONS

- One of the founding documents for the Project Office with the Observatory Architecture and Requirements Documents
 - 79 pages
 - 135 requirements
- Describes how the observatory will be operated to answer the Science Requirements Document, in particular the requirements on:
 - observing efficiency (quantity of data):
 - 80% observing efficiency (time spent collecting photons divided by time not lost to weather)
 - calibration (quality of data):
 - 0.5% sky subtraction accuracy
 - 3% relative spectrophotometry
 - 100 m/s velocity accuracy at high resolution

Operations Concept

MSE Operations Concept Document MSE.PO.ENG.DOC-REQ-002


Status: Released for System Conceptual Design Review 2017.11.16

Frepared By:			
Organization	Date		
MSE Project Office	E.		
Organization	Date		
MSE Project Office	F.		
	MSE Project Office Organization		

MSE will follow the typical Phases of an astronomical observatory, following the data flow

& out

Phases of operations

However, the tools will need to be adapted to the large amount of data in

Phases of operations – data input

Phase 1

Proposal selection

User interface website

Database list of proposals, reviews

Software **Exposure Time Calculator** (ETC) Target Allocation Simulator (TAS)

Phase 1 (proposals): • Large surveys and small programs Long term and short term proposal cycles intertwined

• Technical justification will need Exposure Time Calculator (ETC) and Target Allocation Simulator (TAS) ETC - <u>http://etc-dev.cfht.hawaii.edu/mse/</u> TAS - <u>http://etc-dev.cfht.hawaii.edu/mse/alloc.html</u>

Phases of operations - scheduling

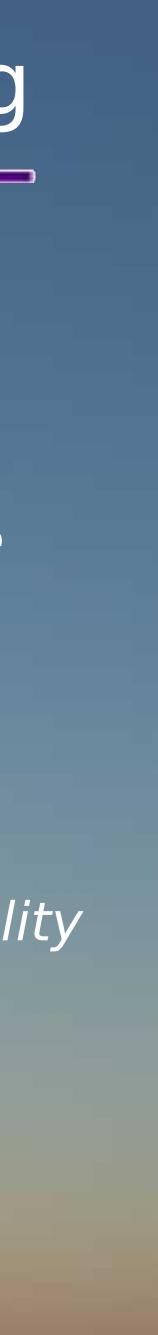
User Interface observing tool

Database **Observing Elements** Database (OED)

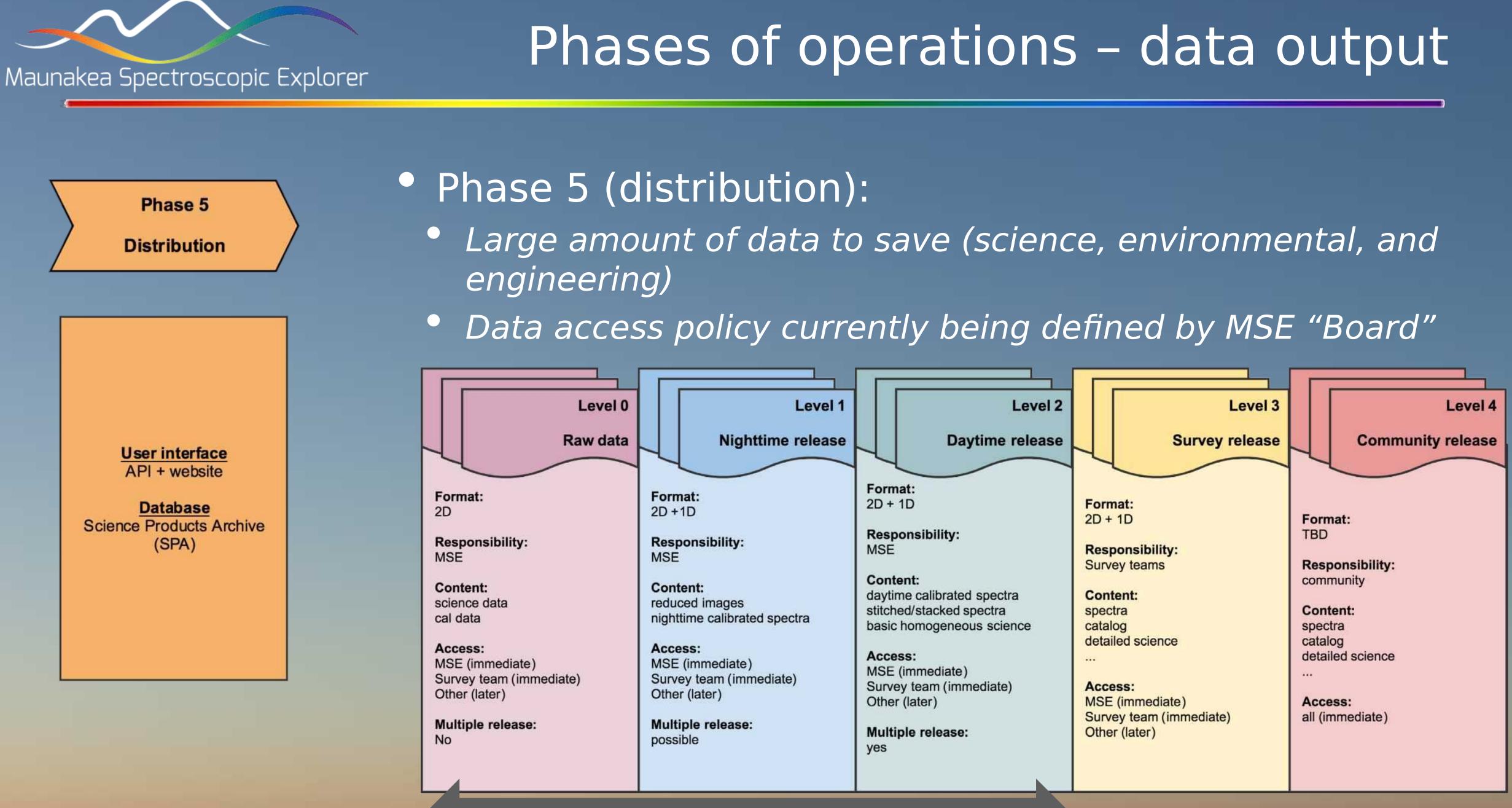
Software **Observing Matrix Generator** (OMG)

Phase 3 (execution)

Phase 4 (validation/reduction)


- of data

 Autonomous software optimizing the sequence of OMs, with possible human supervision

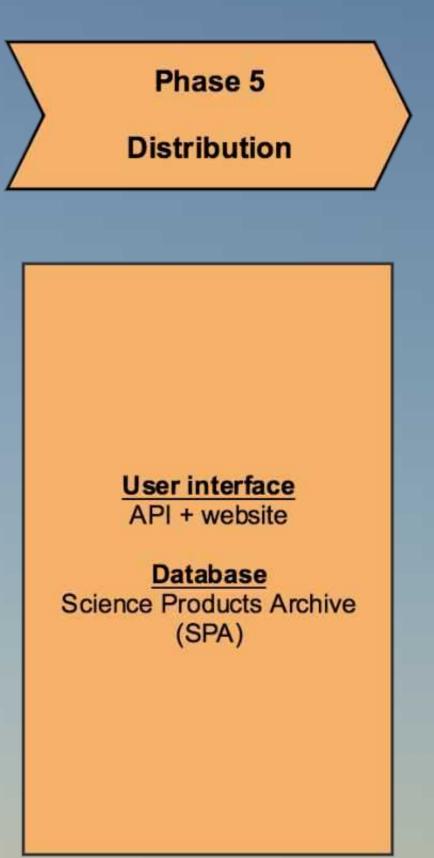

• Very complex optimization (millions of targets to chose from, 4000+ fibers, two different types of spectrographs) with many constraints (priorities, weather, ...)

• Autonomous software reducing spectra and assessing quality

• **Real-time feedback** to scheduler

Homogeneous, MSE

- Each observation will produce
 - 3,249 targets x 4 arms = 12,996 spectra at low/moderate resolution
 - 1,083 targets x 3 arms = 3,249 spectra at high resolution
 - 16,245 spectra per observation (1 hour typically)
- Total exposure time per night (average): 6.42 hours (see later how we arrive to that number)
 - 100,000 spectra per night
 - > 38,000,000 spectra per year (or > 10,000,000 fiber-hours)


+ reduced data, added science value, ...

Amount of Data Produced

Phases of operations – data output

- Phase 5 (distribution):

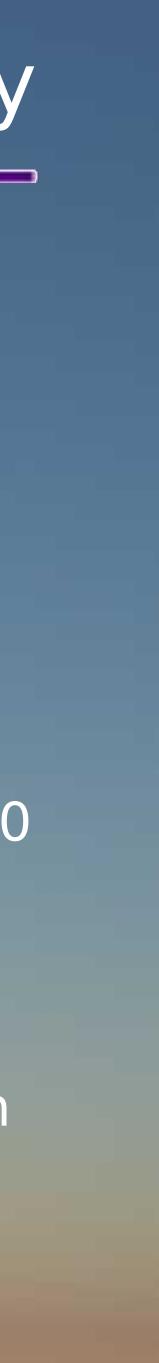
 - it

• Ease of access for millions of individual spectra (one per spectrograph arm) and millions of stitched/stacked spectra with added science information

• Allows for cross matching with other catalogs from surveys (LSST, SKA, Euclid, ...) and other (TMT, ELT, GMT, ...)

• Allows community to interact with the archive and improve

• NOAO Data Lab: "The goal of the Data Lab is to provide infrastructure and an environment to maximize community use of the high-value survey datasets now being collected with NOAO and other telescopes and instruments."


Calibrations & Observing Efficiency

- Calibration (strategy, hardware, software) is a critical topic for a fiber fed spectroscopic facility, but it can be done and we are not alone!
- At this stage, we prepare for the worst and hope for the best
- Combination of daytime, twilight, and nighttime calibration exposures
 - configuration (including environment) as for science exposures
- hours available
- Other losses (technical failures, engineering tests, ...): 240 hours / years 6.42 hours per night for science photons
- is 44 minutes

Lamp calibrations taken before and after every science exposure, with telescope in exact

• Weather losses at CFHT: 10.2 hours night duration – 2.2 hours lost to weather = 8.0

MSE will reach 80% observing efficiency if typical science observations duration

PARTNERSHIP, COST, SCHEDULE

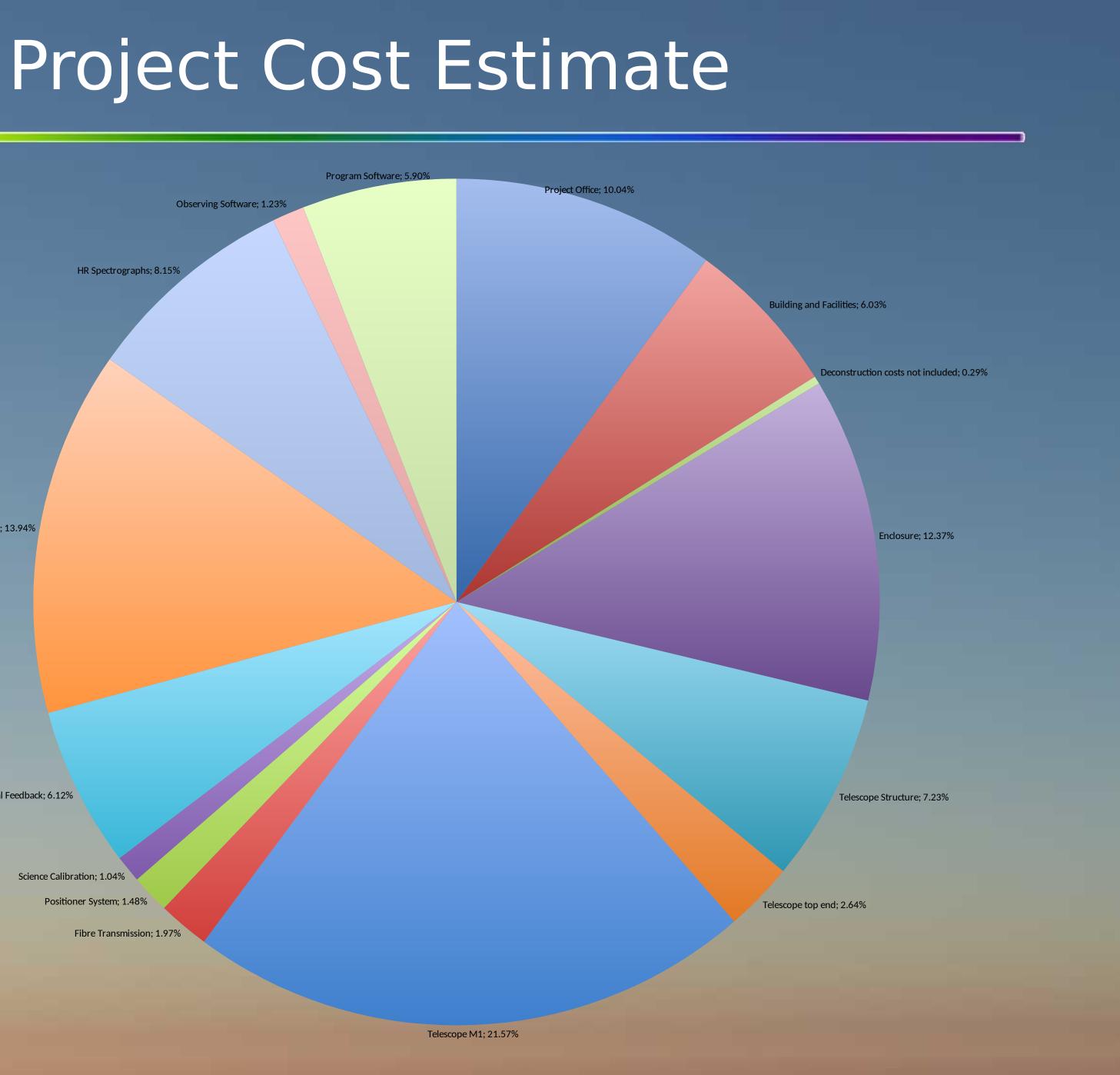
Preliminary Design Phase

CURRENT MSE PARTICIPANTS

11:5 34

The PDP starts in 2019 with participants:

- <u>Australian</u> Astronomical Optics (AAO) Macquarie
- National Research Council (NRC) of <u>Canada</u>
- National Astronomical Observatories (NAOC), <u>Chinese</u> Academy of Sciences
- Centre National de la Recherche Scientifique (CNRS) of France
- Institute for Astronomy, University of <u>Hawaii</u>
- India Institute of Astrophysics
- National Optical Astronomy Observatory, USA and Texas A&M University participate as observers



- Risk Adjusted Construction Cost of <u>\$424M</u>
- Base year 2017
- The PDP cost is estimated to be \$25M
- \$13M of in-kind contributions have been identified.
- About \$9M invested in CoDP

LM Spectrographs; 13.94%

Telescope Optical Feedback; 6.12%

Science Calibration; 1.04%

Science commission will begin in 2029

Management Board approved Construction Phase start

Manufacturing & Testing 2026 2024 2025 2023 2018 <mark>201</mark>9 202 2)22 2017 2021 2030 Preliminary **Detailed Design** Industrial Systems AIV / Science Instrument AIV Design

Project Timeline Estimate

Science Operations

Science

Commission

2028

Summary & Acknowledgement

Accessible sky		30000 square degrees (airmass<1.55)					
Aperture (M1 in m)		11.25m					
Field of view (square degrees)				1.5			
Etendue = FoV x π (M1 / 2) ²		149					
Modes	Lo	Low Moderate High				IFU	
Wavelength range	0.36 - 3	1.8 µm	0.36 - 0.95 μm	0.36 - 0.95 μm #			
vavelength range	0.36 - 0.95 μm	J, H bands		0.36 - 0.45 μm	0.45 - 0.60 μm	0.60 - 0.95 μm	
Spectral resolutions	2500 <i>(3000)</i>	3000 <i>(5000)</i>	6000	40000	40000	20000	IFU capak
Multiplexing	>3200		>3200	>1000			anticipat
Spectral windows	Full		≈Half	λ _c /30	λ _c /30	$\lambda_{c}/15$	secono generati
Sensitivity	m=24 *		m=23.5 *	m=20.0 넉			capabilit
Velocity precision	20 km/s ♪		9 km/s ♪	< 100 m/s ★			
Spectrophotometic accuracy	< 3 % relative		< 3 % relative	N/A			

Dichroic positions are approximate

* SNR/resolution element = 2

 \Rightarrow SNR/resolution element = 5

└ SNR/resolution element = 10

 \star SNR/resolution element = 30

The Maunakea Spectroscopic Explorer (MSE) conceptual design phase was conducted by the MSE Project Office, which is hosted by the Canada-France-Hawaii Telescope (CFHT). MSE partner organizations in Canada, France, Hawaii, Australia, China, India, and Spain all contributed to the conceptual design. The authors and the MSE collaboration recognize the cultural importance of the summit of Maunakea to a broad cross section of the Native Hawaiian community.

ble; ted ion Itv