

Fully microscopic scission-point model to predict fission fragment observables : SPY model

J.-F. Lemaître Institut d'Astronomie et d'Astrophysique - Brussels University

Collaborators: S. Goriely, S. Hilaire, J.-L. Sida

Energy production applications^{\overline{F}}

nuclear power reactors nuclear waste recycling

Astrophysics (NS ejecta)

rapid neutron-capture process Nuclear physics

static & dynamic properties neutron rich nuclei production

- * Fission process
- * SPY model
- * Results
- * **Pu240**
- * Systematic

fn^rs ulb

LA LIBERTÉ DE CHERCHE

fragments flying away from one another

SPY model presentation

What is the role of the nuclear structure of fission fragments during the fission process ?

Can experimental data be understood/reproduced considering <u>only the</u> <u>nuclear structure of the fission fragments</u> ?

SPY model a scission point model

- **Hypo. to determine the frag. properties** : fission process (CN \rightarrow frag.) \approx scission line **Scission configuration** : defined by the proton density at scission neck between 2 frag. Fragments are at rest (no prescission kinetic energy)
- Fragments are axially symmetric
- Inputs : frag. Eind, spl & proton density from HFB calculations (Gogny or Skyrme)

SPY model a statistical model

- \rightarrow ONLY based on fission fragments & <u>first-chance fission</u>
- \rightarrow Evolution (quasi static) between saddle point to scission point is neglected
- \rightarrow Isolated fragments
- \rightarrow Well defined fragments characteristics (Z, N, β)
- \rightarrow Fragmentation probability \propto number of available states
 - **4** Fragments observables

- \rightarrow ONLY based on fission fragments & <u>first-chance fission</u>
- \rightarrow Evolution (quasi static) between saddle point to scission point is neglected
- \rightarrow Isolated fragments
- \rightarrow Well defined fragments characteristics (Z, N, β)
- \rightarrow Fragmentation probability \propto number of available states
 - **4** Fragments observables
- Two quantities are needed to compute physical quantities
 - available energy for each fragmentation of the system : AE
 - the number of available states for each fragmentation of the system : AS

- \rightarrow ONLY based on fission fragments & <u>first-chance fission</u>
- \rightarrow Evolution (quasi static) between saddle point to scission point is neglected
- \rightarrow Isolated fragments
- \rightarrow Well defined fragments characteristics (Z, N, β)
- \rightarrow Fragmentation probability \propto number of available states
 - 4 Fragments observables
- Two quantities are needed to compute physical quantities
 - available energy for each fragmentation of the system : AE
 - the number of available states for each fragmentation of the system : AS
- 235 U(n_{th},f) : ~500 fragmentations
 - fragmentation → 57 x 57 deformations
 L Ecoul : the most time-consuming numerically computed

 \rightarrow AE \approx 20 MeV \rightarrow 20 AS/fragmentation

1,6 million AE

32 million AS

19/53

SPY model

available energy & available states

A LIBERTÉ DE CHERCHER

SPY model

available energy & available states

22/53

LA LIBERTÉ DE CHERCHER

SPY model

available energy & available states

SPY model available energy & available states

fn's ulb

SPY model raw yields VS smoothed yields

fn^rs^{ulb}

25/53

Results Fission of U236, Pu240 & Cf252

fn's ulb

Results Fission of Hg isotopes

fn^rs ulb

Results Fission of U238 – Q=7.4 MeV

fn's ulb

Results Fission of Np239 – Q=7.5 MeV

fn^rs^{ulb}

Results Fission of Pu240 – Q=10.7 MeV

fn^rs^{ulb}

Exp. data : M. Caamano et al, PRC92, 034606 (2015)

Pu240 TKE & KE pren - Q=9 MeV

Pu240 Q=0 MeV

Pu240 Q=0/6.5 MeV

Pu240 Q=0/6.5/20 MeV

Pu240 Q=0/6.5/20/40 MeV

Pu240 Q=0/6.5/20/40 MeV

Systematic Peak multiplicity

fnis ulb

Systematic Peak multiplicity

fn's ulb

Systematic, BSk27+D1M nuclei : Rn \rightarrow U, Q=10 MeV, ρ_{neck} =0.002 fm⁻³

fnis ulb

Conclusions & outlooks

Conclusions

- Scission point, static frag., statistical (microcanonical description)
- Definition of the scission point based on realistic proton distribution
- All ingredients are calculated coherently in the same microscopic framework (Skyrme BSk27 eff. N-N interaction ; J.-F. Lemaître et al, Phys Rev C 99, 034612 (2019))
- Applied to the r-process, doubly asymm. fission (S. Goriely et al, Phys. Rev. Lett. 111, 242502 (2013))

Outlooks

- * Improve the description of the kinetic energy
- * Improve the neutron evaporation
- * Improve Y evolution with Q
- * Octupole deformations
- * Explore the odd-even effects in observables
- * States densities including pairing gap (Δ) fluctuations
- * New version with Gogny-D1M eff. N-N interaction \rightarrow link with PES

Impact of E nucl & and ρ_{neck} on Pu240 no Blocki — Reid-M3Y — Paris-M3Y

Impact of $\rho_{\rm neck}$ on yields

fn's ulb

LA LIBERTÉ DE CHERC

Impact of ρ_{neck} on TKE

BSk 27 Q=8MeV

44/53

Fission of Pu240 – Q=0/6.5/20/40 MeV with BSk27 $\sigma_z = \sigma_n = 0.65$

BCS equations to compute NSD

particle number equation :

$$N_{q} = \sum_{k} 1 - \frac{\varepsilon_{q}^{k} - \lambda_{q}}{E_{q}^{k}} \tanh\left(\frac{E_{q}^{k}}{2T}\right) \text{ with } N_{q} = Z \text{ or } N$$

gap equation :

fn's ulb

LA LIBERTÉ DE CHER

$$\frac{2}{G_{q}} = \sum_{k} \frac{1}{E_{q}^{k}} \tanh\left(\frac{E_{q}^{k}}{2T}\right) \text{ with } G_{q} \text{ the pairing strength}$$

where :

$$E_{q}^{k} = \sqrt{\left(\epsilon_{q}^{k} - \lambda_{q}\right)^{2} + \Delta_{q}^{2}} \text{ the quasiparticle energy}$$

$$\epsilon_{q}^{k} : \text{ energy of the kth level of the SPL scheme}$$

$$\lambda_{q} : \text{ chemical potential }; \Delta_{q} : \text{ paring gap }; T : \text{ temperature}$$

$$E_{tot}(T) = \sum_{q=n,p} \sum_{k} \left[1 - \frac{\varepsilon_q^k - \lambda_q}{E_q^k} tanh\left(\frac{E_q^k}{2T}\right) \right] - \frac{\Delta_q^2}{G_q}$$
$$S(T) = 2\sum_{q=n,p} \sum_{k} ln(1 + e^{-E_q^k/T}) + \frac{E_q^k/T}{1 + e^{E_q^k/T}}$$

BCS equations to compute NSD

finally we have :

$$\frac{1}{\rho(\mathbf{U})} = (2\pi)^{3/2} \left[\frac{\sqrt{\mathbf{D}(\mathbf{U})}}{e^{\mathbf{S}(\mathbf{U})}} + \frac{1}{\omega_0(\mathbf{U})} \right]$$

with :

$$\omega_0(U) = \frac{\pi^2 e}{12} \frac{S(U)^2}{T\sqrt{S_n(U)S_z(U)}} e^{S_n(U)S_z(U)} \text{ to avoid unphysical divergence}$$

where

$$U = U(T) = E(T) - E(T=0)$$

$$\mathbf{S}(\mathbf{U}) = \mathbf{S}_{\mathbf{n}}(\mathbf{U}) + \mathbf{S}_{\mathbf{z}}(\mathbf{U})$$

D(U) is the determiant of the 2nd derivatives of Ξ

Cf250 Fission of Cf250 – Q=0/7/46 MeV

fn's ulb

fn^rs ulb

IA LIBERTÉ DE CHER

fn's ulb

LA LIBERTÉ DE CHER

Pu240 VS Cf250 <TKE> evolution with Q

Pu240 : increase of the symm. part of the yields distribution with Q $\langle TKE \rangle$ decreases, from sf to nif -1 MeV (D1M) & -4 MeV (BSk27) Wagemans, ch8 : -1.4 ± 0.1 MeV

Pu240 VS Cf250 <TKE> evolution with Q

Pu240 : increase of the symm. part of the yields distribution with Q $\langle TKE \rangle$ decreases, from sf to nif -1 MeV (D1M) & -4 MeV (BSk27) Wagemans, ch8 : -1.4 ± 0.1 MeV

Cf250 : exp. : symm. & SPY : asymm. <TKE> decreases, from sf to nif -0.95 MeV (D1M & BSk27)

Wagemans, ch8 : **<TKE> increase**

FIGURE 59. Spontaneous fission of ²⁵⁰Cf (open points) and thermal neutron fission of ²⁴⁰Cf(n,f) (crosses): preneutron mass yield (bottom), average total kinetic energy (middle), and rms width of total kinetic energy distribution (top) vs. heavy fragment mass. (From Unik, J. P., Gindler, J. E., Glendenin, L. E., Flynn, K. F., Gorski, A., and Sjoblom, R. K., in *Proc. Symp. Physics and Chemistry of Fission*, Vol. 2, IAEA, Vienna, 1974, 20. With permission.)

Pu240 VS Cf250 <TKE> evolution with Q

Pu240 : increase of the symm. part of the yields distribution with Q $\langle TKE \rangle$ decreases, from sf to nif -1 MeV (D1M) & -4 MeV (BSk27) Wagemans, ch8 : -1.4 ± 0.1 MeV

Cf250 : exp. : symm. & SPY : asymm. <TKE> decreases, from sf to nif -0.95 MeV (D1M & BSk27)

Wagemans, ch8 : **<TKE> increase**

* too strong structure effects ? \rightarrow no shell closure in frag. * state density evolution with E*

* 238 U(12 C,f) $\neq {}^{249}$ Cf(n,f) or 250 Cf(γ ,f)

* Why <TKE> increases with Q for Cf250 case ? (multi-chance?)

Wagemans, ch8 'The interpretation of the above results [TKE evolution with Q] is not obvious. The change of sign in the average shift of KE release when moving from spontaneous to induced fission is, however, a strong indication that the question whether superfluidity in the nuclear system is preserved in the fission process is not at stake. [...]'

\rightarrow Measure Y & <TKE> of Pu240 & Cf250 with Q ?

FIGURE 59. Spontaneous fission of ²⁵⁰Cf (open points) and thermal neutron fission of ²⁴⁹Cf(n,f) (crosses): preneutron mass yield (bottom), average total kinetic energy (middle), and rms width of total kinetic energy distribution (top) vs. heavy fragment mass. (From Unik, J. P., Gindler, J. E., Glendenin, L. E., Flynn, K. F., Gorski, A., and Sjoblom, R. K., in *Proc. Symp. Physics and Chemistry of Fission*, Vol. 2, IAEA, Vienna, 1974, 20. With permission.)