

Taming nuclear complexity with deep neural networks

R.-D. Lasseri¹, D. Regnier²

¹ESNT, CEA, IRFU, DPhN, Université Paris Saclay, F-91191 Gif-sur-Yvette
²CMLA, CNRS, ENS Paris-Saclay, Université Paris-Saclay, 94235, Cachan cedex, France

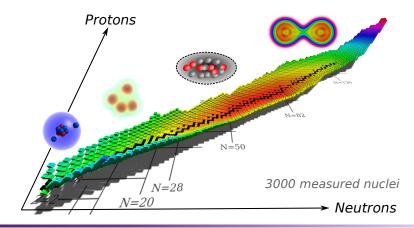
The nuclear complexity

Why so complex ?

- Three fundamental interactions
- Non elementary fermions
- Mesoscopic many-body problem

Some open questions

- Properties of exotic matter ?
- Mechanism of nucleosynthesis ?
- Super-heavy island of stability ?



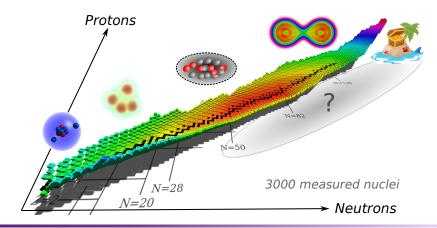
The nuclear complexity

Why so complex ?

- Three fundamental interactions
- Non elementary fermions
- Mesoscopic many-body problem

Some open questions

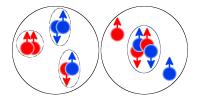
- Properties of exotic matter ?
- Mechanism of nucleosynthesis ?
- Super-heavy island of stability ?



When complexity leads to diversity - Superfluidities

Fermions in presence of an attractive interaction¹

- Pairing
- Quartetting



Questions:

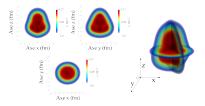
- Spatial properties of pairs/quartets
- BEC/BCS Transitions

¹Lasseri, Ebran, Khan, Sandulescu Phys. Rev. C 98, 014310 (2018)

When complexity leads to diversity - Deformation and Clustering

Emerging phenomena^{2 3 4 5}

- Anisotropy: Deformation
- Inhomogeneities: Clusters



Questions:

- Cluster localization
- Quantum Phase Transitions
- Alpha/Cluster Radioactivity

²Le Bars, Guerlin, Lasseri *et al* Phys. Rev. D 95, 075026 (2017)
 ³Ebran, Khan, Lasseri, Vretenar Phys. Rev. C 97, 061301 (2018)
 ⁴Ebran, Khan, Lasseri Submitted to PRC (2019)
 ⁵Ebran, Girdo, Khan, Lasseri, Schuck Submitted to PRC (2019)

When complexity leads to diversity - Deformation and Clustering

Emerging phenomena^{2 3 4 5}

- Anisotropy: Deformation
- Inhomogeneities: Clusters

Questions:

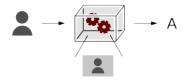
- Cluster localization
- Quantum Phase Transitions
- Alpha/Cluster Radioactivity

²Le Bars, Guerlin, Lasseri *et al* Phys. Rev. D 95, 075026 (2017)
 ³Ebran, Khan, Lasseri, Vretenar Phys. Rev. C 97, 061301 (2018)
 ⁴Ebran, Khan, Lasseri Submitted to PRC (2019)
 ⁵Ebran, Girdo, Khan, Lasseri, Schuck Submitted to PRC (2019)

Representations

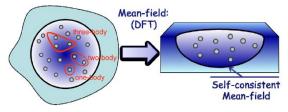
Transparent + Explicit

- Arithmetics
- $\diamond~{\rm Reductionism}$



The nuclear energy density functional framework (EDF)

Classical or covariant "microscopic" approach capable of predictions over the whole nuclear chart $^{6}\ ^{7}$



Many implementations:

- Symmetry breaking/restoration: Multi-Reference EDF
- Linear response: RPA, QRPA
- Time dependency: TDHFB, TDGCM...
- Perturbation Theories: MBPT, BMBPT

Limitations

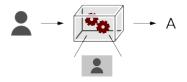
- Numerical cost
- No link with the bare n-n interaction
- Double counting, spuriosities

⁶Perez, Schunck, Lasseri, Zhang, J.Sarich Comp. Phys. Comm (2017) ⁷Arthuis, Duguet, Tichai, Lasseri, Ebran Comp. Phys. Comm (2018)

Representations

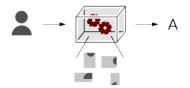
Transparent + Explicit

- Arithmetics
- $\diamond~{\rm Reductionism}$



Transparent + Implicit

- Encrypted messages
- \diamond Emergentism



Quantum mechanics is a theory about the physical **description** of physical systems **relative** to other systems, and this is a complete description of the world⁸ – Carlo Rovelli

⁸International Journal of Theoretical Physics August 1996, Volume 35, Issue 8, pp 1637?1678

How can we leverage machine learning in nuclear theory ?

Progress of machine learning:

- Image classification: cancer detection, particle detection
- Generative AI: turbulence
- Inverse problems: cosmology
- Many body problem: spin systems, bosons

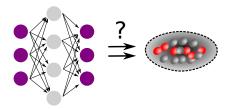
A review:

G. Carleo et. al., arXiv:1903.10563 (2019)

In nuclear theory:

- Machine learning for experimental nuclear masses or radii tables
- Acceleration of EDF calculations

\implies An unexplored territory



Question (march 2019)...

Can we teach an artificial intelligence (AI) to predict nuclear structure ?

How can we leverage machine learning in nuclear theory ?

Progress of machine learning:

- Image classification: cancer detection, particle detection
- Generative AI: turbulence
- Inverse problems: cosmology
- Many body problem: spin systems, bosons

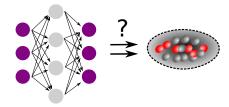
A review:

G. Carleo et. al., arXiv:1903.10563 (2019)

In nuclear theory:

- Machine learning for experimental nuclear masses or radii tables
- Acceleration of EDF calculations

\implies An unexplored territory



Question (march 2019)...

Can we teach an artificial intelligence (AI) to predict nuclear structure ?

How can we leverage machine learning in nuclear theory ?

Progress of machine learning:

- Image classification: cancer detection, particle detection
- Generative AI: turbulence
- Inverse problems: cosmology
- Many body problem: spin systems, bosons

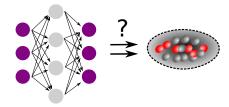
A review:

G. Carleo et. al., arXiv:1903.10563 (2019)

In nuclear theory:

- Machine learning for experimental nuclear masses or radii tables
- Acceleration of EDF calculations

\implies An unexplored territory

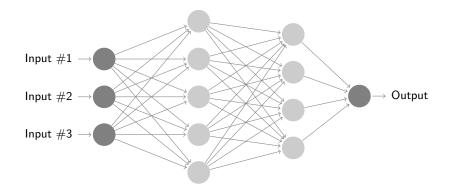


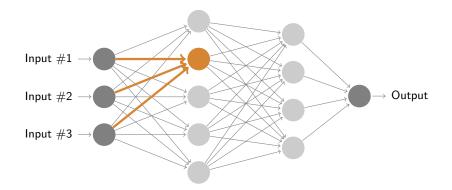
Question (march 2019)...

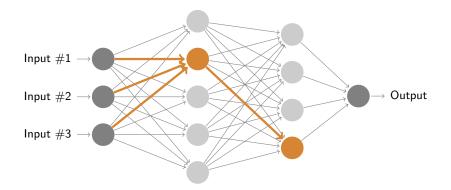
Can we teach an artificial intelligence (AI) to predict nuclear structure ?

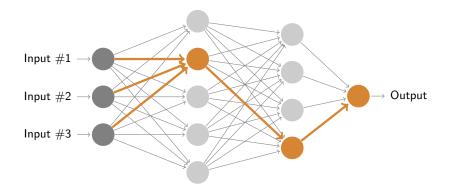
Table of contents

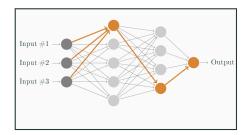
Deep learning demystified

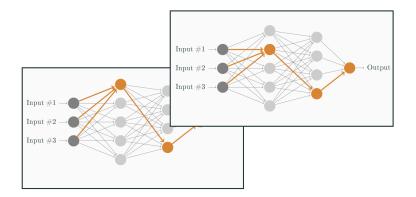


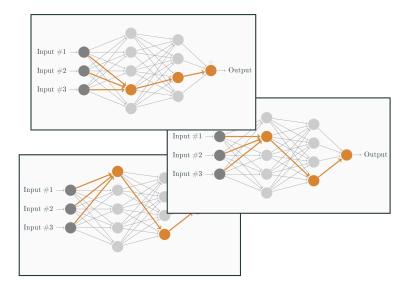




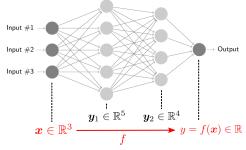


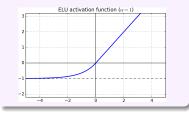






The mathematical picture





 $W_1, W_2, W_3 =$ matrices, $\boldsymbol{b}_1, \boldsymbol{b}_2, \boldsymbol{b}_3 =$ vectors.

We fit these parameters so to reproduce some training data $(\mathbf{x}^i, \mathbf{y}^i), i \in [0, N]$.

Table of contents

Deep learning demystified

2 Nuclear structure from an artificial intelligence (AI)

3 Opportunities & Projects

State of the art

Neural networks, Bayesian Neural Net. and Gaussian Processes were used to:

Fit nuclear masses

- Athanassopoulos *et. al.* NPA 743 (2004) RMS = 950 keV
- Utama et. al. PRC 96 (2017)
- Utama et. al. PRC 97 (2018) RMS decreased by 40%
- Zhang *et. al.* J Phys. G (2017) Drip-lines predictions
- Neufcourt et. al. PRC 98 (2018)
- Niu et. al. PLB 778 (2018)
 Estimation of uncertainties

Current limitations

- \bullet Al trained on 80% of an experimental dataset, i.e > 1800 nuclei
- Only trained to capture one observable

Fit nuclear radii

- Akkoyun et. al. J. Phys. G: NPP 40 (2013)
- Utama et. al. J. Phys. G: NPP 43 (2016)

State of the art

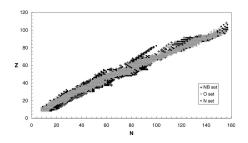
Neural networks, Bayesian Neural Net. and Gaussian Processes were used to:

Fit nuclear masses

- Athanassopoulos *et. al.* NPA 743 (2004) RMS = 950 keV
- Utama et. al. PRC 96 (2017)
- Utama et. al. PRC 97 (2018) RMS decreased by 40%
- Zhang et. al. J Phys. G (2017) Drip-lines predictions
- Neufcourt et. al. PRC 98 (2018)
- Niu et. al. PLB 778 (2018)
 Estimation of uncertainties

Fit nuclear radii

- Akkoyun et. al. J. Phys. G: NPP 40 (2013)
- Utama et. al. J. Phys. G: NPP 43 (2016)



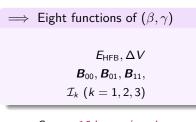
Current limitations

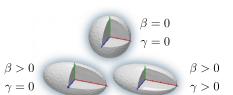
- \bullet Al trained on 80% of an experimental dataset, i.e > 1800 nuclei
- Only trained to capture one observable

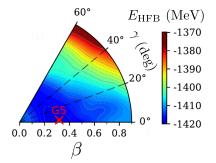
Structure from the 5D collective Hamiltonian 1/2

Building the collective Hamiltonian

- Of the collective variables:
 - β, γ : quadrupol deformation
 - Ω: Euler angles
- Generate a manifold of constrained Hartree-Fock-Bogoliubov states
- Ompute:
 - the potential energy
 - the inertia







Structure from the 5D collective Hamiltonian 2/2

Solving the collective Hamiltonian

$$\left(\hat{\mathcal{H}}_{\mathcal{K},rot}+\hat{\mathcal{H}}_{\mathcal{K},vib}+\hat{\mathcal{H}}_{V}\right)g(\beta,\gamma,\Omega)=E\,g(\beta,\gamma,\Omega).$$
(1)

with:

$$\begin{split} \hat{\mathcal{H}}_{K,rot} &= \frac{1}{2} \sum_{k=1}^{3} \frac{\hat{l}_{k}^{2}}{\mathcal{I}_{k}(\beta,\gamma)}, \qquad \mathcal{H}_{V} = \mathcal{E}_{\mathsf{HFB}}(\beta,\gamma) - \Delta V(\beta,\gamma), \\ \hat{\mathcal{H}}_{K,vib} &= \frac{1}{2} \sum_{\substack{q=\beta,\gamma\\p=\beta,\gamma}} \frac{1}{D^{1/2}} \frac{\partial}{\partial q} D^{1/2} \mathcal{B}_{i_{q}i_{p}}^{-1}(\beta,\gamma) \frac{\partial}{\partial p}. \end{split}$$

Structure from the 5D collective Hamiltonian 2/2

Solving the collective Hamiltonian

$$\left(\hat{\mathcal{H}}_{\mathcal{K},rot}+\hat{\mathcal{H}}_{\mathcal{K},vib}+\hat{\mathcal{H}}_{V}\right)g(\beta,\gamma,\Omega)=E\,g(\beta,\gamma,\Omega).$$
(1)

with:

$$\begin{split} \hat{\mathcal{H}}_{K,rot} &= \frac{1}{2} \sum_{k=1}^{3} \frac{\hat{l}_{k}^{2}}{\mathcal{I}_{k}(\beta,\gamma)}, \qquad \mathcal{H}_{V} = \mathcal{E}_{\mathsf{HFB}}(\beta,\gamma) - \Delta V(\beta,\gamma), \\ \hat{\mathcal{H}}_{K,vib} &= \frac{1}{2} \sum_{\substack{q=\beta,\gamma\\ p=\beta,\gamma}} \frac{1}{D^{1/2}} \frac{\partial}{\partial q} D^{1/2} \mathcal{B}_{i_{q}i_{p}}^{-1}(\beta,\gamma) \frac{\partial}{\partial p}. \end{split}$$

Discretization:

- Ω : Wigner rotation basis
- β, γ : Finite elements

Eigen solver:

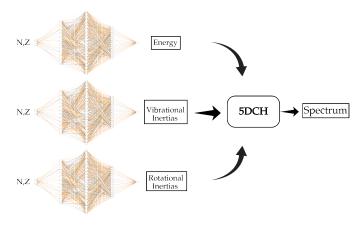
• Krylov (SLEPc)

```
Cost \simeq 5 min.cpu / nucleus
```


D. Regnier et. al., CPC 225 (2018)

Replacing the time consuming part by a neural network

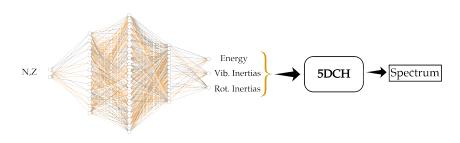
Single task learning



• Good individual features RMS

Multi-tasking: more than just a fit

Multi task Learning

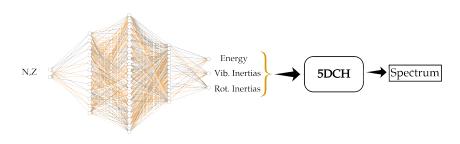


• Similar individual RMS

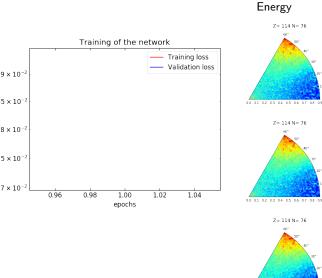
• Better correlated RMS for the spectrum

Multi-tasking: more than just a fit

Multi task Learning



- Similar individual RMS
- Better correlated RMS for the spectrum



Vib. Inertia

584

-594

-604

-674

634

-644

-664

584

-594

604

-614

-624 -634

-644

-664

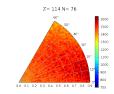
584

-594 -604

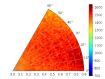
-614

-624 -634 -644 -654

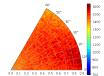
00 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

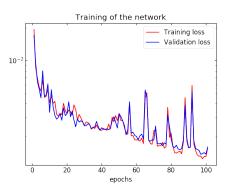


Z= 114 N= 76

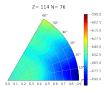


Z= 114 N= 76

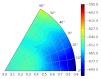




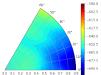
Energy



Z= 114 N= 76

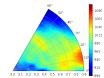


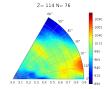
Z= 114 N= 76

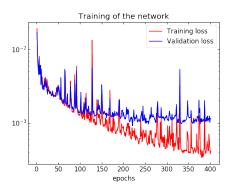


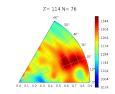
Vib. Inertia

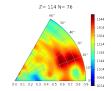


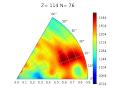












Z= 114 N= 76

Z= 114 N= 76

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

00 01 02 03 04 05 05 07 08 09

Z= 114 N= 76

-615

-638

-648

-658

-665

628

-648

-668

-678

-688

608

-615

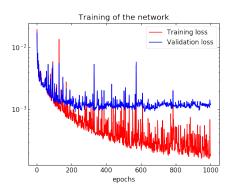
-628

-638

-648

-658

-688



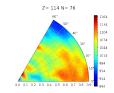
Energy



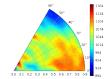
Z= 114 N= 76

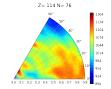
Z= 114 N= 76

Vib. Inertia

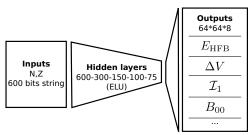


Z= 114 N= 76





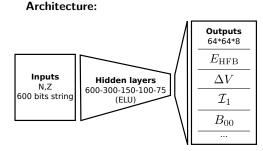
Building the neural network



Implementation:

- Keras/TensorFlow
- Fast GPU execution

Building the neural network



Implementation:

- Keras/TensorFlow
- Fast GPU execution

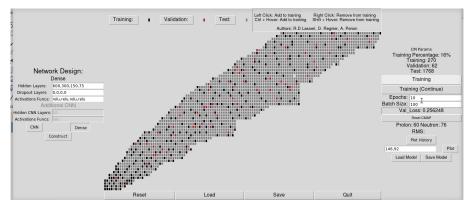
Training:

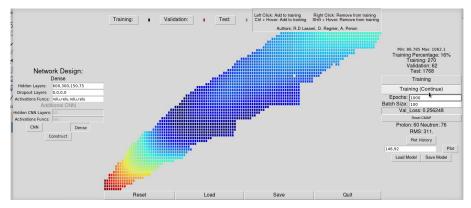
- Training set: sample from 2100 even-even nuclei, Gogny D1S functional
- Loss function based on a weighted sum of:

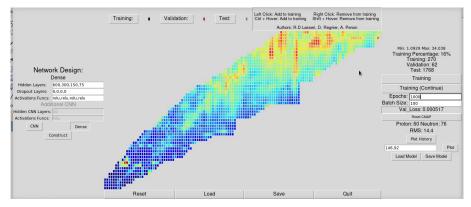
$$\mathcal{L}_{t}(N,Z) = \frac{6}{\pi B^{2}} \int_{\beta,\gamma} |t_{\mathsf{AI}}(\beta,\gamma) - t_{\mathsf{HFB}}(\beta,\gamma)|^{2} \mathsf{d}\beta\beta \mathsf{d}\gamma,$$
(2)

with $t = E_{HFB}, \Delta V, \mathcal{I}_1, \ldots$

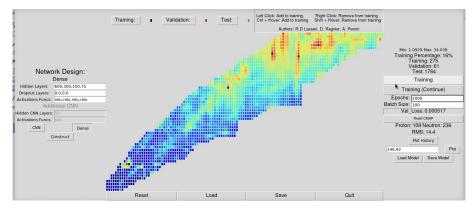
Physicist Knowledge through a Graphical Interface.

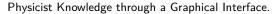


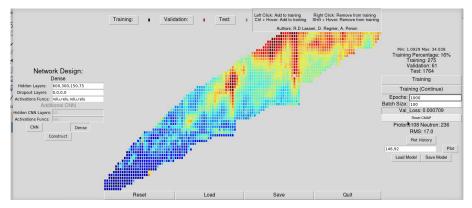




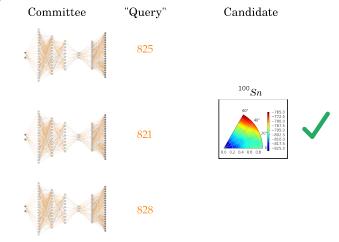
Physicist Knowledge through a Graphical Interface. (Schematic)







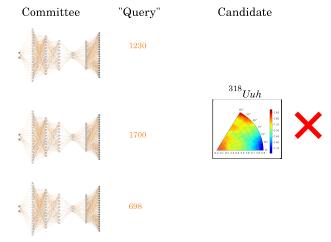
Query by committee



Benefits of a committee

- Less sensitive to the random initialization
- Estimation of uncertainty

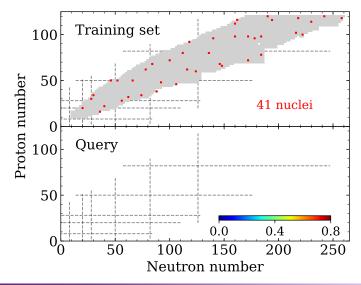
Query by committee



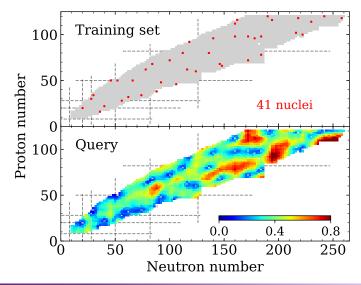
Benefits of a committee

- Less sensitive to the random initialization
- Estimation of uncertainty

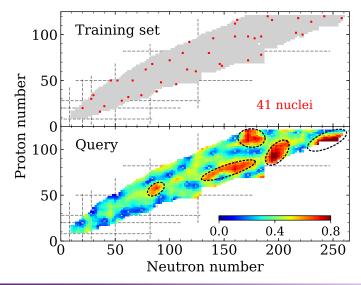
- An incremental and automatic choice of training nuclei (5 nuclei/step)
- ullet Query \simeq standard deviation between the committee members



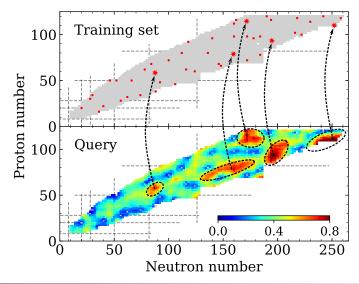
- An incremental and automatic choice of training nuclei (5 nuclei/step)
- ullet Query \simeq standard deviation between the committee members



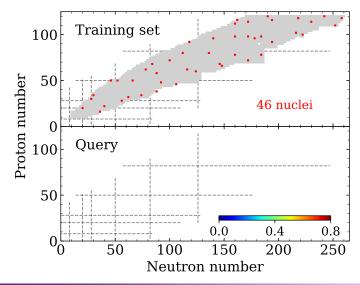
- An incremental and automatic choice of training nuclei (5 nuclei/step)
- ullet Query \simeq standard deviation between the committee members



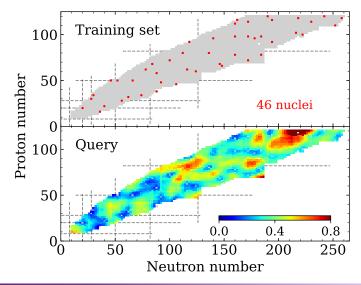
- An incremental and automatic choice of training nuclei (5 nuclei/step)
- ullet Query \simeq standard deviation between the committee members



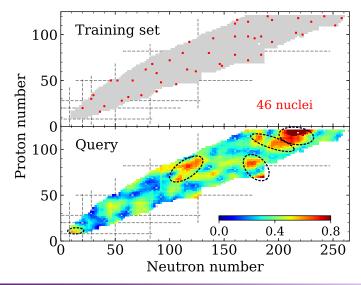
- An incremental and automatic choice of training nuclei (5 nuclei/step)
- ullet Query \simeq standard deviation between the committee members



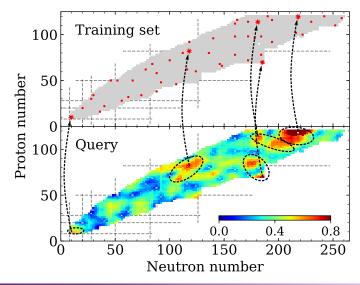
- An incremental and automatic choice of training nuclei (5 nuclei/step)
- ullet Query \simeq standard deviation between the committee members



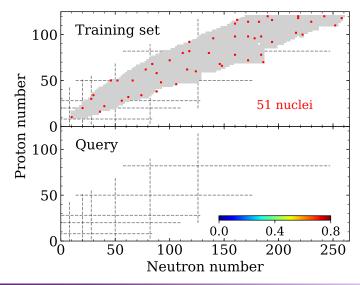
- An incremental and automatic choice of training nuclei (5 nuclei/step)
- ullet Query \simeq standard deviation between the committee members



- An incremental and automatic choice of training nuclei (5 nuclei/step)
- ullet Query \simeq standard deviation between the committee members

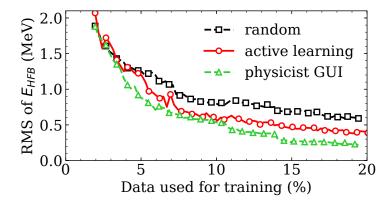


- An incremental and automatic choice of training nuclei (5 nuclei/step)
- ullet Query \simeq standard deviation between the committee members



Root Mean Square error (RMS) of the potential energy

Test RMS = on the nuclei not in the training set



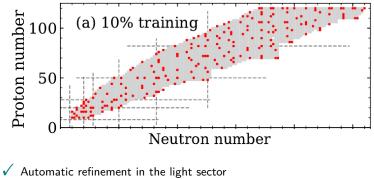
Root Mean Square error (RMS) of all outputs

Train	<i>E</i> _{HFB}	ΔV	\mathcal{I}_1	\mathcal{I}_2	\mathcal{I}_3	B_{00}	B_{01}	B_{11}	E _{GS}
%	(keV)		$(\hbar^2 imes MeV^{-1})$			(MeV^{-1})			(keV)
5	1190	417	1.84	2.80	0.97	13.8	12.0	28.2	1325
10	557	312	1.40	2.25	0.76	11.7	10.2	23.9	716
15	471	247	1.25	2.02	0.69	10.6	9.4	21.9	655
20	388	202	1.22	1.96	0.68	10.2	9.1	21.2	518

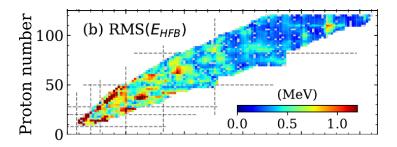
The first column contains the size of the training set in % of the AMEDEE database while the others highlight the RMS of the outputs of the AI. The last column contains the RMS associated to the correlated ground state energy $E_{\rm GS}$.

Keep in mind:

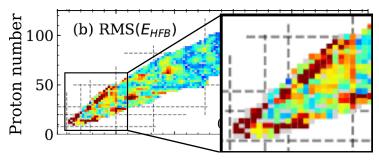
- RMS= 950 keV: Athanassopoulos et. al (2004), fitted on 1800 nuclei
- RMS= 790 keV: Gogny D1M S. Hilaire and M. Girod, (2007)



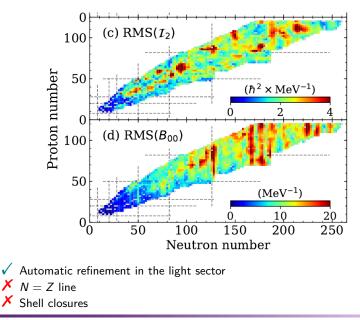
 \checkmark N = Z line \checkmark Shell closures



✓ Automatic refinement in the light sector × N = Z line × Shell closures

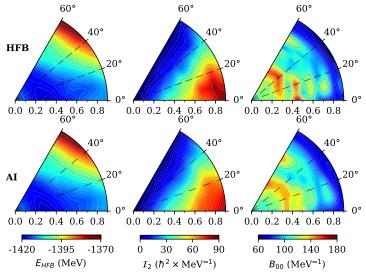


✓ Automatic refinement in the light sector × N = Z line × Shell closures

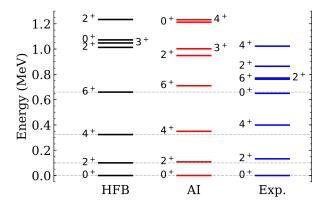


Example of ¹⁷⁸Os

- $RMS(E_{HFB}) \simeq median RMS$ on the 1800 test nuclei
- Closest trained nucleus: +4 neutrons. -2 protons



Excitation spectrum of ¹⁷⁸Os



- $\bullet~$ Correlated ground state: $|E_{\it GS}^{\it AI}-E_{\it GS}^{\it HFB}|$ = 150 keV
- Rotational states reproduced within 8%
- First vibrational state within 13%

To conclude on AI + 5D collective Hamiltonian

Taming nuclear complexity with a committee of deep neural networks

David Regnier** Centre de mathmatiques et de leurs applications, CNRS, ENS Paris-Saclay, Universit Paris-Saclay, 94235, Cachan cedex, France

Raphaël Lasseri^{*†} CEA, Irfu, Centre de Saclay, F-91191 Gif-sur-Yvette, France, DPhN

> Jean-Paul Ebran[†] CEA, DAM, DIF, F-91297 Arpajon, France

> > Antonin Penon[§] Magic LEMP, Orsay, France

In this itstret we propose a guerral method to perform fast-scale many-body predictions applied to Notedor Structure using Multi-Take Deep Lammin, Artificial Intelligence is changing or everyday life and might lead to significant breakthrough in Science too. We demonstrate that deep neural networks trained on Hinter-Fock Dogolathow variables can greatly thysical observables such as We also propose an active learning approach to identify the most relevant model which are used during the training procedure.

Keywords:

ction Today, more than 3000 atomic nuclei sured, revealing the wide diversity of nuclear ology (deformation, superfluidity, clustering, . Predicting nuclear properties over the whole nown mass and charge and beyond is therefore perimental data. It was applied on different m observables (masses, charge radii and two neut ration energies) and reduces typically the bindi RMS to a few hundreds of keV [7–13]. In all tl ies, the quality of the predictions is obtained

arXiv:1910.04132 (2019) And Submitted to PRL \simeq 2 Months Ago...

Results

- First AI predicting multiple observables
- State of the art accuracy when trained only on 210 nuclei
- Still room for improvement

What for ?

- Fast estimation of global properties from one density functional
- Fit new functionals beyond mean field ?

Can we go beyond ?

CEA, DPhN, ESNT, November 29th, 2019

To conclude on AI + 5D collective Hamiltonian

Taming nuclear complexity with a committee of deep neural networks

David Regnier** Centre de mathmatiques et de leurs applications, CNRS, ENS Paris-Saclay, Universit Paris-Saclay, 94235, Cachan cedex, France

Raphaël Lasseri^{*†} CEA, Irfu, Centre de Saclay, F-91191 Gif-sur-Yvette, France, DPhN

> Jean-Paul Ebran[†] CEA, DAM, DIF, F-91297 Arpajon, France

> > Antonin Penon[§] Magic LEMP, Orsay, France

In this itser we propose a general method to perform fast-scale many-body predictions applied to bedoed S'ructure using Multi-Taka Deep Learning. Artificial Intelligence is changing our everyday like and might lead to significant breakthrough in Steiner too. We demonstrate that deep neural networks trained on Hinter-Fock-RogBudy we values can greated trajectal observables such as We also propose an active learning approach to identify the most relevant model which are used during the training procedure.

Keywords:

ction Today, more than 3000 atomic nuclei sured, revealing the wide diversity of nuclear ology (deformation, superfluidity, clustering, . Predicting nuclear properties over the whole nown mass and charge and beyond is therefore perimental data. It was applied on different m observables (masses, charge radii and two neut ration energies) and reduces typically the bindi RMS to a few hundreds of keV [7–13]. In all tl ies, the quality of the predictions is obtained

arXiv:1910.04132 (2019) And Submitted to PRL \simeq 2 Months Ago...

Can we go beyond ?

Results

- First AI predicting multiple observables
- State of the art accuracy when trained only on 210 nuclei
- Still room for improvement

What for ?

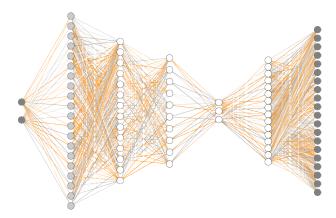
- Fast estimation of global properties from one density functional
- Fit new functionals beyond mean field ?

Table of contents

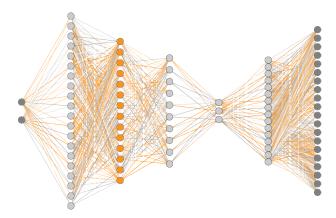
Deep learning demystified

Nuclear structure from an artificial intelligence (AI)

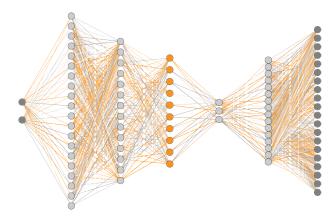
Opportunities & Projects



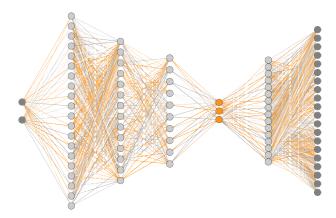
Can we get insights from the internal representation ?



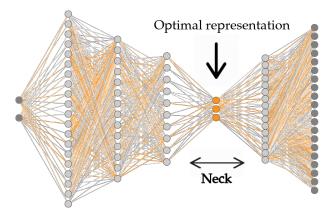
Can we get insights from the internal representation ?



Can we get insights from the internal representation ?



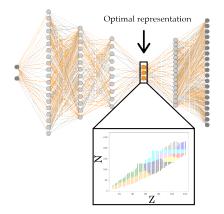
Can we get insights from the internal representation ?



Can we get insights from the internal representation ?

Paper on materials discovery ?

Work in progress...



Can we get insights from the internal representation ?

Paper on materials discovery ? Work in progress

Work in progress...

Generative AI: building manifolds of many-body states

Generative Adversarial Networks, Variational Auto Encoders: capacity to

- Reduce information to a small optimal latent space (neck)
- @ Generate a continuous outputs from the latent space

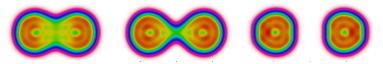
Example: the smile vector (T. White, Victoria Univ. of Wellington)

Generative AI: building manifolds of many-body states

Generative Adversarial Networks, Variational Auto Encoders: capacity to

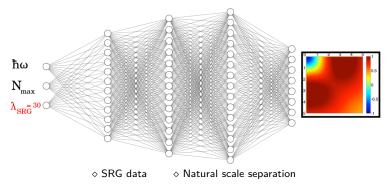
- Reduce information to a small optimal latent space (neck)
- Generate a continuous outputs from the latent space

Project: continuous manifolds of Hartree-Fock-Bogoliubov states

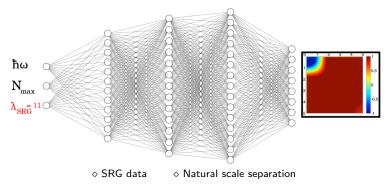


A new way to include the diabatic effects in our description of fission ?

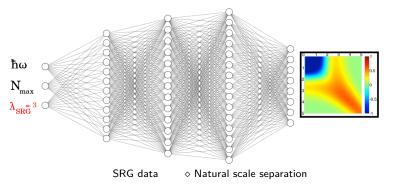
- From the bare to the dressed interaction:
- And back...
- Applications to perturbation theory
- NN as ansatz for Many-Body problems
- Many more...



- From the bare to the dressed interaction:
- And back...
- Applications to perturbation theory
- NN as ansatz for Many-Body problems
- Many more...

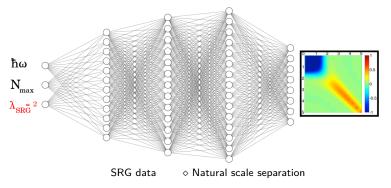


- From the bare to the dressed interaction:
- And back...
- Applications to perturbation theory
- NN as ansatz for Many-Body problems
- Many more...



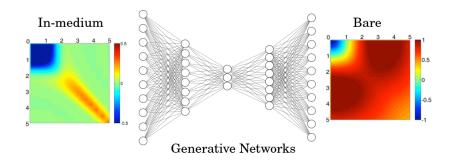
 \diamond

- From the bare to the dressed interaction:
- And back...
- Applications to perturbation theory
- NN as ansatz for Many-Body problems
- Many more...

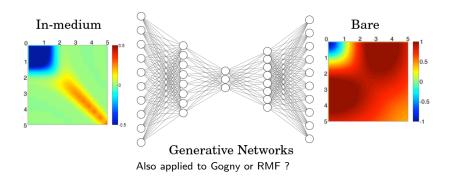


 \diamond

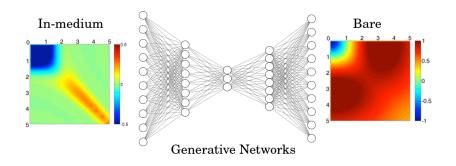
- From the bare to the dressed interaction:
- And back...
- Applications to perturbation theory
- NN as ansatz for Many-Body problems
- Many more...



- From the bare to the dressed interaction:
- And back...
- Applications to perturbation theory
- NN as ansatz for Many-Body problems
- Many more...



- From the bare to the dressed interaction:
- And back...
- Applications to perturbation theory
- NN as ansatz for Many-Body problems
- Many more...



- From the bare to the dressed interaction:
- And back...
- Applications to perturbation theory
- NN as ansatz for Many-Body problems
- Many more...

Graph Neural Networks

- From the bare to the dressed interaction:
- And back...
- Applications to perturbation theory
- NN as ansatz for Many-Body problems
- Many more...

$\widehat{H} |\Psi\rangle = E |\Psi\rangle$

- From the bare to the dressed interaction:
- And back...
- Applications to perturbation theory
- NN as ansatz for Many-Body problems
- Many more...

- From the bare to the dressed interaction:
- And back...
- Applications to perturbation theory
- NN as ansatz for Many-Body problems
- Many more...

The NucleAI project

Collaborators:

- G. Hupin, CNRS, IPNO
- A. Penon, Magic Lemp
- J-P. Ebran, CEA, DAM
- S. Hilaire, CEA, DAM

Key dates:

- ✓ GDR Resanet GT5, 29-30 Oct. 2019: Machine Learning & Physique Nucléaire
 - Workshop ESNT, Feb-Mar. 2020: Can an Artificial Intelligence do Science ?

Support:

• NVIDIA GPU Grant Program:

2× Titan V GPU 🛛 🚨

Thank you for your attention !

The NucleAI project

Collaborators:

- G. Hupin, CNRS, IPNO
- A. Penon, Magic Lemp
- J-P. Ebran, CEA, DAM
- S. Hilaire, CEA, DAM

Key dates:

- ✓ GDR Resanet GT5, 29-30 Oct. 2019: Machine Learning & Physique Nucléaire
 - Workshop ESNT, Feb-Mar. 2020: Can an Artificial Intelligence do Science ?

Support:

• NVIDIA GPU Grant Program:

2× Titan V GPU 🛛 🚨

Thank you for your attention !