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But start with textbook treatments heavily relying on :

1)  V. F. Mukhanov and S. Winitzki :  Introduction to Quantum Fields in Classical
                                                                Backgrounds (Chapter 8 The Unruh effect)

Unruh effect   (W.G. Unruh, Notes on black-hole evaporation,  PRD 14  (1976) 870  sect III)

2) R. M. Wald :  Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics
                          (Chapter 5  The Unruh effect)  Chicago Lectures in Physics

and a tiny bit on :

3) R. M. Wald :  The History and Present Status of Quantum Field Theory in Curved Spacetime 
                           gr-qc/0608018

4) K. Thorne, R.H. Price, D.A.MacDonald : Black holes  the membrane paradigm, 
                                                                       Yale University Press (Chap VIII.B6)

Thanks to Jean François Glicenstein for pointing 1) and 4)  to me



  

Unruh effect summarized

-  Unruh  effect  predicts  that  particles  will  be  detected  in  a  vacuum  
   by  an accelerated  observer

-  simplest  case :   observer  moves  with  constant  acceleration  through  Minkowski
   spacetime  and  measures  the  number  of  particles  in  a  massless  scalar  field

-  even  though  the  field  is  in  the  vacuum  state  →   observer  finds  a  distribution
   of  particles  characteristic  of  a  thermal  bath  of  blackbody  radiation

-  in  quantum  field  theory  particles  are  excitations  of  quantum  fields



  

consider the trajectory of an observer moving with constant acceleration in Minkowski 
spacetime

acceleration of observer in its own frame of reference (proper acceleration) is constant

introduce several reference frames :

- laboratory frame
  the usual inertial reference frame with the coordinates (t, x, y, z)

- proper frame
  the accelerated system of reference that moves together with the observer
  also called the accelerated frame

- comoving frame :  defined at a time t
0 

  is the inertial frame in which the accelerated observer is instantaneously at rest at t = t
0
  

  thus the term comoving frame actually refers to a different frame for each t
0

Unruh effect



  

-  consider  a  uniformly  accelerated  observer  with a time-independent
   proper  acceleration equal to a given 3-vector a    

-  trajectory  of  such  an  observer  may  be  described  by  a  worldline  xμ (τ)  
   →   τ   proper  time  measured  by  the  observer

Unruh effect : trajectory of accelerated observer

- 4-acceleration in the laboratory frame (see appendix)

aμ   ≡   
d uμ

d τ
 =  

d2 xμ

d τ
2

uμ  ≡  
d xμ

d τ
uμ uμ  =  1

related to the three-dimensional proper acceleration a by

with and

aμ aμ  =  −  |a|2



  

-  assume now that the acceleration is parallel to the x axis  a ≡ (a, 0, 0)  with  a  > 0
   and that the observer moves only in the x direction → then (see appendix) :

Unruh effect : trajectory of accelerated observer

x (τ )   =   x0  - 
1
a

 + 
1
a

 cosh a τ

t (τ)   =   t 0  + 
1
a

 sinh a τ

- the trajectory has a simpler form if we choose the initial conditions 
  x(0) = a −1   and     t(0) = 0 

  → then the worldline is a branch of the hyperbola   x 2 − t 2 = a −2

- this  trajectory  has  zero  velocity  at  τ = 0  (which  implies  x = x
0
 ,   t = t

0 
)



  

Unruh effect : trajectory of accelerated observer

-  the worldline  of the  uniformly accelerated observer in the Minkowski spacetime 
   is a branch  of  the  hyperbola    x2 − t2 =  a−2

- dashed lines show the light-cone 

-  observer cannot receive any signals 
   from the  events P , Q 
   and cannot send signals to R

- at large |t| the worldline approaches the lightcone  

- the observer comes in from x = +∞ 
  decelerates and stops at x = a −1 
  and then accelerates back towards infinity 

- in the comoving frame of the observer, 
  this motion takes infinite proper time,
  from τ = −∞ to τ = +∞.



  

-  an  accelerated  observer  cannot  measure  distances  longer  than   a−1   
    in  the  direction  opposite  to  acceleration :

   for  instance  the  distances  to  the  events  P  and  Q 

Unruh effect : horizon

one says that the accelerated observer 
perceives a horizon at proper distance a−1



  

to  describe  quantum  fields  as  seen  by  an  accelerated  observer 
→   need  to  use  the  proper  coordinates   (τ, ξ)    
       where  τ   is  the  proper  time  and  ξ  is  the  distance measured  by  the  observer 

t (τ ,ξ)  = 
1  + aξ

a
 sinh a τ

x (τ ,ξ)  = 
1  + aξ

a
 cosh a τ

the  proper  coordinate  system  (τ, ξ)  is related  to  the  laboratory  frame  (t, x)   
by some  transformation  functions   τ (t, x)   and   ξ (t, x)

coordinates (τ, ξ) vary in the intervals   −∞ < τ < +∞    and    −a−1 < ξ < +∞

for    ξ < −a−1   →   ∂t/∂τ < 0    i.e.   the  direction  of  time  is  opposite  to  that  of   τ

Unruh effect : proper coordinates



  

Unruh effect : horizon

proper coordinate system of a uniformly 
accelerated  observer in the Minkowski
spacetime 

- solid hyperbolae are lines of constant 
  proper distance ξ

- hyperbola with arrows is the worldline 
  of observer   ξ = 0   or    x2 − t2 = a−2

- lines of constant τ are dotted

- dashed lines show lightcone which 
  corresponds  to  ξ = −a−1

events  P ,  Q ,  R  are  not  covered 
by  the  proper  coordinate  system

subdomain   x > |t| →  Minkowski wedge



  

Unruh effect : Rindler  spacetime

Minkowski  metric  in  the  proper  coordinates  (τ, ξ)  is :

curvature  of  Rindler  spacetime  is  everywhere  zero  since  it  differs  from Minkowski  spacetime  merely  by  a  
change  of  coordinates.

to  develop  quantum  field  theory  in  Rindler  spacetime,  we  first  rewrite  the  metric 
in  a  conformally  flat  form  i.e.  choosing  a  new  spatial  coordinate : 

~
ξ  ≡  ln (1  + aξ )              

~
ξ   is called the conformal distance

ds2  = dt 2  - dx2  = (1  + a ξ )
2  d τ

2  - d ξ
2

the  proper  distance  ξ  is  constrained  by  ξ > −a −1  then   the  conformal  distance varies  in  the interval   [ −∞ , +∞ ]

relation  between  the  laboratory  coordinates  and  the  conformal  coordinates  is

ds2  = e2a
~
ξ  (d τ

2  - d
~
ξ

2 )

t (τ ,
~
ξ)  = a−1  ea

~
ξ  sinh a τ x (τ ,

~
ξ)  = a−1  ea

~
ξ  cosh a τ

spacetime  with  this  metric  is  called  Rindler spacetime

so that we obtain a common factor in the metric 



  

- quantize a scalar field in the proper reference frame of a uniformly accelerated observer

- procedure of quantization is formally the same in both coordinate systems 
  i.e. laboratory and accelerated frames :

- mode expansion in the laboratory frame

- mode expansion in the accelerated frame

simplify  problem → consider  a  massless scalar field  in 1+1-dimensional  spacetime

Unruh effect : quantization of a scalar field 

ϕ̂ (t , x )  = ∫−∞

+∞

 
d k

(2π )
1/2  

1

√2|k|
 [  e−i|k|t  +  ikx  âk

-  + e i|k|t  − ikx  âk
+  ]

annihilation operator creation operator

vacuum  state  in  the laboratory  frame  i.e.  the  Minkowski vacuum    |0
 M

>  

is  the zero eigenvector of all the annihilation operators   â−

k        
â−

k
 |0

M
>  = 0  for all k

ϕ̂ (τ ,
~
ξ )  = ∫−∞

+∞

 
d k

(2π )
1/2  

1

√2|k|
 [  e−i|k|τ  +  ik~ξ  b̂k

-  + ei|k|τ  −  ik~ξ  b̂k
+  ]

vacuum  state  in  the accelerated  frame  i.e.  the  Rindler vacuum    |0
 R

>  

is defined by    b̂−

k
  |0

R
>  = 0    for  all  k



  

Unruh effect :  different vacuum

- mode  expansions  are  decompositions  into  linear  combinations  of  2  different  
  sets  of  basis  functions  with  operators   â±

k
  and  b̂±

k

- operators  â 
k 
 and   b̂

 k  
 are  different  although  they  satisfy  similar  commutation

  relations

→ Rindler  vacuum   |0
R
>   and    Minkowski  vacuum   |0

M
>    

     are   2  different  quantum   states  of  the  field   Φ



  

which of  the  state   |0
M

>   or   |0
R
>   is   the  “correct”  vacuum ?

-  observers  accelerating  would  agree  that  the  field  in  the  state  |0
R
>  has 

   the  lowest  possible  energy  and  the  Minkowski  state  |0
M

>  has  a  higher  energy

Unruh effect : which is the correct vacuum ?

→ thus  a  particle  detector  at  rest  in  the accelerated  frame  will  register  
     particles  when  the scalar  field  is  in  the  state  |0

M
>

- however  in  the  laboratory  frame  the  state  with  the  lowest  energy  is   |0
M

>  

  and  the  state  |0
R
>  has  a  higher  energy

→ therefore  the  Rindler  vacuum  state   |0
R
>   will  appear  to  be  an  excited  state 

     when  examined  by  observers  in  the  laboratory  frame

ultimately  the  choice  of  vacuum  is  determined  by  experiment: 
the  correct  vacuum  state  must  be  such  that  the  theoretical  predictions  
agree  with  the  available  experimental  data

neither  of  the  two  vacuum  states  is  “more correct”  if  considered  by  itself



  

Light cone mode expansion :   density of particles and Unruh temperature 

(after some gymnastic rewritting the previous mode expansions in lightcone coordinates - see appendix)

-  one  can  relate  the  two  sets  of  operators   â±

k
  and  b̂±

k   

→ transformations linking  the  vacuum  states  of  the  quantum  field  in  the  Rindler
     frame  and  the  Minkowksi  frame   (i.e.  accelerated  frame and  laboratory  frame)

→ Bogolyubov transformations

-  one  can  compute  the  mean  density  of  massless  b-particle  of  energy  E
   in  the  a-vacuum  (from the Bogolyubov  transformation  coefficients  -  see appendix) :

→  the   a-vacuum  is  a  state  with   b-particles    and   vice versa  

-  vacua   |0
M

>   and    |0
R
>    corresponding   to  operators    â −

 
 and   b̂−    are   different  

n(E)    =   [  exp(  E
T

 )  - 1  ]
 -1

T   ≡   
a

2π
with

thermal  spectrum Unruh  temperature

acceleration



  

a  physical  interpretation  of  the  Unruh  effect  as  seen  in  the  laboratory  frame
is  the  following  : 

Unruh effect :  one  physical  interpretation 

- the  accelerated  detector  is  coupled  to  the  quantum  fields  and  perturbs
  their  quantum  state  around  its  trajectory

- this  perturbation  is  very  small  but  as  a  result  the  detector  registers  particles
  although the fields were previously in the vacuum state 

- the  detected  particles  are  real  and  the  energy  for  these  particles  comes  from 
  the  agent  that  accelerates  the  detector



  

finishing with an exercise



  

a  glass  of  water  is  moving  with  constant acceleration 

Unruh effect :   exercice

what  is  the smallest   acceleration   that   would   make   the   water   boil   due
to   the   Unruh   effect ?



  

a  glass  of  water  is  moving  with  constant acceleration 

expressing all quantities in SI units :

T   ≡   
a

2π
becomes k T   ≡   

ℏ

c
a

2π

where  k   ≈  1.38 10-23 J/K   is   the   Boltzmann’s   constant

the   boiling   point   of   water   is   T  =  373 K

Unruh effect :   exercice

what  is  the smallest   acceleration   that   would   make   the   water   boil   due
to   the   Unruh   effect ?

so  the  required  acceleration  is    a  ≈  10 22 m/s2

the  Unruh  effect  is  quite  difficult  to  use  in  practice  because  the
acceleration  required  to  produce  a  measurable  temperature  is  enormous



  

Possible next steps   

- Hawking like radiation from accelerated mirrors (from an analog/similar framework) 

- Hawking radiation from Schwarzschild BH 

- ‘t Hooft approach : scattering matrix approach, black hole unitarity, back reaction,
                                  antipodal entanglement 

- what about a possible role of BMS (Bondi, van der Burg, Metzner, Sachs) 
  asymptotic symmetries, relation to soft hairs on BH 
  Strominger at al.  (+ one of the last papers from S.W. Hawking  with collaborators) ?

- ………………………………..

- how to count BH micro-states ?

- ………………………….…….



  

APPENDIX



  



  



  

-  one  can  verify  that  an  accelerated  observer  cannot  measure  distances  longer 
   than   a−1   in  the  direction  opposite  to  acceleration :

   for instance the distances to the events P and Q 

-  however  the  observer  cannot  synchronize  clocks  with  the  events  P  and  Q 
   because  no  signals  can  be  ever  received  from  these  events 

Unruh effect : horizon

-  a  measurement  of  the  distance  to  a  point  requires  to  place  a  clock
   at  that  point  and  to  synchronize  that  clock  with  the  observer’s  clock 

one says that the accelerated observer perceives a horizon at proper distance a−1



  

- line   ξ = ξ
 0   

is  a  trajectory  of  the  form 

  x2 − t2 = const  with   proper  acceleration

- therefore  worldline  ξ = −a −1  would  have  
  to represent  an  infinite  proper  acceleration 
  which  would  require  an  infinitely  large  
  force  and  is  thus  impossible

- it  follows  that   an  accelerated  observer
  cannot  hold  a  rigid  measuring  stick  
  longer  than a−1  in  the  direction  opposite  
  to  acceleration  
  (a  rigid  stick  is  one  that would keep its  proper
  distance  constant  in  the observes’s reference frame)

Unruh effect : horizon - another  way  to  see  that  the  line  ξ = −a −1 
  is a  horizon  is  to  consider  a  
  line  of  constant  proper  length   ξ = ξ

0
 > −a −1

a0   ≡   
1

√X2  - t2
 =  (ξ0  + a−1 )

−1



  

Unruh effect : light cone mode expansion

- convenient  to  introduce  the  lightcone  coordinates 

laboratory frame  :      ū  ≡  t  - x      ,     v̄  ≡  t  + x

accelerated frame :      u  ≡  τ  - ξ      ,     v  ≡  τ  + ξ

- metric, field equations and their general solutions expressed more concisely in
  the lightcone coordinates

ds2  =  d ū d v̄  =  ea (v−u)du dv

∂2

∂ ū∂ v̄
 ϕ( ū , v̄ )  = 0     ,     ϕ(ū , v̄ )  =  A( ū)  + B ( v̄)

∂2

∂u∂ v
 ϕ(u ,v )  = 0     ,     ϕ(u , v )  =  P(u)  + Q (v )



  

Light cone mode expansion : Minkowski frame (laboratory frame)

mode  expansion  can  be  rewritten  in  the  coordinates  ū,   v̄  by  first  splitting
the  integration  into  the  ranges  of  positive  and  negative  k

then  introduce  ω = |k|  as  integration  variable with   range 0 < ω < +∞

lightcone  mode  expansions  explicitly  decompose  the field                    into 
a  sum  of  functions  of  ū  and  functions  of   v̄ :

Â ( ū )  = ∫0

+∞

 
dω

(2π )
1/2  

1

√2ω
 [  e−iω  ū  âω

-  + e iω  ū  âω
+  ]

ϕ̂ ( ū , v̄ )  = Â ( ū )  + B̂ ( v̄ )

B̂ ( v̄ )  = ∫0

+∞

 
dω

(2π )
1/2  

1

√2ω
 [  e−iω  v̄  â−ω

-  + e iω  v̄  â−ω
+  ]

ϕ̂ ( ū , v̄ )



  

Light cone mode expansion : Rindler frame (accelerated frame)

lightcone  mode  expansion  in  Rindler  frame  has  exactly  the  same  form  except 
for  involving  coordinates  (u, v)  instead  of  (ū, v) ̄

use  integration  variable  Ω  to  distinguish  Rindler  frame  expansion  from  that  of
Minkowski  frame

ϕ̂ (u , v )  = P̂ (u )  + Q̂ (v )

P̂ (u )  = ∫0

+∞

 
dΩ

(2π )
1 /2  

1

√2Ω
 [  e−iΩ  u  b̂Ω

-  + eiΩ  u  b̂Ω

+  ]

Q̂ (v )  = ∫0

+∞

 
dΩ

(2π )
1/2  

1

√2Ω
 [  e−iΩ  v  b̂−Ω

-  + e iΩ  v  b̂−Ω

+  ]



  

Light cone mode expansion :   Rindler/Minkowski   frames  relation 

relations   between    laboratory  (Minkowski)  frame   (ū,   v̄ coordinates)  
and  accelerated  (Rindler)  frame   (u, v coordinates)   are  simpler      

ū  =  −a−1  e−au         v̄  =  a−1  e−av

this  coordinate  transformation  does  not  mix  u  and  v   so  that

ϕ̂ (u , v )   =  Â (ū(u))  + B̂ ( v̄ (v ))   =  P̂ (u )  + Q̂ ( v )

entails  two  separate  relations  for  u  and  for  v

Â (ū (u))   =  P̂ (u )          B̂ ( v̄ (v ))   =  Q̂ (v )



  

Unruh effect : Bogolyubov transformations (I) 

relations   between   operators   â ±

±ω
  and   b±̂

±Ω
   are  Bogolyubov   transformations

they  are  obtained  from  these  two  separate  relations  for  u  and  for  v

Â ( ū )   =  P̂ (u )          B̂ ( v̄ )   =  Q̂ (v )

operators   â ±

ω
   with   positive   momenta   ω   are  expressed   through   b̂ ± 

Ω
  

with   positive   momenta    Ω

there  is  no  mixing   between   operators   of  positive  and   negative   momentum

while   operators    â ±

−ω
  are   expressed   through   negative-momentum  operators    b̂ ±

−Ω 



  

Unruh effect : Bogolyubov transformations (II) 

with auxiliary function :  F (ω ,Ω)   =  ∫−∞

+∞

 
du
2 π

 eiΩ  u  - iω  ū   =  ∫−∞

+∞

 
du
2π

 exp [  iΩ  u  - i ω
a

 e−au  ]

b̂Ω

-  = ∫0

+∞

 dω  [αω  Ω  âω

-   +  βω  Ω  âω

+  ]

αω  Ω   =  √Ωω  F (ω , Ω)

ω  > 0  ,   Ω  > 0

βω  Ω   =  √Ωω  F (−ω , Ω)

            expressed   through   â ±

ω
  using  hermitian  conjugate  of   b-̂

Ω  
above  

             and   using F*(ω , Ω)   =  F (−ω , −Ω)

Bogolyubov  transformations  mixing  creation  and  annihilation  operators  with
different   momenta   ω  ≠ Ω

for example from  : Â ( ū )   =  P̂ (u )

b̂Ω

+

with Bogolyubov coefficients 



  

analogously   relations  between   operators     â ± 

-ω 
  and     b̂ ± 

−Ω
    are   obtained  from  

 i.e.  the  results  for  negative  momenta  are  completely  analogous

B̂ ( v̄ )   =  Q̂ ( v )

Unruh effect : Bogolyubov transformations (III) 



  

Unruh effect : density  of  particles (I) 

vacua   |0
M

>   and    |0
R
>    corresponding   to  operators    â − 

ω 
 and    b̂ − 

Ω
   are   different

→  the   a-vacuum  is  a  state  with   b-particles    and   vice versa  

 what  is  the  density  of  b-particles  in  the  a-vacuum  state ?

b-particle  number  operator  is :      N̂
Ω
 ≡  b̂+

Ω
 b-̂

Ω
  

 → the   average   b-particle  number  in  the   a-vacuum    |0
M

>    is  equal  to  the

      expectation  value  of   N̂
Ω
 : 

< N̂Ω>   ≡  <0M ∣ b̂Ω

+ b̂Ω

-  ∣0M>

 =  <0M ∣ ∫dω  [αω  Ω
 * âω

+  + βω  Ω
 * âω

- ]  ∫dω '  [αω '  Ω âω '
-  + βω '  Ω âω '

+ ]  ∣0M>

 =   ∫ dω  |βω  Ω|
 2



  

Unruh effect : density  of  particles (II) 

< N̂Ω>    =    [  exp (  2π  Ω
a

 )  - 1  ]
 -1

 δ(0)    ≡    nΩ  δ(0)

 computing  the  integral  yield:

nΩ    =   [  exp(  2π  Ω
a

 )  - 1  ]
 -1

 where

 is  the  mean  density  of  particle  with  momentum   Ω



  

Unruh effect : Unruh  temperature  

 a  massless  particle  with  momentum   Ω   has   energy   E = | Ω | 

nΩ    =   [  exp(  2π  Ω
a

 )  - 1  ]
 -1

is   equivalent   to  the   Bose-Einstein   distribution :

 so  the  mean  density  of   particle   n
Ω  

:

n(E)    =   [  exp(  E
T

 )  - 1  ]
 -1

 where  T  is  the  Unruh   temperature :

T   ≡   
a

2π
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K. Thorne, R.H. Price, D.A.MacDonald, Black holes 
the membrane paradigm., Yale University Press

- Unruh discovered that an accelerated particle detector in flat, empty spacetime should 
  behave as though it were bathed in a perfect bath of thermal radiation with temperature 
  T = (h/4π2) a/ k

B
   where a is the detector's acceleration. 

- Since a static observer (FIDO) just above Schwarzschild horizon can be viewed, in the
  Rindler approximation, as completely analogous to an accelerated observer in flat spacetime
  with acceleration  a = g

H
α , Unruh's insight suggested that such a FIDO should feel himself

  bathed in thermal radiation with locally measured temperature  T = (h/4π2) (g
H
/α) / kB = T

H
 /α

- This thermal radiation (« thermal atmosphere of the hole »), climbing up through 
   the hole’s gravitational field, would be redshifted by a factor α and  therefore would
   emerge with a temperature T

H
 as Hawking's thermal emission.

K. Thorne, R.H. Price, D.A.MacDonald 
Black holes  the membrane paradigm (chap VIII)



  

K. Thorne, R.H. Price, D.A.MacDonald, Black holes 
the membrane paradigm., Yale University Press

- not easy to bring physical intuition into accord with these quantum field theory predictions

- especially troubling was the fact that, an accelerated observer in flat spacetime sees a 
  thermal bath, freely falling observers see pure vacuum

- correspondingly, although static FIDOs near a Schwarzschild black hole see a thermal
  atmosphere, freely falling observers see no such atmosphere at all

- considerable progress toward understanding these apparently contradictory
  viewpoints came from a series of model problems invented and studied by 
  Unruh and Wald (1982, 1984)

K. Thorne, R.H. Price, D.A.MacDonald 
Black holes  the membrane paradigm (chap VIII)



  

K. Thorne, R.H. Price, D.A.MacDonald, Black holes 
the membrane paradigm., Yale University Press

- in one such problem they showed that when an accelerated observer absorbs a quantum
  from the surrounding thermal bath a freely falling observer sees him emit a quantum 

it is less obvious but true from the accelerated observer’s viewpoint : 

- these contrasting perception were reconciled by showing that both observers 
  agree that the absorption/emission has increased the energy in the radiation field

this is obvious from the freely falling observer’s viewpoint : 
the field was empty before the emission and contains one quantum afterwards

the field was in a perfectly thermal, mixed state – and had a finite probability for 
containing no quantum whatsoever – before the absorption

by absorbing a quantum, the accelerated observer performs a partial measurement
on the field ; for example, he learns that it contains at least one quantum before the 
absorption

this partial measurement, despite the absorption, turns out to increase the expectation 
value of the energy in the field, as computed by the accelerated observer

K. Thorne, R.H. Price, D.A.MacDonald 
Black holes  the membrane paradigm (chap VIII)



  

K. Thorne, R.H. Price, D.A.MacDonald, Black holes 
the membrane paradigm., Yale University Press

A particle detector carried by an inertial observer in flat, empty spacetime detects no particles 
whatsoever ... correspondingly,  the expectation value of the stress-energy tensor (<T μ ν>) … is 
precisely zero. It is this  <T μ ν>  which presumably couples to gravity through the Einstein field 
equations and which, because it vanishes, leaves spacetime perfectly flat.

A uniformly accelerated observer in flat, empty spacetime moves along a hyperbola in the 
Minkowski spacetime and a family of such accelerated observers  moves along a family of 
such hyperbolae

Because such a family cannot sample the entire spacetime  (the FIDOS are confined to the 
right-hand quadrant in the Minkowski spacetime diagram) the family cannot make a sufficiently
global measurement of any field so as to verify that it indeed is in the "Minkowski vacuum
state" (is unexcited)' 

As a result, such FIDOs can obtain only partial information about the state of the field
- partial information which corresponds to regarding each mode of the field as in a mixed 
state, with a nonunit probability P

o
 to have zero quanta, and non zero probability P

1
, P

2
, …

to have one, two, …. quanta

…. these probabilities are precisely thermally distributed and moreover these thermal P
n
 

are precisely the probabilities that n quanta will be detected in the mode by a real physical 
particle detector 

K. Thorne, R.H. Price, D.A.MacDonald 
Black holes  the membrane paradigm (chap VIII)



  

K. Thorne, R.H. Price, D.A.MacDonald, Black holes 
the membrane paradigm., Yale University Press

- an accelerated detector behaves very differently from an
  unaccelerated detector and the energy eigenstates to which 
  it couples with time-independent strength is very different 
  from eigenstates of constant inertially measured energy

- as one sees from the figure, relative to an inertial observer 
  the detector changes its own velocity by nearly the speed of 
  light during this measurement time. 

- in order to measure a quantum of energy EK ~ k
B
T = h a/4π2 ,

  which has,  as seen by the accelerated detector,  a frequency 
  σK = (2π/h) EK ~ a/2π , the detector must make a continuous 
  measurement that lasts longer than  Δr ~ π/σK   ~  2π2/a ~ 20/a

 - with such radically changing velocity, the detector surely will 
   not couple in any simple manner to the modes that an inertial 
   observer regards as simple !

K. Thorne, R.H. Price, D.A.MacDonald 
Black holes  the membrane paradigm (chap VIII)



  

K. Thorne, R.H. Price, D.A.MacDonald, Black holes 
the membrane paradigm., Yale University Press

- the thermal bath, which the accelerated observers genuinely feel, is perfectly compatible 
  with a vanishing value of <T μ ν>

- the compatibility arises from the effects of vacuum polarization :

From the viewpoint of the accelerated observers, vacuum polarization gives 
a  contribution to   <T μ ν>   precisely equal and opposite to that of a perfect
thermal bath with locally measured temperature  T = (h/2π) a/k

B
  

This contribution of vacuum polarization to  <T μ ν>  is independent of the actual 
state of the fields

K. Thorne, R.H. Price, D.A.MacDonald 
Black holes  the membrane paradigm (chap VIII)



  

         Glimpses of
Quantum Field Theory 
  in Curved Spacetime



  

- quantum field theory in curved spacetime is the theory of quantum fields 
  propagating in a classical curved spacetime.

- the spacetime is described in this case in accord with general relativity 
  by a manifold  M  on which is defined a Lorentz metric  g

ab 

- in the framework of quantum field theory in curved spacetime, 
  back-reaction of the quantum fields on the spacetime geometry can be taken into
  account by imposing the semi-classical Einstein equation G

ab 
= 8π  <T

ab
>

- issues associated with back-reaction not considered  
  → in the following  
       (M, g 

ab
) may be taken to be an arbitrary, fixed globally hyperbolic spacetime

quantum field theory in curved spacetime 

R. Wald :  The History and Present Status of Quantum Field
                 Theory  in Curved Spacetime, gr-qc/0608018



  

- much of the quantum theory of a free field follows directly from the analysis of an
  ordinary quantum mechanical harmonic oscillator described by the Hamiltonian

H  = 
1
2

p2  + 
1
2
ω

2  q2

- introducing the “lowering” (or “annihilation”) operator

a  ≡  √
ω
2

q2  + i √ 1
2ω

 p

- we can rewrite H as

H  = ω  (a+  a  + 
1
2

I )

- where a + is referred to as the “raising” (or “creation”) operator
  and we have the commutation relations

[a+  , a ]  = I     ,   [ H , a ]  = −ωa

reminder 



  

- in the Heisenberg representation the position operator  q
 H

  is given by

qH  = √ 1
2ω

 (e−iω t a  + e iω t a+)

- annihilation operator a is seen to be the positive frequency part of the position operator

- ground state  |0>   of the harmonic oscillator is determined by

- all other states of the harmonic oscillator obtained by successive applications 
   of a + to  |0>

a | 0>  = 0

reminder 



  

- classically Ф satisfies the wave equation

- to avoid technical awkwardness →  convenient to imagine that the scalar field resides
  in a cubic box of side L with periodic boundary conditions

- in that case  Ф (t, x ) can be decomposed in terms of a Fourier series in x 

∂a∂bϕ  - m2ϕ  = 0

ϕ
k⃗
 = L−3 /2  ∫ e−i k⃗⋅x⃗  ϕ (t , x⃗ )  d3 x k⃗  = 

2π
L

 (n1 , n2 , n3 )

H  = ∑
k⃗

 
1
2

 (  |ϕ̇ k⃗|
2
 + ωk⃗

2  |ϕ k⃗|
2  )

ω k⃗
2  = |⃗k|

2
 + m2

- consider, now, a free Klein-Gordon scalar field  Ф  in Minkowski spacetime

→ → 

reminder 



  

- quantum field theory associated to Ф  can be obtained by quantizing each of these
  oscillators 

- Heisenberg field operator Ф (t, x ) then given by

ϕ ( t , x⃗ )  = L−3/2  ∑
k⃗

 
1

2ω
k⃗

 (e
i k⃗⋅⃗x−iωk⃗ t

a k⃗  + e
−i k⃗⋅⃗x+iωk⃗ t

a k⃗
+ )

ϕ (f )  = ∫ f ( t , x⃗ )  ϕ ( t , x⃗ )  d4 x         rather than       ϕ (t , x⃗ )

reminder 

- however  the sum on the r.h.s does not converge  in any sense 
  that would allow one to define the operator Ф at the point (t, x )

→ roughly speaking, the infinite number of arbitrarily high frequency oscillators 
     fluctuate too much to allow Ф (t, x ) to be defined

→ difficulty can be overcome by “smearing”  Ф  with an arbitrary “test function” f
     (i.e., f is a smooth function of compact support)  so as to define

the resulting formula for  ϕ  ( f )   can be shown to make rigorous mathematical sense

thus defining   ϕ    as an 'operator-valued distribution' 

→ 

→ 

→ 



  

- ground state  |0>  of  Ф  is simply simultaneous ground state of all of the harmonic
  oscillators that comprise Ф , i.e., it is the state satisfying a

 k
 |0> = 0 for all  k

- in quantum field theory this state is interpreted as representing the “vacuum”

- state of the form (a+)n |0>  interpreted as a state where a total of n particles are present

- in an interacting theory, the state of the field may be such that the field behaves 
  like a free field at early and late times

→ in that case, we would have a particle interpretation of the states of the field 
     at early and late times

→ relationship  between the early and late time particle descriptions of a state 
     – given by the S-matrix –    contains a great deal of dynamical information 
     about the interacting theory
     (and, indeed, contains all of the information relevant to laboratory scattering experiments)

→  
→  

reminder 



  

reminder 

- this equation makes explicit the dual particle and wave interpretation  
  of the quantum field Ф (x)

→ on the one hand  Ф(x)  is written as a Hilbert space operator 
     which creates and destroys the particles that are the quanta of field excitation

→ on the other hand  Ф(x) is written as a linear combination of solutions (e ip .x and e -ip.x) 
     of the Klein-Gordon equation.

both signs of the time dependence in the exponential appear
i.e.  both  e-ip   t and  e+ ip   t   although po is always positive 

→if these were single-particle wavefunctions
    they would correspond to states of positive and negative energy 
    let us refer to them more generally as positive- and negative-frequency modes

oo

ϕ (x , t )  = ∫  
d3 p

(2π )
3  

1

√2E p

 (ap  e−i p⋅x  + a p
+  e i p⋅x )  | p0

=E p

π (x , t )  = ∂
∂ t

 ϕ (x , t )

-  Ф  and π  operators in the Heisenberg picture



  

reminder 

- the connection between the particle creation operators and the waveforms 
  displayed here is always valid for free quantum fields:
 
 → a positive-frequency solution of the field equation has as its coefficient 
      the operator that destroys a particle in that single-particle wavefunction

→ a negative-frequency solution of the field equation, being the Hermitian 
     conjugate of a positive-frequency solution, has as its coefficient 
     the operator that creates a particle in that positive-energy single-particle
     wavefunction

- in this way  the fact that relativistic wave equations have both positive- and 
   negative-frequency solutions is reconciled with the requirement that a sensible
  quantum theory contain only positive excitation energies.



  

Penrose diagram

- a  conformal  transformation which brings entire manifold onto a compact region 
  such that we can fit the spacetime (ie. its infinities) on a finite 2-dimensional diagram 

 → known as Penrose-Carter diagram 
      (or Carter-Penrose diagram or just conformal diagram)

→ make infinity were a « definite place »



  

Penrose diagram for Minkowski space

- idea → introduce a transformation that takes Minkowski space into a compact region

- begin with the line element in spherical coordinates

ds2  = −dt 2  + dr2  + r2 (  dθ 2  + sin2
θ  d ϕ 2  )

- now define :      u = t − r     and     v = t + r        then  we  have :

ds2  = −du dv  + 
1
4

(u - v )
2
 (dθ 2  + sin2 d ϕ  2 )

→ radial light rays  (ds = 0 and dθ = dФ = 0)  give dudv = 0

→ thus radial light rays travel on lines of constant u and v

→ this is a rotation of the t and r-axes to the u and v-axes by 45 o



  

Penrose diagram for Minkowski space

- now let

u '  = tan−1u  = 
1
2

(  τ  - ρ  )

v '  = tan−1 v  = 
1
2

(  τ  + ρ  )

since   0 < r < ∞   and    −∞ < t < ∞     then   −π /2 < u  and  v < π/2

- rotating this primed system by 45o   we obtain a set of new coordinates

τ  = tan−1 u  + tan−1 v  = tan−1  (  t  - r  )  + tan−1  (  t  + r  )

ρ  = tan−1 v  - tan−1u  = tan−1  (  t  + r  )  - tan−1  (  t  - r  )

→ these give the Penrose diagram for Minkowski space

→ lines of constant r and t are shown in the diagram



  

Penrose diagram for Minkowski space

- we have mapped infinity to a finite region

→ there are several types of infinity: 
     I

+
 , I

−
 , I

0
   and       ±

- outgoing light rays follow paths  t  =   r + const.

→ they leave along lines of slope 1

→ they arrive at  v’ = π/2  or future null infinity    
 +
 

- ingoing radial lines end at    −  i.e.  past null infinity

- the motion of particles start at past timelike infinity  I 
−
 

  and end at future timelike infinity   I 
+
 

- finally,  spacelike trajectories arrive at spacelike infinity  I 
0
 

ℑ

ℑ

this symbol     +  is called scri plusℑ

ℑ



  

ds2  =  gμν  dxμdx ν   =   −  (1−
2 M

r )  dt 2   +   (1−
2 M

r )
−1

 dr 2   +   r2 dΩ2

with :     dΩ2  =  d θ  2   +   sin2θ  d ϕ  2

Schwarzschild solution

solution  of  Einstein  equations  describing  the  exterior gravitational  field  of  a  static  and 
spherically  symmetric  body  (M = Gm)

-  metric  singularity  at   r = 0   is  a  true  singularity

i.e.  a  singularity  of  the  spacetime  geometry  (curvature  scalars  blow  up)

-  metric  singularity  at   r = 2M   is  an  apparent  singularity

i.e.  not  a  singularity  of  the  spacetime  geometry  (no curvature  scalars  blow  up)

coordinates  fail  to  properly  cover  a  region  of  spacetime

depends  on  the  coordinate  frame  we  use  and  has  no  physical  significance 

sometimes  referred  to  as  a  coordinate  singularity  or  a  ‘breakdown’  of  coordinates 



  

ds2  =  gμν  dxμdx ν   =   −  (1−
2 M

r )  dt 2   +   (1−
2 M

r )
−1

 dr 2   +   r2 dΩ2

with :     dΩ2  =  d θ  2   +   sin2θ  d ϕ  2

Schwarzschild solution

- solution  of  Einstein  equations  describing  the  exterior gravitational  field  of  a  static  
  and spherically  symmetric  body  (M = Gm) :

r*  =  r  +  2 M ln(
r

2 M
 - 1)

- concentrating on the r and t parts  the metric becomes :

- introducing (Regge Wheeler tortoise coordinate)  :

ds2  =  (1−2 M
r )  [  −dt 2  +  d r*2  ]



  

Schwarzschild solution

- moving to null coordinates by writing :       u = t - r∗     and     v = t + r∗    

→  the metric becomes :

ds2  =  −(1− 2 M
r )   dudv

→ or 

ds2  =  −
2M e− r /2 M

r
 e (v−u )/4 M   dudv

U  =  −e
−

u
4 M    and    V  =  e

v
4 M→ or,  using                                                                 (U < 0 and V > 0 for all values of r)   :

ds2  =  −
32 M 3 e−r /2 M

r
 dUdV

→ metric well defined for  r = 2M  (no singularity)  i .e.  U = 0  or  V = 0,  and for all  r > 0

→ can thus extend the Schwarzschild solution by allowing U and V to take on 
     all values compatible with r > 0 



  

Schwarzschild solution

- make the final transformation T = (U + V)/2  and  X = (V – U)/2   (or  U = T – X ,  V = T + X)
  the full Schwarzschild metric takes the final form given by Kruskal and Szekeres :

ds2  =  
32 M 3 e−r /2 M

r
 (−dT 2  +  dX 2)  +  r2 dΩ2

- relation between the old coordinates (t, r) and the new coordinates (T, X) given by

( r
2 M

 - 1)  e−r /2 M  = X 2  - T 2

t
2M

 = ln(T  + X
X  - T )  = 2 tanh−1

(T /X )

- this spacetime is called the « extended black hole spacetime » 
  or also « extended Schwarzschild geometry »



  

Schwarzschild solution

R. Wald :  General Relativity, The University of Chicago Press

V

U



  

Penrose Diagram

fully extended Schwarzschild geometry
(all values of U and V)

Penrose diagram of Minkowski space

U=0V=0

VU



  

Schwarzschild solution

- at the horizon  r = 2M  we have  UV = 0  →  either  U = 0  or  V = 0

- singularity  r = 0  corresponds to the (two branches of the) hyperbola described by  UV = 1

→  represented by a wavy line (singularities will always be represented by wavy lines)

- in general, surfaces of   r = const.  correspond to hyperbolae  UV = const.  with   UV < 1

- spatial sections with    t = const.   have   U/V = const.   and    |U/V | < 1

- ingoing and outgoing null geodesics are respectively given by  U = const.  and   V = const.



  

Schwarzschild solution

- the U, V coordinates cover all of our spacetime but these coordinates do not have a
  bounded range

- thus if we try to draw the U, V space on a sheet of paper, we have to stop at a finite
  value of U, V , and we do not explicitly see the picture of how the ‘points at infinity’
  border our spacetime

- to bring these ‘points at infinity’ to a finite coordinate distance from the points in the
  interior of our spacetime, we make a conformal rescaling of the metric

- here the word ‘conformal’ means that at each point the metric is scaled by a
  number g

ab
 (x) → Ω2 (x) g

ab
 (x)  so that the angles between different directions 

  at the point x do not change and in particular null directions remain null directions

- such a rescaling helps to understand the causal structure of the spacetime
  including the behavior of ‘infinity’



  

Schwarzschild solution

- define a new set of null coordinates via  U = tan Ũ   and   V = tan Ṽ 
  such that  − π/2 < Ũ ,    < π/2Ṽ

ds2  =  −
32 M 3 e−r /2 M

r
 dUdV ds2  =  −

32 M 3 e−r /2 M

r
 dUdV   +  r 2dΩ2

putting back the angular variables part

or

→ the line-element 

becomes

ds2  =  (2cos~U cos~V )
−2

 [−4
32 M 3 e−r /2 M

r
 d ~U d~V   +  r2 cos2~U cos2~V dΩ2]

- performing the conformal transformation we get :

 =  −4
32 M 3 e−r /2 M

r
 d~U d~V   +  r2 cos2~U cos2 ~V dΩ2

d~s 2  = (2 cos~U cos~V )
2

 ds2

and we add the points at infinity



  

Schwarzschild solution

- the curvature singularity  UV = 1  now corresponds to 

tan~U tan~V  = 1  ⇔  sin~U sin~V  = cos~U cos~V  ⇔  cos (
~U  + ~V ]  = 0

which implies  Ũ +  = ± π/2Ṽ    or    = ± π/4 T̃
if we define  T̃  and   X   through   ̃ Ũ =  −  T̃ X̃   and    =  + XṼ T̃  ̃



  

Penrose Diagram



  

Penrose diagram for Kruskal space Penrose diagram for a collapsing star

curved line represents the surface and
the shaded region corresponds to the 
interior of the star

horizon corresponds to the dashed line

Penrose Diagram



  

Penrose Diagram

Penrose diagram for the ‘eternal Schwarzschild hole’Penrose diagram of the black hole 
made by collapse of a shell



  

Penrose Diagram
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Penrose Diagram

R. Wald :  General Relativity, The University of Chicago Press



  

Penrose Diagram

R. Wald :  General Relativity, The University of Chicago Press



  

Penrose Diagram

R. Wald :  General Relativity, The University of Chicago Press



  

Penrose Diagram

R. Wald :  General Relativity, The University of Chicago Press
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